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We propose a stochastic cellular-automaton model for two-lane traffic flow based on the misanthrope process
in one dimension. The misanthrope process is a stochastic process allowing for an exact steady-state solution;
hence, we have an exact flow-density diagram for two-lane traffic. In addition, we introduce two parameters
that indicate, respectively, driver’s driving-lane preference and passing-lane priority. Due to the additional
parameters, the model shows a deviation of the density ratio for driving-lane use and a biased lane efficiency
in flow. Then, a mean-field approach explicitly describes the asymmetric flow by the hop rates, the driving-lane
preference, and the passing-lane priority. Meanwhile, the simulation results are in good agreement with an
observational data, and we thus estimate these parameters. We conclude that the proposed model successfully
produces two-lane traffic flow particularly with the driving-lane preference and the passing-lane priority.
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I. INTRODUCTION

Studies of traffic flow have made much progress so far
mainly investigating highwaylike single-lane traffic with a
wide variety of theoretical and/or practical models �1–7�.
These models have been then extended so as to mimic a
more realistic traffic flow, in consideration of on and/or off
ramps, traffic light control, and multilane traffic �1,2,4,8�. In
particular, two-lane traffic flow �9–16�, in which lane change
becomes possible, is a typical extension and is quite mean-
ingful in studies of traffic flow.

In most of previous works, it is a common strategy that
one includes two general steps in the course of updating: the
first step is the attempt to change the lane and the second is
the forward movement along the lane. A lane change is ac-
complished by crossing just sideways through “wish and de-
cision” or when safety and incentive criteria are both simul-
taneously fulfilled; meanwhile, the forward movement is
governed by the same dynamics as a single-lane model.

In order to define a safety criterion in multilane traffic,
they assume that the driver takes into account the distances
which the driver will have after changing the lane both to the
vehicle ahead and behind. In some models, one considers the
relative velocities instead of or in addition to the distances.
Anyway, the safety criterion comes from the first principles
of traffic-flow dynamics, i.e., the vehicle avoids a collision,
and is consequently regardless of from the right to the left or
otherwise.

The incentive criterion reflects the second principle that
the driver wishes to increase the velocity up to the legal
limit. Since lane change is possible in two-lane traffic, we
can say more precisely that the driver wishes to avoid de-
creasing the velocity. This criterion is also regardless of
which lane the vehicle is on.

In addition to the above criteria, we should take legal
restrictions into account. Particularly, a constraint on lane
usage, which is often included in the incentive criterion, usu-
ally differs in each country as seen below �12�. �a� In Ger-

many, passing is banned in the right lane. As a result, they
have to change from the right lane to the left not only when
a relatively slow vehicle is ahead in the same lane but also
when it is in the left lane. �b� In Japan �where they drive on
the left-hand side�, the left lane is assigned by law to be a
driving lane; the right lane is, in principle, for passing.
Hence, slow vehicles, e.g., trucks �cf. �a��, are seldom on the
passing lane while the density of vehicles is small.

Asymmetric rules on lane usage give rise to a different
traffic flow in each lane, and one observes uneven lane use.
The ratio of driving-lane use is large during a small number
of vehicles; however, it decreases quickly as the vehicle
number increases and falls below that of the passing-lane use
in an intermediate density region. A typical inversion of the
ratio for lane use is observed in Autobahn in Germany �12�.
Also, we see an inversion in terms of flow as well as the
density ratio in a Japanese expressway �16�. Accordingly, it
is a validation of two-lane models to reproduce an inversion
of the density or flow ratio for lane use.

One of the most successful models for single-lane traffic
flow is the Nagel-Schreckenberg �NS� model �17�, a stochas-
tic cellular-automaton �CA� model. Since it is elementary as
well as suitable for simulations, the NS model �or its vari-
ants� is often incorporated as a forward-motion engine
�12,15�. Nevertheless, in comparison with the single-lane
case, one has to pay an extra cost of renumbering all the
vehicles at each time step.

In this paper, we propose a CA model for two-lane traffic
flow based on processus des misanthropes �18�: a system of
identical particles hopping, on a lattice of finite dimension,
with the hop rates depending not only on the occupancy of
the departure site but also on that of the target site. The
misanthrope process was originally defined in mathematical
terms, and one of the most important properties of the pro-
cess is that provided some constraints on the hop rates, it has
an invariant product measure, in other words, an exact
steady-state solution of factorized form �18�. Also, it can be
mapped onto an exclusion process, i.e., a single-lane traffic
model. Some related topics are reviewed in �19�. In Sec. II,
we define the present model, describing the condition for an
exact solution. In Sec. III, we show the simulation results of
the model. Analytical results corresponding to the above*kanai@ms.u-tokyo.ac.jp
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simulations are given in Sec. IV, where we consider the
mean-field approximation as well as an exact solution. The
paper concludes in Sec. V with some remarks.

II. MODEL

Consider N indistinguishable particles on a one-
dimensional periodic lattice with L sites. Each site contains
at most two particles, and one site chosen randomly is up-
dated, i.e., the random sequential updating. The particles hop
from left to right with a given hop rates u�nl ,nl+1�, i.e., dur-
ing the infinitesimal interval dt of time, a particle hops out of
site l occupied by nl particles into site l+1 occupied by nl+1
particles with probability u�nl ,nl+1�dt. �Accordingly, the
above hopping is denied with probability 1−u�nl ,nl+1�dt.�
The hop rates should take the value of zero except for
u�1,0�, u�1,1�, u�2,0�, and u�2,1�. In Fig. 1�a�, we illustrate
a misanthrope process with hop rate function u�nl ,nl+1�. This
configuration is denoted by �nl�= �0,1 ,2 ,1 ,1 ,0 ,2 ,2 ,1�.

We do not yet take into account which lane each particle
is on and whether they change lanes or not; only how many
particles are contained in each road section, i.e., at each site
of the lattice. In Fig. 1�b�, we describe a configuration in the
two-lane road which corresponds to Fig. 1�a�, and now the
lane number is assigned to each particle. In the following
part, particles with the lane number �Fig. 1�b�� are referred to
as vehicle in distinction from those in the misanthrope pro-
cess �Fig. 1�a��. Provided that a vehicle does not cut in front

of another one, we can specify the vehicle to hop at each
time step, except for the configurations with the target site
empty: �1,0� and �2,0�. Accordingly, we see that the model
admits two additional parameters and introduce driving-lane
preference �DLP� � and passing-lane priority �PLP� �. The
DLP means the probability of a particle on the passing lane
to attempt a lane change to the driving lane; meanwhile, the
PLP presents a priority level of the passing lane. In Fig. 1�c�,
we summarize all possible motions of vehicles in the model
and the rates to actually move. It is remarkable that the
present model is established without any conditional.

As mentioned in Sec. I, we assume the constraint on the
hop rates,

u�2,1� = u�2,0� − u�1,0� . �1�

Thus, as far as the mean values in two lanes �e.g., the total
flow� are concerned, we can obtain exact solutions. Solvabil-
ity condition �1� is derived purely through a mathematical
argument. However, it is acceptable for the traffic model be-
cause generally speaking, drivers do not like to drive side by
side, which suggests u�2,0��u�1,0�. In addition, since it
cannot be comfortable to drive while surrounded by other
vehicles, we can presume u�1,0��u�2,1�. In the following
part of this paper, we assume that the hop rates satisfy Eq.
�1�, giving a priority to the exact solution.

III. SIMULATION RESULTS

In Fig. 2, we show the simulation results of the present
model: �a� flow vs density �original�, �b� flow vs density
�calibrated�, �c� velocity vs flow, �d� velocity vs density, �e�
flow ratio for driving-lane use, and �f� density ratio for
driving-lane use. �Note that both flow and velocity are for
two lanes.�

It is important to note that in Fig. 2�b�, we plot the flow-
density diagram with a calibration of the density �20�. The
calibration method was developed to simulate particle flows
such as vehicular traffic truly with a simple CA model. The
cell length �i.e., site size� was changed depending on the
vehicle density, and thus the density �CA=N /L used in the
simulation is calibrated as

�RW = 2�1 −�1 −
�CA

2
� , �2�

where �RW means the real-world density, which is used in
the above plots. In �20�, the calibration for single-lane mod-
els is given by �RW=1−�1−�CA. We hence replace the
single-lane densities �RW and �CA with 2�RW and 2�CA in
order to have a calibration for two-lane models. For compari-
son, we also give the original flow-density diagram without
the calibration in Fig. 2�a�.

One of our goals is to compare the simulation results with
the observational data given in �12,21�, which present the
characteristics of two-lane traffic flow as described in Sec. I.
We consequently find that the model proposed reproduces a
typical two-lane traffic flow. In particular, the inversion of
the flow ratio for driving-lane use �Fig. 2�e�� shows an ex-
cellent agreement with the observational data. In contrast,

FIG. 1. �Color online� �a� A configuration of particles in the
misanthrope process with nine sites and ten particles. One particle
is now hopping from a site occupied by two to the next site occu-
pied by one with rate u�2,1�. �b� A configuration of vehicles in the
present model for two-lane traffic flow. We consider that the lower
cell is the driving lane and the upper cell is the passing lane at each
site. Colored cells are occupied by a vehicle; white cells are empty.
The model coincides with the above misanthrope process unless
one regards lanes. �c� Vehicular motions and the hop rates in the
present model. �Any other motion is prohibited.� If there are two
possible motions, the hop rate is modified with a division parameter
� or �.
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one does not see such a sharp inversion of the density �Fig.
2�f��. Nevertheless, we find a wide fluctuation of the ratio in
a low-density region, which also occurs in the observational
data. It implies that the DLP and PLP surely make a sym-
metric flow unstable.

Moreover, we consider that a strong inversion of the den-
sity ratio observed in real-world traffic can be attributed
largely to two factors we do not take in: one is the existence
of �relatively� slow vehicles and the other is a restriction on
their lane usage. In a low-density region, since slow vehicles
cannot catch up with fast ones, slow ones hardly have an
interaction with fast ones; by contrast, fast ones are always
under the influence of slow ones. As a result, slow vehicles
tend to get in the driving lane; meanwhile, fast vehicles re-
main in the passing lane.

IV. ANALYTICAL RESULTS

A. Exact solution: The flow-density plot

As long as the hop rates satisfy condition �1�, we can
obtain an exact solution of the present model. We mean that
from the master equation for the model, the steady-state
probability P��� of finding the system in a configuration �
= �n1 ,n2 , . . . ,nL� is obtained in an explicit form and then we
can calculate any expectation value in principle.

In the steady state, the master equation for the misan-
thrope process including the present model becomes

�
l=1

L

�u�nl−1 + 1,nl − 1�P�. . . ,nl−1 + 1,nl − 1, . . .�

− u�nl−1,nl�P�. . . ,nl−1,nl, . . .�� = 0, �3�

where 0�u�m ,n��1 if m=1,2 and n=0,1; otherwise

u�m ,n�=0 �including the cases m�0 or n�0�. Following
�18,19�, we let

P��� � 	
l=1

L

f�nl� , �4�

where f�n� is called the single-site weight and one factor for
each site of the system. Then, one immediately finds a solu-
tion satisfying Eq. �3�,

f�2� =
u�1,1�f�1�2

u�2,0�f�0�
,

u�2,1� = u�2,0� − u�1,0� . �5�

The second equation is identical to Eq. �1�, i.e., Eq. �1� is a
necessary condition. Denote by 	n��� the number of sites
containing n particles in a configuration �. Since 	0���
+	1���+	2���=L and 	1���+2	2���=N, the first equation
in Eq. �5� leads to

	
l

f��l� = f�0�L−Nf�1�N�u�1,1�
u�2,0��

	2���

. �6�

Accordingly, we have

P��� =
1

ZLN
�u�1,1�

u�2,0��
	2���

, �7�

where the normalization is given by

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0

(a) (b)

(c) (d)

(e) (f)

0.0

Density [vehicle/cell]

Fl
ow
[v
eh
ic
le
/ti
m
e]

La
ne
us
ag
e

Ve
lo
ci
ty
[c
el
l/t
im
e]

Flow [vehicle/time]

FIG. 2. �Color online� The simulation results
�dot� of the present model with L=150, u�2,0�
=1., u�1,0�=0.7, u�1,1�=0.4, u�2,1�=0.3, �
=0.02, and �=0.75: �a� flow vs density �original�,
�b� flow vs density �calibrated�, �c� velocity vs
flow, �d� velocity vs density, �e� flow ratio for
driving-lane use, and �f� density ratio for driving-
lane use. The figures in the same row �column�
have the same axis labels and ticks except for �a�.
�In �a�, the horizontal axis is density.� The num-
ber of vehicles takes the values 5
N
290,
changing by 5. We use five random configura-
tions as the initial one and then collect the mean
values over ten after 150 time steps. Also, we
give analytical results corresponding to the above
simulations: exact solutions �solid line� in �a�–�d�
and mean-field calculations �dashed line� in �e�
and �f�.
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ZLN = �

�
=N

�u�1,1�
u�2,0��

	2���

. �8�

The summation in Eq. �8� is done over all the configurations
�= �n1 ,n2 , . . . ,nL� such that 
�
=�lnl=N. One often refers to
ZLN as the nonequilibrium partition function, but neverthe-
less the system is in a steady state but far from equilibrium.

The partition function ZLN is described by the Gauss hy-
pergeometric function 2F1�� ,� ,� ;z� as

ZLN = �L

N
�2F1�− N

2
,
− N + 1

2
,L − N + 1;4

u�1,1�
u�2,0�

� . �9�

Now, we can calculate any expectation value, in principle,
using the partition function �22,23�. The flow QLN, defined
by

QLN = �

�
=N

u�n1,n2�P��� , �10�

is obtained as a function of the density �=N /L in the limit
where L ,N tends to infinity: let Q���=limL→ QL,�L then we
obtain

Q��� =
u�2,0�

2
��2 − ��

·�1 −

2 − � − 2
u�1,0�
u�2,0�

�1 − ��

1 +�1 − �1 − 4
u�1,1�
u�2,0����2 − ��� .

�11�

This gives the flow-density plot. In Figs. 2�b�–2�d�, we show
the exact solution through calibration �2�. Refer to the Ap-
pendix for the detail of the calculation in this section.

B. Mean-field approximation: Lane occupancy and lane
efficiency

We now turn to the calculations on lane occupancy and
lane efficiency. Here the lanes are distinguished, and then it
seems hopeless to exactly solve the issue in the same manner
as above. We hence use the mean-field approximation in
which all correlations between sites are neglected; i.e., we
suppose

P��� = 	
l=1

L

���l� , �12�

where ��c� is a probability for a site of the lattice to be in
configuration c� e ,d ,p , f�; e �f� means that the site is empty
�fully� occupied and d �p� means that one particle occupies
the driving �passing� lane of the site. �Note that the distribu-
tion � is common in sites because of the periodic boundary
condition.�

Immediately one sees ��e�+��d�+��p�+��f�=1 and �
=��d�+��p�+2��f�. Then, solving Eq. �3� under Eq. �12�
leads to

��d�

=
2�

2� + �
u�1,0�
u�1,1��1 − � +�1 + �4

u�1,1�
u�2,0�

− 1���2 − ���
�13�

and

��f� =
1

2�� −
��2 − ��

1 +�1 + �4
u�1,1�
u�2,0�

− 1���2 − ��� . �14�

We thus obtain � for a fixed � and are able to calculate
expectation values in the mean-field approximation.

In the approximation, the density ratio Rd of driving-lane
use is calculated as follows:

Rd��� =
��d� + ��f�

�
=

1

2�1 +

�
u�1,0�
u�2,0�

�2 − ��2

�4
u�1,1�
u�2,0�

− 1���2 − �� + ��
u�1,0�
u�2,0�

�2 − �� + ���1 +�1 + �4
u�1,1�
u�2,0�

− 1���2 − ����
= �1 − �1

�

1

u�1,0�
+

1

u�2,0�
�u�1,1�� + O���2

1

2
+

�

8

u�1,0�
u�2,0�

�2 − ��2 + O�2 − ��3. � �15�

In Fig. 2�f�, we show the graph of Eq. �15� by a dashed line, which agrees with the simulation result. Then, from Eq. �15� we
suppose that an inversion of the density ratio does not occur in the present model although the simulation result shows a large
fluctuation of the ratio in a low-density region. �One sees that Rd��� is always larger than 1/2.� Finally, expansion of Rd in �
reveals how the hop rates included contribute around �=0,2. These help us determine the parameter values, especially �.

Also, the flow ratio Rf of driving-lane use, defined by
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Rf��� =
u�1,0���d���e� + u�1,1���d����d� + ��p�� + u�2,0���f���e� + u�2,1���f���p�

Q���
, �16�

can be calculated as a function of �. In Fig. 2�e�, we show
the Rf-Q plot using a parametric plot with �. The explicit
expression of Rf��� is, however, too complicated to read. We
instead give the graph of Eq. �16� in Fig. 3 and expansions of
Rf��� around �=0,2,

Rf���

= �1 −
�1 + ���u�1,1�

�u�1,0�
� + O���2

1

2
− ��

4

u�1,0�
u�2,0�

+ �� −
1

2
�u�1,1�

u�2,1���2 − �� + O�2 − ��2.�
�17�

These also help us with parameter fitting. Working in the
mean-field approximation, we see that the flow ratio has a
very large fluctuation around the mean value and that the
ratio takes similar values at the same flow but different den-
sities.

V. CONCLUSION

In this paper, we propose a two-lane traffic-flow model
with six rate parameters presenting free hop, overtaking, get-
ting out of a side-by-side configuration, passing consecutive
vehicles, the DLP, and the PLP, respectively, denoted by
u�1,0�, u�1,1�, u�2,0�, u�2,1�, �, and �. The model differs
substantially from previous ones in the following ways. �a�
In the present model, vehicles are located by site and lane �a
so-called site-oriented description� but not by the vehicle
identification number �a car-oriented description� �24�. �b�
The vehicles undertake a lane change either when overtaking
or when returning to the driving lane voluntarily. Then, over-
taking is certainly done. Consequently, the DLP contributes
to a deviation of the density ratio for driving lane use espe-
cially in a low-density region. �c� The PLP, as well as the
DLP, explicitly gives rise to an asymmetric flow, while the
overtaking parameter does not take the role. More precisely,
the PLP contributes to a deviation of the flow ratio for driv-
ing lane use in a high-density region.

In the simulation, we optimize the parameter values in
order to reproduce an observational data given in �12� and
thus find that the DLP is very small and the PLP is relatively
large. Accordingly, we think that the reason for changing
lanes is to overtake the slower vehicle in front rather than to
avoid deceleration. We also take it that drivers have a tacit
agreement that vehicles on the passing lane are willing to
overtake those on the driving lane. In fact, drivers will feel
unsafe if they drive side by side.

Solving the master equation directly, we obtain an exact
solution especially for the flow-density diagram. If one con-
siders which lane a vehicle is on, the mean-field approach
alternatively provides detailed information on how the pa-
rameters contribute to an asymmetric flow. The results ob-
tained may be fairly precise since, in fact, the approximation
happens to show the exact solution �Eq. �11��. �It may not be
so surprising but is never trivial. See, e.g., �25� for further
discussion of mean-field theories.�

There are further problems to be addressed: �a� It is un-
derstood that the parallel update rule is better than the others
for CA modeling of traffic flow �26�. Accordingly, we should
first find an exact solution of the misanthrope process with
parallel updating. �b� An open boundary condition should be
considered from both theoretical and practical viewpoints.
�c� Modeling of more than two lanes, particularly three lanes,
traffic flow will be challenging because one is supposed to
deal with a conflict happening when two vehicles attempt to
get into the middle lane. �Then, the shuffled dynamics �27�,
where vehicles are updated in random order, may be helpful.�
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APPENDIX: EXACT SOLUTION FOR THE
FLOW-DENSITY DIAGRAM

In order to solve Eq. �3� with Eq. �4�, we introduce a
counterterm which cancels under the sum and thus have

f̄�nl−1�f�nl� − f�nl−1� f̄�nl� = u�nl−1 + 1,nl − 1�f

��nl−1 + 1�f�nl − 1���nl�

− u�nl−1,nl�f�nl−1�f�nl���nl−1� ,

�A1�

having canceled common factors �a product over the func-

tion f�nk� at all sites k� l−1, l�. Here, f̄�n� is some auxiliary
function to be determined.
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FIG. 3. �Color online� Mean-field calculation of the density ratio
Rf��� for the driving-lane use.
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Substitution of u�m ,n�=0 for m�3 or n�2 and f�n�=0
for n�3 into Eq. �A1� yields

f̄�1�f�0� − f�1� f̄�0� = − u�1,0�f�1�f�0� ,

f̄�0�f�2� − f�0� f̄�2� = u�1,1�f�1�2,

f̄�2�f�0� − f�2� f̄�0� = − u�2,0�f�2�f�0� ,

f̄�1�f�2� − f�1� f̄�2� = u�2,1�f�2�f�1� . �A2�

As a result, we obtain Eq. �5� and

f̄�2� = � f̄�0�
f�0�

− u�2,0��u�1,1�f�1�2

u�2,0�f�0�
,

f̄�1� = � f̄�0�
f�0�

− u�1,0�� f�1� . �A3�

Let us define �=u�1,1� /u�2,0� in the following calcula-
tion. Consider d sites are fully occupied in configuration �,
i.e., d=	2��� and 0
d
 �N /2�; then, there are � L

d �� L−d
N−2d �

corresponding configurations. The partition function given in
Eq. �8� is hence calculated as

ZLN = �
d=0

�N/2� �L

d
�� L − d

N − 2d
��d = �L

N
��

d=0

�N/2�
�− N�2d

�L − N + 1�d

�d

d!
,

�A4�

where the Pochhammer symbol �a�n=a�a+1�¯ �a+n−1�.
Using the identity

�a�2n = 22n�a

2
�

n
�a + 1

2
�

n
, �A5�

one finds Eq. �9�. �Note that the Gauss hypergeometric
function is defined by 2F1�� ,� ,� ;x�
=�n=0

 ����n���n / ���n��xn /n!�.�
The flow for the system with given L and N is presented

by the partition function as

QLN = �

�
=N

u��1,�2�P��� = �
m,n=0

N

u�m,n�f�m�f�n�
ZL−2,N−m−n

ZLN

= u�1,0�
ZL−2,N−1 − �ZL−2,N−3

ZLN

+ u�2,0�
2�ZL−2,N−2 + �ZL−2,N−3

ZLN
. �A6�

This is the most general form; however, the expression is not
clear to understand.

There is a useful identity of the Gauss hypergeometric
function,

�1 + x��
2F1��,� − � + 1,�;x� = 2F1��

2
,
� + 1

2
,�;

4x

�1 + x�2� ,

�A7�

by which we transform Eq. �9� into a simple one,

ZLN = �L

N
��1 + z�−N

2F1�− N,− L,L − N + 1;z� , �A8�

where

� =
z

�1 + z�2 . �A9�

Then, using the following identities

��� − 1��2F1��,�,� − 1;x� − 2F1��,�,�;x��

= ��x 2F1�� + 1,� + 1,� + 1;x� , �A10�

�� − ���1 − x�2F1��,�,�;x� + �� − ��2F1�� − 1,�,�;x�

+ �� − ��2F1��,� − 1,�;x� = 0, �A11�

x 2F1���,�,�;x� = ��2F1�� + 1,�,�;x� − 2F1��,�,�;x�� ,

�A12�

we finally obtain the exact flow for arbitrary L and N,

QLN = u�1,0�
N�L − N�
L�L − 1�

1 + z

1 − z
�1 −

2z

N

F�

F
�

− u�2,0�
N�2L − N�
L�L − 1�

z

1 − z
�1 −

1 + z

N

F�

F
� ,

�A13�

where F= 2F1�−N ,−L ,L−N+1;z� and F� denotes the deriva-
tive of F with respect to z.

In order to find the flux in the thermodynamic limit where
L and N tend to infinity with fixed �=N /L, we start with the
Gauss hypergeometric differential equation for F,

z�1 − z�F� + �1 + L − N − �1 − L − N�z�F� − LNF = 0,

�A14�

to consider g=F� /F appearing in Eq. �A13�, which is ex-
pected to remain finite in the thermodynamic limit if divided
by N. One sees from Eq. �A14�

z�1 − z��g� + g2� + �1 + L − N − �1 − L − N�z�g − LN = 0.

�A15�

Hence, we let g=g1N+g0+g−1N−1+g−2N−2+¯, finding the
following quadratic equation for g1 in the N1 order in the
thermodynamic limit:

�z�1 − z�g1
2 + �1 − � + �� + 1�z�g1 − 1 = 0. �A16�

Solving Eq. �A16� gives

g1 =

� −
1 + z

1 − z
+��1 + z

1 − z
�2

− 2� + �2

2�z
. �A17�

Now we are ready for taking the thermodynamic limit of Eq.
�A13�. The result is in Eq. �11�.
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