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Many complex systems can be represented as networks, and separating a network into communities could
simplify functional analysis considerably. Many approaches have recently been proposed to detect communi-
ties, but a method to determine whether the detected communities are significant is still lacking. In this paper,
an index to evaluate the significance of communities in networks is proposed based on perturbation of the
network. In contrast to previous approaches, the network is disturbed gradually, and the index is defined by
integrating all of the similarities between the community structures before and after perturbation. Moreover, by
taking the null model into account, the index eliminates scale effects. Thus, it can evaluate and compare the
significance of communities in different networks. The method has been tested in many artificial and real-world
networks. The results show that the index is in fact independent of the size of the network and the number of
communities. With this approach, clear communities are found to always exist in social networks, but signifi-
cant communities cannot be found in protein interactions and metabolic networks.
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Studies of the community structure of networks have be-
come very important in research on complex networks �1�.
Certain properties are likely to be shared among nodes inside
a tight-knit community, such as friend subgroups in social
networks, thematic clusters on the world wide web �WWW�,
functional groups in biochemical or neural networks, and so
on. Therefore, separating networks into such groups could
considerably simplify functional analysis. As a result, two
questions related to identification of communities have been
the focus of many recent efforts. The first question is how
communities can be detected in networks. Plenty of algo-
rithms �2–16� �see �1,6� as reviews� have been proposed in
recent studies. The second question is how to evaluate the
detected communities. We know that some networks possess
clear communities while others do not. However, almost all
algorithms could uncover “community structures” in net-
works in their own ways without considering whether these
community structures actually exist. Some algorithms can
even find communities in random networks, which are be-
lieved to have no community structures. Thus, the second
question on community identification regards measuring the
“significance of communities.”

Measuring the significance of communities is closely re-
lated to evaluating network partitions. The modularity Q in-
troduced by Newman and Girvan �17� is widely accepted as
an index to measure community structures �7–10�. The
modularity Q can be formulated as Q=�r�err−ar

2�, where err
is the fraction of links that connect two nodes inside the
community r, and ar is the fraction of links that have one or
both vertices inside the community r. The summation ex-
tends to all communities r in a given network. Generally
speaking, a larger value of Q indicates a clearer community
structure. Hence, the value of the modularity can also be
used as an index for the significance of communities. Unfor-

tunately, this modularity function presents its own problems.
Sometimes, the community structure is unclear in networks
that exhibit high modularity �18�. It has also been found that
modularity is limited in detecting small communities �19�.
Very recently, Good et al. proved that the modularity land-
scape is quite “glassy” �20�, which implies that maximizing
the modularity Q is ineffective for treating partition prob-
lems in many networks. In this paper, whether Q is a suitable
index to measure the significance of communities is dis-
cussed in the results. Q has been shown to fail for sparse
networks. Because the positive and negative aspects of the
modularity Q are well known, maximizing the modularity Q
is still a popular method of dividing networks and has suc-
cessful applications in real-world networks such as in recent
research �21�. In this paper, the spectral algorithm �8� was
used to detect the initial community structures, and the ex-
tremal optimization algorithm �10� was used to improve the
community partitions.

Scientists have also proposed other approaches to measur-
ing the significance of communities. Very recently, Santo
Fortunato introduced some related studies in a review article
on community detection in graphs �1�. In previous works,
Massen and Doye described the significance of communities
by analyzing an equilibrium canonical ensemble of partitions
with the modularity −Q playing the role of energy �22�. Fur-
thermore, some scientists think the concept of significance
should be related to the robustness of a partition. Intuitively,
if a network has clear or significant communities, its com-
munity structure should be robust to perturbation. Gfeller et
al. considered weighted perturbation of networks �23�, em-
ploying the probabilities of the edges inside each cluster and
around a cluster, and designed an entropy-based index. Re-
cently, Karrer, Levina, and Newman presented a degree-
conserved disturbance method �24� to analyze the robustness
of a community structure. The perturbation consists of re-
moving each edge with a probability p and putting the re-
moved edge between a pair of loads. Given a probability p,
the communities of the network after perturbation are iden-
tified with some method and compared with the community
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structure of the original network. Then the partitions are
compared by computing the variation of information V. As p
is allowed to change, V�p� becomes a function of p, which
only can give some qualitative information about the signifi-
cance of the community structure and cannot quantitatively
measure the significance of the community structure or com-
pare the significances of two networks with different sizes
and average degrees.

Thus, providing an absolute index to characterize the sig-
nificance of the community structures of complex networks
is essential. In this paper, a universal index for measuring the
significance of communities based on perturbing the network
is proposed. The degree of perturbation of the network is
increased by gradually increasing p from 0 to 1. Then, a
similarity value �measured from information shared between
the original and the disturbed networks� of the community
structures can be obtained for each p. To provide an absolute
meaning to the similarity measure, the null model is also
considered, making the measurement unaffected by the net-
work size or number of communities. Finally, the index is
computed by integrating all the similarities over p. With this
index, the “significance of communities” can be evaluated
for any network. The method is presented in detail in the
following sections. In Sec. II, the method is applied to many
kinds of networks and provides some interesting conclu-
sions. Social and neural networks have distinct community
structures. Protein and metabolic networks also have such
structures, though they are not very clear.

I. METHOD

There are three steps to obtaining the index of a given
network. First, the communities in the original network are
detected without any perturbation. Second, the network is
modified by rewiring a certain number of edges, new com-
munities are detected after this perturbation, and the similar-
ity between the two partitions �the communities of the origi-
nal network and the disturbed network� is calculated. Third,
the proportion of disturbed edges is increased gradually until
all edges are modified. At each proportion, the second step is
repeated, providing a series of corresponding similarity val-
ues as the degree of perturbation increases. Finally, the prod-
ucts of all similarity values with their corresponding degree
of perturbation are summed. If the increment in the degree of
perturbation is small enough, this summation can be con-
verted to an integration.

Method of disturbing the network. There are a number of
methods to disturb the edges of a network. In this paper, a
relatively simple method known as the absolute random per-
turbation is adopted. Compared with the method of network
perturbation introduced by Karrer et al. �24�, the number of
edges remains unchanged, but the original degree distribu-
tion is not sustained. Edges are randomly removed with a
probability p. If a particular edge is removed, it is randomly
added between any other two nodes. In this way, if p=0, no
edge is removed, and the disturbed network is the same as
the original network. If p=1, all edges are removed, and a
random graph that is uncorrelated with the original network
is generated. As p increases from 0 to 1, a sequence of modi-

fied networks is obtained, ranging from the original network
to completely random networks. Moreover, a perturbation
method that sustains the original degree distribution has been
compared to this method, and it has been found that the
resulting index values are almost the same. Thus, in the fol-
lowing discussion, the absolute random perturbation is used
for its simplicity and efficiency.

Measurement of similarity. After detecting the community
structures of the disturbed networks, the similarity between
the two partitions must be found. One discriminatory mea-
sure is the normalized mutual information index from infor-
mation theory �6�. A confusion matrix N is defined, in which
the rows correspond to the “real” communities of the original
network and the columns correspond to the “found” commu-
nities of the disturbed graph. Nij is the number of nodes in
the community i that appear in the found community j. Ni.
denotes the sum of row i in matrix Nij and N.j denotes the
sum over column j. Therefore, a measure of similarity be-
tween the partition A and B is

I�A,B� =

− 2�i=1

cA � j=1

cB Nij log� NijN

Ni.N.j
�

�i=1

cA Ni. log�Ni.

N
� + � j=1

cB N.j log�N.j

N
� . �1�

As the discrepancy between the two partitions increases, the
value of I�A ,B� decreases from 1. In other words, the “com-
munities without perturbation” A are compared to the “com-
munities after perturbation” A�p� to obtain the similarity
measure.

Moreover, the similarity index is improved by accounting
for the null model. The similarity index I(A ,A�p�) is not only
determined by discrepancies between the communities but is
also influenced by the size of the network and the number of
communities in A and A�p�. The null model is included to
eliminate the random background and effects of scale, and
the measurement becomes

S�p� = I„A,A�p�… − I„Ar,Ar�p�… , �2�

where Ar contains the same number of communities with the
same number of nodes as A, and Ar�p� contains the same
number of communities with the same number of nodes in
each community as A�p�. In contrast to A and A�p�, which
are correlated with the original network, the nodes in Ar and
Ar�p� are randomly selected from the entire set of nodes.
Thus, I(Ar ,Ar�p�) only depends on the partitions. Figure 1
shows the expected values of I(Ar ,Ar�p�) when a set of
nodes is divided into two partitions in Ar and Ar�p�. The
values are dependent on the total number of nodes and the
partitions.

Index from integrating the similarities. Using the method
above, a series of S�p� can be obtained by incrementally
increasing the probability p �indicating the degree of pertur-
bation� from 0 to 1; an increment of 0.02 was chosen. Gen-
erally, a higher degree of perturbation corresponds to a lower
value of S�p�. The process should be performed several times
in numerical simulations to obtain the expected average
value of E�S�p��. Naturally, the area of the region bounded
by the curve E�S�p�� is used to calculate the index. Thus, the
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index can be found by integrating all of the expected values
of E�S�p�� as follows:

R = �
0

1

E�S�p��dp , �3�

where p refers to the degree of perturbation and E�S�p�� is
the corresponding expected similarity value between the
original communities and the communities in the disturbed
network. The value of the similarity is a function of the
parameter p. The similarity value of a given network starts at
about 1 when p=0, which can be regarded as an unperturbed
network. Then the similarity value falls and approaches a
minimum when p=1. The index R is the integral of the simi-
larity function E�S�p��. If a network has distinct community
structures, the value of the significance R is high. On the
contrary, a network with fuzzy community structures pre-
sents a lower value of R. Because of the fluctuations in
I(A ,A�p�) and I(Ar ,Ar�p�), S�p� will sometimes be negative
for networks with clear community structures when p is very
close to 1. However, at this time, I(A ,A�p�) and I(Ar ,Ar�p�)
have little correlation, and S�p� will tend to 0. Thus, although
S�p� can sometimes be negative, the result is not affected at
all. The correlation between A and A�p� is weak in a random
network. Thus, for each p, S�p� should be very close to 0,
although fluctuations can make S�p� negative in a random
network. For random networks, the expected value of R is
positive and close to 0. From the numerical experiments,
large networks containing two completely unconnected sub-
networks of equal size can have R values over 0.9. Addition-
ally, the value of R is lower than 0.03 for large random
networks with proper average degrees. The analysis above
implies that R� �0,1�.

II. RESULTS

A measurement of R must be developed that can describe
the significance of communities. A series of important ques-
tions also present themselves. Is R independent of the net-
work size? What will happen if the number of communities
and the linkage density change? Moreover, can the measure-

ment R work well in networks in which the index Q is in-
valid �18�?

About the scale effect. To answer the questions above, the
measure R was tested in networks with different sizes, num-
bers of communities, and linkage densities. The networks for
testing the performance of the index R were constructed as
follows. The network consists of several subgraphs. Each
subgraph is an Erdös-Rényi �ER� random network, and no
edge exists between any of the subnetworks. Thus, the net-
work has distinct communities. Then the networks are dis-
turbed, and the index R is found for each one. R is the aver-
age value of 50 realizations of each kind of network.
Obviously, when the average degree in each subgraph in-
creases, the communities become more distinct, and the
value of R increases correspondingly �as shown in Fig. 2�.
The numerical experiments also showed that the value of the
index R is roughly independent of the size of the network
and the number of communities. A spectral algorithm �8� is
used to detect the initial community structure. The time com-
plexity is at least O�n3�, so it is not easy to deal with large
networks. In Fig. 2, the maximum network size is 3000.

Comparison with other indexes. The index Q is compared
with R in both ER random and Barabási-Albert �BA� scale-
free networks. It is known that the index Q cannot measure
ER and BA networks, especially sparse ones �18�. The
modularity Q of BA and ER networks with small average
degrees could be very high. The index R was tested in such
networks, and the numerical results show that the index R
works better than Q �as shown in Fig. 3�.

Previous works have attempted to improve the perfor-
mance of Q. For example, the modularity Q has been nor-
malized by the corresponding value of the modularity Qrand
in a null model �25�. Other measurements, such as the Z
score, which is used to measure by how many standard de-
viations the real modularity exceeds the mean value of the
random graph, have also been employed �26,27�. The
Q /Qrand and Z score were investigated in the same bench-

FIG. 1. �Color online� The expected values of the mutual infor-
mation I�Ax ,Ay� of two partitions Ax and Ay. Each partition divides
the n nodes into two groups. x and y represent the fractions of nodes
in the first group for the partitions Ax and Ay, respectively. The
nodes in each group are randomly selected from the entire set of
nodes. From the bottom to the top, n is 1000, 200, and 100,
respectively.
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FIG. 2. �Color online� The dependence of R on the network size,
average degree and number of communities. In the plot, n denotes
the number of nodes and c the number of predetermined communi-
ties of the same size. Every predetermined community �subnet-
work� is an ER random network and is detached from the others.
According to the plot, the value of R increases as the average de-
grees of the subgraphs increase, and R is almost independent of the
network size and the number of communities.
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mark tests shown in Fig. 2, and the results are shown in Fig.
4. These two indexes are sensitive to the network size and
the number of communities and cannot describe the signifi-
cance of communities in different networks. However, the
index R performs better in all of the aspects mentioned
above.

When the average degree is larger than or equal to 2, the
index R is approximately 0.1. When the average degree is 1,

the R is slightly less than 0.2. According to the following
applications on artificial networks �as shown in Fig. 5�, R
�0.1 indicates the absence of distinct communities in the
network. However, a value of R=0.2 wrongly indicates the
existence of fuzzy communities in the network. Hence, this
index performs well except in some sparse networks with
average degrees less than 1. Fortunately, such networks sel-
dom exist.

Testing the index in computer-generated networks. An-
other way to test the validity of the index is to apply it to
computer-generated random networks with a well-known
predetermined community structure. The index was first
tested with the Girvan-Newman �GN�-benchmark. In the
GN-benchmark test, each network has n=128 nodes, which
are divided into four communities of 32 nodes each. Edges
are generated between pairs of nodes with varying probabil-
ity depending on whether the two nodes belong to the same
community or not: every node has 	kin
 links on average to
its fellows in the same community and 	kout
 links to nodes
in other communities, where 	kin
+ 	kout
=16. As kout in-
creases, the communities become fuzzy. Thus, the signifi-
cance of the communities tends to weaken, and the index R
decreases. To validate the expectation that R falls as kout
decreases, the value of R was calculated while kout was var-
ied from 0 to 12. The index was also tested on the more
challenging LFR benchmark presented by Lancichinetti, For-
tunato, and Radicchi �28�. In the LFR benchmark, each node
is given a degree whose distribution obeys a power law dis-
tribution with an exponent �, and the sizes of the communi-
ties are taken from a power law distribution with an expo-
nent �. Moreover, each node has a fraction 1−� of its links
connecting it to other nodes in its community and a fraction
� connecting it to other nodes in the network. � is referred
to as the mixing parameter. The significance of the commu-
nity structure can be adjusted through the mixing parameter
�. In the LFR-benchmark, the parameters chosen were n
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FIG. 3. �Color online� Comparison of the modularity Q with the
index R on BA and ER networks with no distinct community struc-
tures. According to the plot, Q is very large when the average de-
gree is about 1, while R is near 0.2. Thus, when the average degree
is near 1, the Q index indicates a very strong community structure,
while R shows fuzzy community structures �fuzzy community
structure exists when R=0.2 according to the numerical results in
artificial networks �see Fig. 5��. However, Q falls more slowly than
R as the average degree increases. When the average degree is
larger than or equal to 2, R is very low and reaches a stable state,
which shows that the R index performs well in both BA and ER
networks.
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FIG. 4. �Color online� Numerical results of testing �a� Ŝ �23�, �b�
Q, �c� Z score, and �d� Q /Qrand with the benchmark employed in

Fig. 2. The Ŝ, Z score, and Q /Qrand are all sensitive to the size of
the network and the number of communities. Q is sensitive to the

network size. Moreover, Ŝ falls to 0 very rapidly, which implies that
it cannot measure the significance when the community structure is
clear.
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FIG. 5. �Color online� The performance of index R in both the
GN-benchmark and LFR-benchmark tests. In the GN-benchmark
test, kout is the average number of connections between communi-

ties and �=
kout

16 . In the LFR-benchmark test, � is the mixing param-
eter, meaning that each node shares a fraction 1−� of its links with
the nodes of its community and a fraction � with the nodes outside
of its community. Each R corresponding to a given � is the average
value of more than 20 numerical experiments, and a new indepen-
dent network is generated each time.
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=1000, �=1.5, �=2.5, maximum community size=100, and
minimum community size=10.

The results are shown in Fig. 5. As expected, the value of
R varies from 0.58 to 0.05 as the kout varies from 0 to 12 in
the GN-benchmark, indicating that the index is able to mea-
sure the significance of communities in artificial networks.
The index R decreases as a function of kout, indicating that
the community structures discovered by the algorithm are
relatively significant when kout is relatively low. In the LFR-
benchmark, Fig. 5 illustrates behavior similar to that demon-
strated in the GN-benchmark. As � increases from 0 to 1, R
decreases from 0.48 to 0.03. A different community detecting
algorithm �29� was also used to calculate R. The results were
similar in behavior, but the values of R were not the same,
implying that the index R is not independent of the algo-
rithm. When this method is used to measure the significance
of community structure, it is necessary to declare which al-
gorithm is employed.

Results of empirical analysis. Following the benchmark
simulations, the measurement technique was applied to many
real networks. The data were sourced from the following
references and websites �10,30–37�. Scientists usually clas-
sify real networks into three categories: social networks
�such as scientists’ collaboration and friendship networks�,
biological networks �such as proteins’ interaction and meta-
bolic networks�, and technological networks �such as the In-
ternet�. Distinct communities have been observed in different
kinds of networks, especially in social networks. This
method and the index R were applied to the largest con-
nected component of many real networks. More details are
given in Fig. 6 and Table I. Figure 6 shows the curves of the
similarity S�p� of four networks. The results are the average
value of 20 realizations. The maximum, minimum, and mean
values of the simulations are also shown in the figure. The
similarity measure of the Jazz network decreases more
slowly than that of the other three networks, implying that
the communities in the Jazz network are more robust than
the communities in the other three. In addition, Table I shows
all of the networks to which the index was applied. The

results measured by the similarity Ŝ presented by Gfeller et
al. �23� are also shown in the table. They give results similar
to the index R. According to the table, different networks
have different R values. Several social networks were ana-
lyzed first, including the Zachary karate club network �30�,
the dolphin network �31�, the college football network �16�,
the Jazz network �34�, the scientific collaboration network
�35� and so on. A relatively high R was found in these net-
works, demonstrating the existence of strong community
structures in these networks.

In addition, some biological networks such as protein in-
teraction networks of E.coli �36�, Yyast �37� and H. sapiens
�36�, metabolic networks �37�, and a C. elegans neural net-
work were analyzed. The R values of protein interaction net-
works are low except in the case of H. sapiens �the average
degree of this network was less than 2�. 43 metabolic net-
works were calculated, all of which had R indexes around
0.17. Therefore, community structures are fuzzy in some
protein interaction networks �such as E.coli and yeast� and
metabolic networks, as listed in Table I. Meanwhile, the C.
elegans neural network presented significant communities.

III. CONCLUSION AND DISCUSSION

This paper presents the index R, which can measure the
significance of communities for different networks. The in-
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FIG. 6. �Color online� The x axis represents the perturbation
probability, while the y axis is the corresponding similarity value
S�p�. In each network, we highlight the maximum, minimum, and
mean values of 20 realizations. The networks are social network
�Jazz�, neural network �C. elegans�, metabolic network �Helico-
bacter pylori�, protein interaction network �E. coli�, BA scale-free
network and ER random network up-down.

TABLE I. The values of the index R for some real networks.
The column denotes the number of nodes and edges of the network.

Ŝ denotes the entropy based on similarity from Ref. �23�. The com-

munity structure is more significant for smaller values of Ŝ. Except

for the C. elegans neural network, the Ŝ and R indexes do not
exhibit considerable qualitative differences.

Network Size Ŝ R Type

E.coli 1442, 5873 0.19 0.11

Yeast 1458, 1971 0.57 0.12 Protein

H.Sapiens 693, 982 0.13 0.18

C. elegans metabolic 453, 2032 0.29 0.17

Aquifex aeolicus 1473, 3354 0.26 0.17

Helicobacter pylori 1341, 3087 0.31 0.17 Metabolic

Yersinia pestis 1922, 4389 0.29 0.15

43 metabolic networks 1472, 3395 0.28 0.17

C. elegans neural 297, 2148 0.19 0.22 Neural

Santa Fe scientists 118, 200 0.10 0.27

Zachary karate 34, 78 0.15 0.25

Dolphin 62, 159 0.01 0.24

College football 115, 613 0.11 0.34 Social

Jazz 198, 2742 0.08 0.40

Political blogs 1222, 19090 0 0.27

Political books 105, 441 0.04 0.31
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dex is computed by integrating similarity values that com-
pare the community structures before and after perturbation.
This index was applied to many artificial and real world
networks including social, neural, metabolic, and protein in-
teraction networks. The results show that this index is
roughly independent of the network size and group number.
Moreover, social networks usually have significant commu-
nities, while communities are relatively fuzzy in biological
networks, especially in some protein interaction networks
and metabolic networks.

The index R introduced in this paper is actually based on
the robustness of the communities. One problem with this
approach is that the community structure must first be found.
Thus, the value of the index is related to the algorithm to
detect communities. In contrast, the significance of commu-

nities is a basic property of the network. It should be evalu-
ated before the division of networks and should thus be un-
related to the identification algorithm. Developing an index
to measure the significance of communities based directly on
the adjacent matrix is an interesting problem for further
research.
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