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A record-breaking temperature is the highest or lowest temperature at a station since the period of time
considered began. The temperatures at a station constitute a time series. After the removal of daily and annual
periodicities, the primary considerations are trends �i.e., global warming� and long-range correlations. We first
carry out Monte Carlo simulations to determine the influence of trends and long-range correlations on record-
breaking statistics. We take a time series that is a Gaussian white noise and give the classic record-breaking
theory results for an independent and identically distributed process. We then carry out simulations to deter-
mine the influence of long-range correlations and linear temperature trends. For the range of fractional Gauss-
ian noises that are observed to be applicable to temperature time series, the influence on the record-breaking
statistics is less than 10%. We next superimpose a linear trend on a Gaussian white noise and extend the theory
to include the effect of an additive trend. We determine the ratios of the number of maximum to the number of
minimum record-breaking temperatures. We find the single governing parameter to be the ratio of the tem-
perature change per year to the standard deviation of the underlying white noise. To test our approach, we
consider a 30 yr record of temperatures at the Mauna Loa Observatory for 1977–2006. We determine the
temperature trends by direct measurements and use our simulations to infer trends from the number of record-
breaking temperatures. The two approaches give values that are in good agreement. We find that the warming
trend is primarily due to an increase in the �overnight� minimum temperatures, while the maximum �daytime�
temperatures are approximately constant.
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I. INTRODUCTION

Global warming has received a great deal of attention
from a wide variety of studies. These studies have been sum-
marized by Solomon et al. �1�. The consensus is that anthro-
pogenic global warming is occurring but that there is consid-
erable stochastic scatter. One observation supporting global
warming is the excess of daily record-breaking maximum
temperatures over daily record-breaking minimum tempera-
tures �2�. A record-breaking maximum temperature is defined
as an observed temperature that is higher than any previous
maximum temperature at a prescribed weather station since
the period of time considered began. A similar definition ap-
plies for a record-breaking minimum temperature. We will
begin by reviewing some previous contributions to this topic
and briefly discuss the techniques that we will bring to bear
here before proceeding to discuss other aspects of the litera-
ture and the course we will pursue in this paper.

A systematic study of maximum record-breaking tempera-
tures for the United States has been given by Meehl et al.
�3�. For nearly 2000 weather stations, record-breaking maxi-

mum and minimum temperatures were determined for each
day of the year, 1950–2006. For the 7 yr period from January
1, 2000 to December 31, 2006 and for all 2000 stations con-
sidered together, there were 291 237 record-breaking maxi-
mum temperatures and 142 420 record-breaking minimum
temperatures, a ratio of approximately two to one.

Temperature measurements at a weather station constitute
a time series. In order to remove daily periodicities, only
daily minimum and maximum temperatures are considered.
Moreover, in order to remove annual periodicities, we con-
sider the sequence of temperatures on a specified day of the
year. The time series of maximum �or minimum� tempera-
tures on a specified day of the year is characterized by trends
�i.e., global warming or cooling� and long-range correlations.

There is a rich literature on the topic of record breaking
statistics �4�. Tata �5� introduced a basic theory of record-
breaking statistics for a sequence of variables drawn from a
continuous independent and identically distributed �i.i.d.�
process. An example of such a process is a Gaussian white-
noise time series. Tata �5� showed that the results are inde-
pendent of the statistical distribution of measured values.
Glick �6� presented several applications including record-
breaking temperatures. Several authors �7,8� have considered
record-breaking temperatures in terms of global warming.

Redner and Petersen �8� considered 126 yr of daily
record-breaking temperature data for Philadelphia and
showed that they were well approximated by a Gaussian pro-
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cess. They carried out Monte Carlo simulations of record-
breaking temperature using parameters applicable to their
data. They concluded that their data could not be used to
establish a warming trend. Benestad �7� approached the
study of record-breaking temperatures in a somewhat differ-
ent way. Considering mean monthly temperatures at a variety
of sites, he showed that the number of record-breaking val-
ues moving forward in time is significantly greater than the
number of record-breaking values moving backward in time,
a result consistent with global warming.

Redner and Peterson �8� showed that the Philadelphia data
set could be approximated as a Gaussian white noise. We
first consider the applicable record-breaking statistics for this
case. However, other authors have shown that temperature
time series exhibit correlations �9�. For time spans of
100–105 yr, these time series can be represented as frac-
tional Gaussian noises. Using Monte Carlo simulations of
fractional Gaussian noise processes, we obtain the influence
of the correlations on the record-breaking statistics. For time
spans of 101–102 yr, it is widely accepted �2� that tempera-
ture time series have an increasing temporal trend primarily
due to the influence of anthropogenic greenhouse gases
�10,11�. Again, we utilize Monte Carlo simulations to obtain
the influence of temperature trends on the record-breaking
statistics.

To apply our results, we will first consider the 30 yr time
series of maximum and minimum daily temperatures at the
National Oceanic and Atmospheric Administration �NOAA�
Mauna Loa Observatory �MLO� on the Big Island, Hawaii
�13�. The observatory established the systematic increase in
CO2 due to anthropogenic inputs. The well-mixed atmo-
sphere at this isolated high-elevation weather station has
been accepted �11� as representative of global average values
of CO2. We utilize our Monte Carlo simulations to determine
temperature trends from the record-breaking data and com-
pare the results with the directly measured trends. We next
utilize our simulations to associate temperature trends with
the record-breaking temperature statistics obtained by Meehl
et al. �3� for some 2000 stations in the United States for the
56 yr period of 1950–2006.

Finally, we compare our results with other studies of glo-
bal warming. Of particular interest will be the generally ac-
cepted decrease in the diurnal temperature range �DTR� �2�.
Karl et al. �2�, using minimum temperatures from stations
covering 50% of the northern hemisphere and 10% of the
southern hemisphere, observed a narrowing in the DTR from
1951 to 1990.

It should be noted that our studies of record-breaking tem-
peratures are restricted to relatively short periods, 30 and 56
yr. Trends over these periods are generally attributed to an-
thropogenic global warming. However, Lennartz and Bunde
�12� showed that there is a small probability that these trends
are due to long-period correlations.

II. RECORD-BREAKING STATISTICS FOR AN
INDEPENDENT AND IDENTICALLY DISTRIBUTED

PROCESS

In this paper, we consider a time series of maximum and
minimum temperatures on a specified day of the year at a

specified location. Initially, we will not consider temporal
correlations or trends in the time series nor will we consider
the specific nature of the observed distribution function. This
time series is considered to be a sequence of i.i.d. random
variables. We derive an expression for the number of record-
breaking events �nrb�n�� in the sequence as well as the cor-
responding standard deviation. The basic analysis for �nrb�
was given by Tata �5� and clearly illustrated in a tutorial by
Glick �6�. In this section, we will reproduce salient portions
of their derivation.

From a probabilistic standpoint, we assume that n events
have taken place, where an event corresponds to the outcome
of a measurement, in our case, a daily maximum or mini-
mum temperature. The first event automatically constitutes
the first record-breaking event. With a second event, the like-
lihood that the second event is record breaking is 1/2,
thereby making the average number of record-breaking
events 1+ 1

2 . With a third event, the likelihood that the third
event is record breaking is 1/3, thereby making the average
number of record-breaking events 1+ 1

2 + 1
3 . If we were to

generalize this argument, we would observe following n
events �or trials� that the average number of record-breaking
events would be

1 +
1

2
+

1

3
+ ¯ +

1

n
= �

i−1

n
1

i
� ln�n� + � , �1�

where the latter is a well-known approximation for the sum
of the reciprocals of sequential integers and �
�0.577 215 664 9 is the Euler-Mascheroni constant �6�.

In order to proceed, we need to develop a more precise
description of this as an uncorrelated process. The outcome
of each new event, after the first, determines whether the
prevailing record has been broken. We will employ the vari-
able xi, for i=2, . . . , to each successive new event where we
assign xi a value of zero, if the ith event is not record break-
ing, and assign it a value of one, if the ith event is record
breaking. It follows that the probability that the ith event is
record breaking is 1 / i, while the probability that it is not is
1−1 / i. Accordingly, the mean value of xi over many realiza-
tions of the process, which we will call �xi�, is

�xi� = 0 � 	1 −
1

i

 + 1 �

1

i
=

1

i
, �2�

as we noted earlier. What this means in practical terms is
that, if we were to collect and average many examples of the
time series, then we would obtain �xi� for the mean. With
these definitions and results, it is convenient to extend our
definition of the random variables to include the first event,
thereby establishing x1 as always 1, i.e., the probability that it
is zero vanishes, and that

�x1� = 1. �3�

With these definitions, we can now define a new random
variable nrb�n� as the number of record-breaking events in
n�0 trials, i.e.,
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nrb�n� � �
i=1

n

xi = 1 + x2 + ¯ + xn. �4�

It immediately follows that the mean of nrb is

�nrb�n�� = �
i=1

n

�xi� = 1 +
1

2
+ ¯ +

1

n
� ln�n� + � , �5�

as we observed in Eq. �1�. Since nrb�n� is defined in terms of
a set of independent random variables, an extension of the
central limit theorem �known as the Lindeberg-Feller theo-
rem �14�� assures us that nrb�n� for a given value of n will be
approximately normally distributed. We next determine the
variance of nrb�n� for n�1.

First, we note, for any i=1, . . . ,n, that

��xi − �xi��2� = 	0 −
1

i

2	1 −

1

i

 + 	1 −

1

i

21

i
=

1

i
	1 −

1

i

 .

�6�

Here, the expected value �xi� inside the left-hand side of the
expression is regarded as a constant, while the terms in xi are
treated as random variables. Meanwhile, the right-hand side
specifically enumerates the two specific outcomes and their
respective probabilities. Moreover, we note that, for i� j, i
=1, . . . ,n, and j=1, . . . ,n,

��xi − �xi���xj − �xj��� = 0, �7�

since the ith and jth events are independent.
Therefore, we observe for n�1 that

��nrb�n� − �nrb�n���2� =��
i=1

n

�xi − �xi����
j=1

n

�xj − �xj����
=� �

i=1,j=1

n

�xi − �xi���xj − �xj���
= �

i=1

n

��xi − �xi��2� . �8�

In this calculation, we explicitly expand the left-hand side of
the expression. We then combine all terms and conclude by
again noting that the i� j terms do not contribute to the
summations. Accordingly, this leaves

��nrb�n� − �nrb�n���2� = �
i=1

n
1

i
	1 −

1

i

 = �

i=1

n
1

i
− �

i=1

n
1

i2 . �9�

For any time series with n values, the mean value and stan-
dard deviation of the record-breaking values are given in
Eqs. �5� and �9�.

The results are independent of the standard deviation of
the time series itself—and all other features of the time series
distribution function. Remarkably, this feature of record-
breaking statistics allows us to test for i.i.d. behavior without
explicitly knowing the statistical distribution of the underly-
ing random variable. However, by estimating the standard
error for a record-breaking process and comparing the i.i.d.
theory with observations, we can assess whether the under-

lying time series is i.i.d. or, as we shall see, contains a sys-
tematic trend.

We now assume that the values in our simulated tempera-
ture time series have a Gaussian distribution consistent with
the analysis of observations performed by Redner and Pe-
tersen �8�. If sequences of maximum and minimum daily
temperatures can be represented as Gaussian white noises,
with no trend present, the mean number of record-breaking
maximum temperatures as a function of n will on average be
equal to the mean number of record-breaking minimum tem-
peratures as a function of n. We will confirm these results in
the next section using Monte Carlo simulations.

III. INFLUENCE OF LONG-RANGE CORRELATIONS ON
RECORD-BREAKING STATISTICS

A number of studies �9� have shown that temperature time
series are well approximated by fractional Gaussian noises.
Fractional Gaussian noises have a power-law dependence of
the power-spectral density S�f� on the frequency f �15�,

S�f� � f−�, �10�

with a power-law exponent �. When �=0, we have a Gauss-
ian white noise, and with �=1 we have a pink noise. In the
range −1���1, we have fractional noises. With ��0, the
time series exhibits long-range correlated, also called long-
range persistence or memory, and with ��0, the time series
are long-range antipersistent.

We use the Fourier filtering technique to generate frac-
tional Gaussian noise �8,15�. A Gaussian white noise is gen-
erated, a discrete Fourier transformation is carried out, and
the resulting Fourier coefficients are filtered using Eq. �10�
and the new set of coefficients generate a fractional noise
using an inverse discrete Fourier transform.

We utilize our fractional Gaussian noises to obtain record-
breaking statistics as a function of �. For each value of �, we
generate 1024 realizations of a time series, each with n
=217=131 072 values. We empirically determine the mean
number of record-breaking values �nrb� as a function of n.
Without an added trend, the number of record-breaking
maximum values is observed to be equal to the number of
record-breaking minimum values for all values of �. The
dependence of �nrb� on n is given in Fig. 1.

The results for �=0 are identical to the i.i.d. random vari-
able result given in Eq. �5�, as expected. In the range 0��
�1 /2, the deviations from the i.i.d. random values are less
than 10%. As � approaches unity, the number of record-
breaking events increases significantly. Studies of long-range
correlations in temperature time series �9� generally give
0.3���0.5 for time periods of decades, similar to those
examined later in this paper.

The running sum of a Gaussian white noise with �=0 is a
Brownian walk with �=2 �15�. The running sums of frac-
tional Gaussian noises in the range −1���1 give fractional
Brownian walks in the range 1���3. We have utilized the
running sums of the fractional Gaussian noises produced
above to generate fractional Brownian walks. The resulting
dependence of �nrb�n�� on n is given in Fig. 2.

It is seen that there is a strong increase in the number of
record-breaking events with increasing �. The results for �
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=2.0, 2.5, and 3.0 can be roughly approximated by a power-
law relation over a given range of n,

�nrb�n�� � n�, �11�

with �=0.49, 0.69, and 0.83, respectively. These results for �
were obtained by fitting a power-law to �nrb� uniformly sam-
pling n over the range from 103 to 104. A recognized prop-
erty of fractional Brownian walks is that the standard devia-
tion 	 of the walk has a power-law dependence on the
number of values in the walk �15�,

	 � nHa, �12�

where Ha is the Hausdorff measure. The Hausdorff measure
is related in turn to the power-spectral density exponent � by

Ha = 1
2 �� − 1� . �13�

For a Brownian walk ��=2�, we have Ha=0.5 and we found
�Fig. 2� �=0.48. However, for �=2.5, we have Ha=0.75 and
�=0.69, and for �=3.0 we have Ha=1.0 and �=0.83. Thus,
the Hausdorff measure appears to be related to �, but there is
no strong correspondence. What has emerged from this
analysis is the appreciation that long-range correlations can
have an influence upon record-breaking statistics after a large
number of events n and, especially, as fractional Gaussian
noises become increasingly nonwhite. For the range of �
observed in temperature time series �9�, 0.3���0.5, the
influence of long-range correlations appears to be small.

IV. INFLUENCE OF A LINEAR TREND ON
RECORD-BREAKING STATISTICS FOR i.i.d. PROCESSES

We next consider the influence of a linear trend on record-
breaking statistics. We consider a time series zi, where i
=1,2 , . . . ,n. For the applications that we consider in this
paper, this could be the maximum �or minimum� temperature
observed each day. In order to introduce a linear trend to our
time series, we assume that �zi� increases linearly with i,
namely,

�zi� = 
�i − 1� + �z1� , �14�

where z1 is our starting value and the slope of the trend line

 is the change in �zi� from step i to step i+1. The values of
zi are selected randomly from a specified distribution with
the mean given by Eq. �14� and with unit standard deviation.

In order to better understand the role of a linear trend, let
us rederive Eq. �2�, which we stated invoking “Occam’s ra-
zor” from first principles, this time explicitly introducing the
underlying �one-point� distribution function. In so doing, we
are extending the theory developed by Tata �5� and eluci-
dated by Glick �6�. Suppose that we are measuring a random
variable �like the temperature as mentioned earlier� z, such
that −��z��, which is i.i.d. and described, in general, by
some cumulative distribution function P�z� and a probability
density function p�z�=dP�z� /dz0. The differentiability of
P�z� is not essential but is assumed for convenience. In our
application, z represents the temperature. We begin by as-
suming that there is no trend. For the ith event, it follows for
i�1 that

�xi� = �
−�

�

p�zi�dzi��
−�

zi

p�zi−1�dzi−1

��
−�

zi

p�zi−2�dzi−2 ¯ �
−�

zi

p�z1�dz1� , �15�

since �xi� is the probability that zizi−j for j=1, . . . , i−1. It
follows immediately that this can be rewritten as

FIG. 1. �Color online� Dependence of the mean number of
record-breaking values �nrb� as a function of the number of events
n. These results do not depend on using maximum or minimum
values. Results are shown for fractional Gaussian noises with �
=0, 0.25, 0.50, 0.75, and 1.00. The results for the white noise �
=0 are identical to the i.i.d. random variable theory given in Eq. �5�.

FIG. 2. �Color online� Dependence of the mean number of
record-breaking values �nrb� as a function of the number of events.
Results are shown for fractional Brownian walks �=1.0, 1.5, 2.0,
2.5, and 3.0. As � increases, the corresponding curve initially pre-
serves �nrb�=1 when n=1, but rises above the previously displayed
above curve as n increases. The results for �=2.0, 2.5, and 3.0 are
compared with the power-law correlation given in Eq. �11� for � and
Eq. �12� for Ha.
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�xi� = �
zi=−�

�

dP�zi�Pi−1�zi� = �
P=0

1

Pi−1dP =
1

i
, �16�

as expected from Eq. �2�.
We now introduce a linear trend as described above in Eq.

�14�. Further, we must generalize our probability distribu-
tions p�z�=dP�z� /dz to accommodate specifically time, i.e.,
the event number i. Henceforth, we will employ the distribu-
tions p�z , i�=dP�z , i� /dz. Accordingly, it follows that the av-
erage value of z at event i, or zi, satisfies

�zi� = �
−�

�

zp�z,i�dz . �17�

Intuitively, as we are focused on event i, it follows for j
=0, . . . , i−1 that we can write

p�z,i − j� = pi�z − j
� , �18�

where pi�z�=dPi�z� /dz describes the distribution of the ith
event z which we have referred to as zi. What this means is
that with each event going further back in time, our distribu-
tion function has shifted by a unit 
. Therefore, using Eqs.
�17� and �18�, we directly recover Eq. �14�.

We then observe that

�xi� = �
−�

�

pi�zi�dzi��
−�

zi

pi�zi−1 − 
�dzi−1

��
−�

zi

pi�zi−2 − 2
�dzi−2 ¯ �
−�

zi

pi�z1 − �i − 1�
�dz1� .

�19�

This can be rewritten as

�xi� = �
−�

�

pi�zi�dzi��
−�

zi+


pi�zi−1�dzi−1

��
−�

zi+2


pi�zi−2�dzi−2 ¯ �
−�

zi+�i−1�


pi�z1�dz1� .

�20�

So, we can write

�xi� = �
zi=−�

�

dPi�zi�Pi�zi + 
�Pi�zi + 2
� ¯ Pi�zi + �i − 1�
� .

�21�

We observe that the derivative of �xi� with respect to 
 is
always positive for any 
 or i and, hence, n. This follows
because the derivative of Pi with respect to its argument is
non-negative. We now want to understand how this quantity
varies as 
 and/or n become large.

Recalling that Pi�z� is a nondecreasing function, two im-
mediate results follow:

�1� If 
 is positive,

Pi�zi� � Pi�zi + 
� � Pi�zi + 2
� � ¯ � Pi�zi + �i − 1�
�

� 1,

and we can replace the Pi terms in the preceding with unity
and observe the bounding result that

�xi� � �
0

1

dPi�zi� � 1 ¯ 1 = 1. �22�

�2� If 
 is negative �or, conversely, corresponding to posi-
tive 
 but for seeking minimum temperatures�,

Pi�zi�  Pi�zi − 
�  Pi�zi − 2
�  ¯  Pi�zi − �i − 1�
�

 0,

and we can replace the Pi terms in Eq. �21� with zero and
observe the bounding result that

�xi�  �
0

1

dPi�zi� � 0 ¯ 0 = 0, �23�

since the Pi terms are bounded from below by zero.
Thus, with a strong linear temperature trend, we could

expect that the number of record-breaking high-temperature
events will increase more rapidly than in the i.i.d. situation
with a limiting value of �nrb�n���n. This is clear, as we have
remarked, since the first derivative of �zi� with respect to any

�0 and for any n�0 is positive. Similarly, we could ex-
pect that the number of record-breaking low-temperature
events will increase less rapidly than in the i.i.d. situation
with a limiting value of nrb=1. An important outcome of
these theoretical considerations is that the ratio of the num-
ber of maximum temperatures to the number of minimum
temperatures will depend on the trend slope 
. For 
�0 and
the inequalities shown before Eq. �22� where the relevant
probabilities are greater than or equal to those in the trend-
free situation, it follows that �xi� will be larger than the ex-
pected value of 1 / i derived in Eq. �16�. Similarly, consider-
ing record lows is mathematically equivalent to the case 

�0, and the inequalities following Eq. �22� apply where the
probabilities are now less than or equal to those in the trend-
free situation. This then establishes that �xi� for record-
breaking lows will be less than the expected value of 1 / i.
Consequently, the ratio of the expected values of the number
of record-breaking highs to the number of record-breaking
lows will be greater than 1 and can be expected to increase
with n.

Another intuitive way of appreciating this analytical result
emerges by noting that the monotonicity in the cumulative
probability distribution guarantees that P�xi+n
�→1 and
P�xi−n
�→0 as n→� with 
�0 in Eq. �21�. This assures
that the number of record-breaking highs will exceed the
number of record-breaking lows. Therefore, for 
=0, i.e., no
trend, the ratio should be unity but will increase in response
to increasing trend slope 
. The preceding discussion also
facilitates the analytical calculation of �nrb� for some special
distribution functions. In addition, it provides insight into the
emergence of a linear trend in �nrb�n�� as a function of n,
particular for n�
−1.
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For a temperature time series, we associate z with T and
for our studies the increment in time between values is �t
=1 yr. From Eq. �14�, we can write


 =
�zi� − �z1�

i − 1
→

1

	�T�
�T , �24�

where 	�T� is the standard deviation of the temperature time
series about its mean and �T is the change in temperature
associated with the linear trend during one time step, that is,
1 yr. Therefore, �T��dT /dt��t, where dT /dt is the linear
trend in temperature and �t is 1 yr. Our reference distribu-
tion for our Monte Carlo simulations will be a Gaussian
white noise with a standard deviation 	�zi�=1.

We utilize Monte Carlo simulations to determine the
mean number of record-breaking events as a function of 
.
For each case, we run 1024 simulations and the mean num-
ber of record-breaking maximum values �nrbmax� and record-
breaking minimum values �nrbmin� are given in Fig. 3 as func-
tions of the trend slope 
.

Results are given for n=30, 60, 90, and 120 values. For

=0, we have �nrbmax�= �nrbmin�, and the values are identical
to the i.i.d. random variable results given in Eq. �5�. The
mean numbers of record-breaking maximum values �nrbmax�
for a positive value of 
 are equal to the mean numbers of
record-breaking minimum values �nrbmin� for the same am-
plitude but negative value of 
. We observe, as 
 changes
sign, that the roles of temperature maxima and minima are
reversed yielding the symmetry present in Fig. 3. Of particu-
lar interest are the ratios of the mean numbers of record-
breaking maximum values to the mean number of record-
breaking minimum values �nrbmax� / �nrbmin�. These are given
as a function of 
 in Fig. 4 with n=30, 60, 90, and 120
values.

The results are sensitive to both the slope 
 and the length
of the record n. The symmetry observed in Fig. 3 is reflected
in Fig. 4—since the roles of the numerator and denominator
are interchanged when 
 changes sign, and this particular

symmetry is mirrored in the logarithmic representation em-
ployed here.

In the results given above, we have determined the mean
cumulative number of record breaking values that occur dur-
ing n events, namely, �nrbmax� and �nrbmin�. We now turn our
attention to the mean number of record breaking values that
occur during the nth event, namely, ��nrbmax� and ��nrbmin�.
Specifically, we will consider the ratio ��nrbmax� / ��nrbmin�
associated with the nth event. In terms of record-breaking
temperatures, this is the ratio of ��nrbmax� / ��nrbmin� during
the nth year after the start of the temperature time series. We
will compare our results with the data on record-breaking
temperatures given by Meehl et al. �3�. The values of
��nrbmax� / ��nrbmin� are given in Fig. 5 as a function of n for

=0.005, 0.01, 0.02, and 0.03.

In order to obtain smooth results from our Monte Carlo
simulations, 220=1 048 576 realizations of the Gaussian pro-
cess were employed for each value of 
 and n. We performed

n
rb

FIG. 3. Mean numbers of record-breaking maximum values
�nrbmax� and record-breaking minimum values �nrbmin� are given as
functions of the trend slope 
 for n=30, 60, 90, and 120 values.

FIG. 4. Ratios of the mean number of record-breaking maxi-
mum values to the mean number of record-breaking minimum val-
ues �nrbmax� / �nrbmin� are given as a function of the slope 
 for n
=30, 60, 90, and 120 values.
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FIG. 5. Ratios of the mean number of record-breaking maxi-
mum values to the mean number of record-breaking minimum val-
ues ��nrbmax� / ��nrbmin� during year n are given as a function of n
for slopes 
=0.00, 0.01, 0.02, and 0.03.
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an exponential fit to our Monte Carlo simulations and ob-
tained the exponential relation

��nrbmax�
��nrbmin�

= exp�2.34
n� . �25�

The agreement of Eq. �25� with the simulations shown in
Fig. 5 is quite good, with regression coefficients in excess of
0.998. The ratio ��nrbmax� / ��nrbmin� has a very strong super-
exponential dependence on the length of the record n.

V. RECORD-BREAKING TEMPERATURES AT THE
MAUNA LOA OBSERVATORY

We now apply the results we have obtained to temperature
observations obtained at the MLO, Big Island, Hawaii. This
is a NOAA benchmark observatory where high-quality
hourly temperature measurements have been carried out
since 1977 �13�. An advantage of this data set is that the
temperature measurements have a precision of 0.1 °C. Most
temperature measurements in other data sets have been car-
ried out to the nearest °F or °C and record-setting values are
often duplicated in subsequent years.

The MLO is at an altitude of 3397 m above sea level and
provides a wide range of atmospheric data that are relatively
unperturbed by continental and local �e.g., “heat island”� an-
thropogenic activities �13�. The observations that established
the systematic increase in CO2 were carried out at the MLO
�11�. The well-mixed atmosphere at this isolated high-
elevation observatory has been widely taken as representa-
tive of global average values.

We utilized the hourly data to obtain daily maximum and
minimum temperatures. A day is defined to begin at 10:00
local time and end at 09:00 local time the next day. It is
important to note that 3.7% of the hourly data for the 30 yr
period are missing. Interpolation was used to replace the
missing data. If one to three successive days were missing,
the values for the adjacent days were averaged. If more days
were missing, the data for the adjacent years for that day
were averaged.

We analyzed temperature data collected between January
1, 1977 and December 31, 2006. We first considered the
maximum and minimum temperatures for each day of the
year numbered sequentially from 1 to 365. We did not in-
clude temperatures on February 29 of leap years. We consid-
ered the 30 values for the years considered and obtain the
maximum likelihood �least-squares� best-fit linear trend to
these daily values. The results are given in Fig. 6.

As expected, there is a considerable scatter; however, the
trends for the minimum temperatures are consistently more
positive �warming� than the maximum temperatures. In Fig.
7, we give the variance of the daily values about the linear
trend line given in Fig. 6.

We observe that the variance is greater for temperature
maxima than for temperature minima, and that there is a
pronounced seasonal effect with enhanced variation during
the winter months. The standard deviation for the maximum
temperature is �max=�6.038=2.457 °C, and the mean stan-
dard deviation for the minimum temperature is �min
=�3.221=1.795 °C. We will require these values when we

compare trend results to record-breaking simulation results.
The mean variance of the maximum temperature trends is
significantly larger than the mean variance of the minimum
temperature trends.

We next consider the annual mean maximum and mini-
mum temperatures at the MLO for the 30 yr period of 1977–
2006. These are given in Fig. 8 along with the least-squares
best-fit linear trends.

The slope of the trend line for the mean maximum annual
temperature is dTmax /dt=−0.0129 °C yr−1, a small amount
of cooling. The slope of the trend line for the mean minimum
annual temperature is dTmin /dt=0.0388 °C yr−1, a moderate
amount of warming. We take the mean warming at this sta-
tion to be the average of these values, dT /dt
=0.0130 °C yr−1.

The diurnal temperature range �DTR� is the difference
between maximum and minimum temperatures in a day �i.e.,
a given 24 h period�. We will call the annual mean DTR the

FIG. 6. �Color online� The best-fit linear temperature trends
dT /dt for 30 yr are given for the 365 days of the year. The trends of
both maximum daily temperatures dTmax /dt �lower curve� and
minimum daily temperatures dTmin /dt �upper curve� are given.

FIG. 7. �Color online� The variance of the temperature values
about the linear trends in Fig. 1 is given for both the maximum
�upper curve� and minimum �lower curve� daily temperatures.
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mean of the daily DTR values for the year, which is equiva-
lent to taking the difference between �a� the mean of the
daily maximum values in a year and �b� the mean of the
daily minimum values for the same year. Subtracting the two
trends shown in Fig. 8, we find that the trend in DTR is
d�DTR� /dt=−0.0517 °C yr−1. The temperature range is sys-
tematically decreasing. Our values are also tabulated in Table
I. Giambelluca et al. �16� studied temperature records from
21 stations in Hawaii for the period of 1975–2006. For four
high-altitude stations �elevations �900 m�, they found a
yearly DTR change d�DTR� /dt=−0.036 °C yr−1, somewhat
less than the value we obtain. The relevance of these two
values to global warming will be discussed after we consider
record-breaking temperatures.

Clearly, there is a scatter in the annual temperature data
presented in Fig. 8. We will now determine whether the
record-breaking analysis is consistent with the trend data
given above. We determine the number of record-breaking
maximum and record-breaking minimum temperatures.

We next consider the record-breaking statistics for the
MLO temperature data. We consider the time series of 30
maximum and 30 minimum temperatures for each day of the
year, beginning on January 1, 1977. We obtain the cumula-
tive numbers or record-breaking temperatures. The 365 val-
ues are averaged to give �nrbmax� and �nrbmin� as functions of
year from 1997 to 2006. The results are given in Fig. 9.

Also included in Fig. 9 is the number of record-breaking
temperatures for an i.i.d. random process as given in Eq. �5�.
Importantly, the variance calculated in Eq. �9� provides a
measure of the degree of variability that we can expect to see
in a single realization of a stochastic process from its ex-
pected record-breaking statistics. However, when we employ
data averaged over many, i.e., 365, realizations, the measure
of fluctuations should be expected to diminish by a factor of
�365�19, bringing observations into much closer agree-
ment with i.i.d. random variable theory if we are observing
an independent and identically distributed process. This is
shown in the inset plot in Fig. 9, whose function is to dem-
onstrate that the departures observed in the low-temperature
data from i.i.d. theory are unacceptably large. There, the i.i.d.

theory result is shown as a solid line. Flanking this curve on
each side are dashed lines showing departures of one, two,
and three standard errors, respectively. Since the record-
breaking random variable nrb�n� is approximately Gaussian,
we have a relatively quantitative measure present for the

FIG. 8. �Color online� The mean annual maximum and mini-
mum temperatures are given as functions of time from 1977 to
2006.

TABLE I. dT /dt and DTR trends represented by d�DTR� /dt
with units of °C yr−1.

Mauna Loa Observatory, Hawaii 1977–2006
Direct measurements of temperature trends �13�

dTmax /dt −0.0129

dTmin /dt 0.0388

dT /dt 0.0130

d�DTR� /dt −0.0517

Temperature trends inferred from record-breaking statistics
�this paper�

dTmax /dt −0.0091

dTmin /dt 0.0381

dT /dt 0.0145

d�DTR� /dt −0.0472

United States 2000 stations 1950–2004
Record-breaking temperatures per year �3�

dT /dt 0.025

Global land surface 1950–2004
Direct measurements of temperatures trends �1�

dTmax /dt 0.014

dTmin /dt 0.020

dT /dt 0.017

d�DTR� /dt −0.006
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FIG. 9. �Color online� The average number of record-breaking
maximum and minimum temperatures, �nrbmax� �dashed line� and
�nrbin� �dotted line�, as a function of time measured forward from
January 1, 1977. The i.i.d. theory is also shown �solid line�. The
average is over the 365 days of the year. Also included as an inset
is the number expected for an i.i.d. random process from Eq. �5�.
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quality of agreement between the observational data and
i.i.d. theory. The number of record-breaking maximum tem-
peratures is in reasonably good agreement with the i.i.d. ran-
dom variable theory indicating the absence of a trend. The
numbers of record-breaking minimum temperatures are sub-
stantially less than the i.i.d. random variable results indicat-
ing a warming trend. These results are in qualitative agree-
ment with the direct measurements of trends given in Fig. 8.
We will now provide a further quantification of the extent of
this agreement.

To make a comparison between the directly measured
temperature trends given in Fig. 8 and the number of record-
breaking temperatures given in Fig. 9, we will consider the
full 30 yr record of 1977–2006. For this period, we have
�nrbmax�=3.90 values and �nrbmin�=3.42 values. The i.i.d. ran-
dom value for this period from Eq. �5� is �nrbiid�=4.00 val-
ues.

The influence of a linear trend on the mean number of
record-breaking events was given in Fig. 3. We will utilize
the simulation data given in Fig. 3 for a sequence of n=30
events. For small values of 
, the simulations can be ap-
proximated by

�nrbmax� = 4.00 + 27.2
 , �26�

�nrbmin� = 4.00 − 27.2
 . �27�

Taking �nrbmax�=3.90, we find from Eq. �26� that 
max=
−0.0037. Furthermore, taking �nrbmin�=3.42, we find from
Eq. �27� that 
min=0.0213.

In order to obtain the inferred linear temperature trends,
we use Eq. �15�. We first consider the inferred trend for the
maximum temperatures. From Fig. 7, we obtain 	max
=�6.04=2.45 °C. Substituting this value and 
max=
−0.0037 into Eq. �24�, we find that dTmax /dt=
−0.0091 °C yr−1. This compares with the directly measured
value in Fig. 8, which is dTmax /dt=−0.0129 °C yr−1. We
next consider the inferred trend for the minimum tempera-
tures. From Fig. 7, we obtain 	min=�3.22=1.79 °C. Substi-
tuting this value and 
min=0.0213 into Eq. �24�, we find that
dTmin /dt=0.0381 °C yr−1. This compares with the directly
measured value in Fig. 8, which is dTmin /dt
=0.0388 °C yr−1. The inferred mean warming is dT /dt
=0.0145 °C yr−1 and the trend in the DTR is d�DTR� /dt=
−0.0472 °C yr−1. These values are also given in Table I. The
agreement between the direct measurements of temperature
trends and the values inferred from the record-breaking sta-
tistics is quite good.

VI. RECORD-BREAKING TEMPERATURES IN THE U.S.

We next apply the results we have obtained to a compre-
hensive study of record-breaking temperatures in the United
States. Meehl et al. �3� utilized data from nearly 2000 NCDC
U.S. COOP network stations. The maximum and minimum
daily temperatures were considered for the period of 1950–
2004. For each day of the year, the occurrences of record-
breaking values were determined. The numbers of record-
breaking maximum and minimum temperatures were
tabulated. In Fig. 10, we give numbers of record-breaking

maximum temperatures to the numbers of record-breaking
minimum temperatures ��nrbmax� / ��nrbmin� for the period of
1950–2004 using the results of �3�.

There is clearly a lot of scatter but an upward trend does
appear, particularly in the largest values. These data can be
directly compared with our simulation results given in Fig. 5.
The results for �=0.000, 0.005, and 0.010 are given in Fig.
10. In order to obtain a temperature trend, we require a nu-
merical value for the standard deviation of the temperature
time series. The appropriate value has considerable variabil-
ity. We take the value �=5 °C given by Redner and Petersen
�8� to be representative of continental stations. Taking �
=0.005 and �=5 °C in Eq. �15�, we obtain dT /dt
=0.025 °C yr−1. This is about a factor of 2 larger than our
values for MLO. However, the smaller value cannot be ruled
out because of the large scatter.

VII. DISCUSSION

The object of this paper has been to systematically study
the statistics of record-breaking events with an emphasis on
record-breaking temperatures. We first studied a Gaussian
white-noise time series as a first-order model of the tempera-
ture time series for a specified day of the year at a specified
weather station. The maximum and minimum temperatures
constitute a yearly time series with a specified starting date.
This is an i.i.d. random process, and the number of record-
breaking temperatures increases approximately as the natural
logarithm of the number of years n as given by Eq. �5�. This
result was first given by Glick �6�.

Studies have shown that temperature time series exhibit
long-range correlations that can be approximated as a frac-
tional Gaussian noises �9�. We have studied the influence of
long-range correlations on record-breaking statistics using
Monte Carlo simulations. For the range of fractional Gauss-
ian noises applicable to temperature time series, the influence
on the record-breaking statistics is small.
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FIG. 10. Ratios of the numbers of record-breaking maximum
temperatures to the numbers of record-breaking minimum tempera-
tures ��nrbmax� / ��nrbmin� on a yearly basis for nearly 2000 stations
in the U.S. as given by �3�. Also included are our simulation results
from Fig. 5 for �=0, 0.005, and 0.010.
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The current interest in record-breaking temperatures is as-
sociated with global warming �7,8�. Specifically, greater
numbers of record-breaking maximum temperatures are
compared to the numbers of record-breaking minimum tem-
peratures. In our Monte Carlo simulations, we superimposed
linear temperature trends on a Gaussian white noise of yearly
temperature values on a specified day of the year and a speci-
fied weather station. We found the single governing param-
eter to be the ratio of �a� the temperature change in a year to
�b� the standard deviation of the temperature white noise as
defined in Eqs. �14� and �24�. We found an exponential sen-
sitivity to the number of years in the record as given in Eq.
�25�.

In order to test our analyses, we have considered two data
sets. The first is the 30 yr record of temperatures at the
Mauna Loa Observatory, Hawaii. This station plays a unique
role in global warming studies as the site that established the
systematic increase in anthropogenic CO2. The well-mixed
atmosphere at this isolated high-elevation site has been taken
to be representative of global average values. We determine
the best-fit linear trends to the annual maximum and mini-
mum temperatures for 1977–2006. We also infer temperature
trends from the numbers of record-breaking maximum and
minimum temperatures during the period. The directly mea-
sured and inferred trends are in good agreement with each
other as shown in Table I.

It is of interest to compare our MLO values with globally
averaged values. Many studies of global heating have been
carried out and these have been summarized in Global
Change 2007 �1�. Trend values for global land surface tem-
peratures for the period of 1950–2004 are dTmax /dt
=0.014 °C yr−1, dTmin /dt=0.020 °C yr−1, and d�DTR� /dt=
−0.006 °C yr−1. The mean trend dT /dt=0.017 °C yr−1 is
close to our values of dT /dt=0.0130° and 0.0145 °C yr−1 as
shown in Table I. The global measurements have a smaller
decrease in DTR. This can possibly be attributed to buffering
of low-elevation continental data versus the high-elevation
MLO data.

We also consider the yearly ratios of record-breaking
maximum to minimum temperatures for some 2000 U.S. sta-
tions for the period of 1950–2004 using results given by �3�.
Taken together, we have shown using the theory of record-
breaking statistics that stationary fluctuations alone cannot
explain the temperature observations, but that a linear trend,
particularly in the low-temperature data, is required to ex-
plain the observations.
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