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The presence of long-term persistence of climate records on scales from 2 to 15 yr has been reported in the
literature, even if the universality of this result is controversial. In the present paper results from monthly
temperature records measured for about 250 yr in Prague and Milan are reported. Because of the nonlinear and
nonstationary character of temperature time series the seasonal contribution has been identified through the
empirical mode decomposition. We find that the seasonal component of the climate records is characterized by
some time scales showing both amplitude and phase fluctuations. By using a more suitable definition of
temperature anomalies, and thus excluding persistence effects due to seasonal oscillations and trends, the
occurrence of long-term persistence has been investigated through the detrended fluctuation analysis. Our
results indicate persistence on scales from 3 to 10 yr with similar values for the detrended fluctuation analysis

indices.
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I. INTRODUCTION

A complete characterization of atmospheric variability in
the time domain is important for the climate forecasting. It is
useful to quantify, within reasonably narrow limits, the po-
tential extent of global warming, to downscale the global
effect, in order to understand the local implications of global
change, and to provide empirical constrains to the global
models, for which the reproductive power is a fundamental
request for interpreting climate change predictions. In par-
ticular, investigations on temporal correlations can help us to
characterize the persistence of weather and to relate it to the
different climate regimes. Climate fluctuations have been de-
tected, on all time scales, from annual to Milankovitch peri-
ods. The presence of two distinct power laws in the spectrum
of surface temperature series, breaking at about 100 yr, indi-
cates interdependence among the various scales [1,2] and the
presence of some persistence or memory in the process that
generates fluctuations. It is well established that the weather
is persistent on short times, and this kind of short-range per-
sistence typically breaks on 1 week, a time period that cor-
responds to the average duration of general weather regime
[3]. On larger scales the occurrence of persistence can be
related to physical mechanisms operating at such character-
istic times. In particular the weather is persistent during the
period in which a very stable high-pressure system is estab-
lished over a particular region remaining in place for several
weeks, the so called “blocking” [4]. On a monthly scale,
persistence could be linked to solar flare intermittency [5] or,
at even longer terms, a source for weather persistence might
be a slowly varying external forcing such as the sea surface
temperatures [3]. On the scale of seasons, one of the most
pronounced phenomena is the El Nifio southern oscillation
occurrence, every ~3-5 yr, which strongly affects the
weather over the tropical Pacific as well as over North
America [6].

1539-3755/2010/82(6)/066101(7)

066101-1

PACS number(s): 89.90.+n, 92.70.Gt, 02.50.Ey, 92.05.Fg

The presence of long-term persistence in climate system
is already debated [7]. It is commonly investigated through
the estimate of the detrended fluctuation analysis (DFA) scal-
ing exponent . This parameter represents a statistical index
related to the dynamics of fluctuations of a stochastic pro-
cess. In particular DFA applied to some temperature data sets
showed that a scaling law with a roughly universal exponent
8=0.65 exists in the range of time scales from 2 to 15 yr [8].
The coupling of atmospheric and oceanic processes could be
involved in setting of long-range persistence with the same
exponent for the weather stations in different climatic zones
and time regimes [8]. The effects of this coupling, underlined
in the context of interdecadal and century-scale climate os-
cillations [9], is one of the core matter in climatology [10].
More recently the claimed universality has been questioned
[11] since a value §=0.5 seems to be present over continen-
tal lands while higher values 6=0.65 have been found over
the coastline. This has been attributed to slowly varying ex-
ternal forcing such as the presence of ocean, where =1, or
even big reservoirs of water [11]. Even if the value of & has
been used as a statistical tool to distinguish among different
climatic regions [12], the search for a systematic behavior of
scaling exponents with distance from the sea and/or latitude
fails [3,13,14], and the claimed universality of persistence is
a matter of scientific debate [15,16]. Furthermore, compari-
sons with global climate models lead to contrasting results. A
test performed on seven state-of-the-art global models failed
to reproduce the scaling behavior of six long temperature
records by underestimating the long-range persistence of the
atmosphere [17,18]. On the contrary it has been demon-
strated that long-range correlations can be reproduced by nu-
merical models when the coupling with ocean [11] or volca-
nic forcing [19] is properly taken into account. We have to
remark that persistence analysis can be relevant to the cur-
rent debate over the global warming to distinguish the “an-
thropogenic signal” from the fluctuations due to the natural

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.82.066101

A. VECCHIO AND V. CARBONE

variability of the geophysical system [20]. In fact, to over-
come this problem, empirical data are complemented with
simulated ones obtained from global circulation models [21].
Hence, the presence or absence of persistence represents a
very useful test for the competing climate models and to
verify the basic assumptions underlying them [8]. On the
basis of some detailed data analysis, it has been emphasized
[22] that scale-free statistics can be hardly supported by cli-
matic fluctuations, that is, the value of persistence exponent
6 obtained from usual data sets is not constant but instead
depends on the scale. Lanfredi e al. [22] described possible
dynamical scenarios, associated to the fractal behavior of J,
through a simple bivariate Markovian model able to account
for the apparent scale invariance.

It is quite clear that, since the analysis of long-term per-
sistence on temperature records has led to contrasting results,
more precise analyses of temperature time series are required
before suggesting dynamical paradigms useful for climate
modeling and for the assessment of climate change. The
question is how the persistence that might be generated by
very different mechanisms on different time scales can be
quantified. The answer to this question is not easy. In fact,
correlations, and in particular long-term correlations, can be
masked by trends that can be generated by anthropic pro-
cesses, e.g., by the well-known urban warming. Even uncor-
related data in the presence of long-term trends may look
like correlated ones; and, on the other hand, long-term cor-
related data may look like uncorrelated data influenced by a
trend. Hence, in order to calculate the degree of persistence,
we need to distinguish between trends and correlations. Usu-
ally, to eliminate trends in the temperature data sets, the tem-
perature anomalies are calculated. In climate studies, the
temperature anomalies are commonly defined with respect to
the seasonally varying mean value. Namely, given a se-
quence of daily temperatures T;, the anomalies AT; are de-
fined as the differences

AT, =T, —(T}), (1)

where (T;) is the temperature mean value for the ith calendar
day, averaged over a significantly large sample of data. In
such a definition of anomaly, there is the implicit assumption
that the seasonal annual cycle is constant, and it is generated
by a set of stationary processes. Clearly, since the response
of the climate system to external forcing is nonlinear, the
validity of the previous assumption is often questionable.
Hence, the classical definition of anomaly could not be ad-
equate to the complex physics of the system; and, conse-
quently, the persistence estimation, along with the proposed
physical mechanisms introduced to explain the correlation,
may be misleading or even erroneous. Moreover, definition
(1) cannot take into account for seasonal trends or irregulari-
ties observed as changes in both amplitude [23] and phases
[24-26] in the annual cycle of surface temperature. These are
related to the complex nonlinear response of the atmosphere,
land, and oceans to the periodic forcing provided by the an-
nual motion of the Earth around the Sun [24,26] or changes
in albedo, soil moisture, and short-wave forcing [25]. In ad-
dition the effect of long-term climate change, if any, should
also be included in the definition of anomaly. As claimed by
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Thomson [24] “Anomaly series used in climate research that
have been deseasonalized by subtracting monthly averages
need to be recomputed. The best method for doing this is not
obvious.”

In this paper, we will investigate two related topics. The
first is to reexamine the concept of Earth’s temperature
anomalies, compatible with a seasonal cycle that can be
modulated in both amplitude and frequency. This is done by
using the empirical mode decomposition (EMD) [27], a tech-
nique that decomposes a nonstationary time series through
intrinsic mode functions (IMFs) and allows a deseasonaliza-
tion by using a partial sums of EMD modes. In this way, by
analyzing two historical temperature records, we defined a
seasonal cycle which could vary both in amplitude and
phase. As a second issue, we calculate the degree of persis-
tence in temperature records by using a definition of anomaly
obtained through the EMD. We will show that, in this way, a
similar degree of persistence of the climate system can be
detected, at least up to some few years, for both data sets.

II. DEFINITION OF SEASONAL BEHAVIOR AND
TEMPERATURE ANOMALIES USING EMD

The periodicities involved in the data set, and their rela-
tive amplitudes, have been identified through the EMD, a
technique developed to process nonstationary data [27] and
successfully applied in many different contexts [28-31], in-
cluding geophysical systems [32-35]. In the EMD frame-
work, a time series 7(7) is decomposed into a finite number 7
of oscillating IMFs as

n-1

T(1)= 2 0,(t) +1,(1). (2)
=0

The IMFs 0j(t) are a set of basis functions obtained from the
data set under analysis by following the “sifting” procedure
described by Huang er al. [27]. This process starts by iden-
tifying local minima and maxima of the raw signal 7(¢). The
envelopes of maxima and minima are obtained through cubic
splines, and the mean between them, namely, m,(z), is then
calculated. The difference between the raw time series and
the mean series, h,(t)=T(t)—m,(t), represents an IMF only if
it satisfies two criteria: (i) the number of extrema and zero
crossings does not differ by more than 1 and (ii) at any point
the mean value of the envelope defined by the local maxima
and the envelope defined by the local minima are zero. If
hy(t) does not support the criteria, the previous steps are
repeated by using h,(r) as raw series; and h(t)=h,(¢)
—m,(f), where m,(¢) is the mean of the envelopes, is gen-
erated. This procedure is repeated k times until /1;,(7) satisfies
the IMF’s properties. The sifting procedure should be applied
with care since at the extreme limit the process could gener-
ate a pure frequency modulated IMF of constant amplitude.
To guarantee that the IMF components contain enough
physical sense with respect to both amplitude and frequency
modulations, a criterion to stop the sifting process has been
introduced [27]. A kind of standard deviations, calculated
using two consecutive siftings, is defined as
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and the iterative process is stopped when o is smaller than a
threshold value oy, which in our case is chosen as 0.3
[27]. The first IMF, 6,(t)=h,,(t), contains the shortest time
scale of the process and has a zero local mean. The function
ri(1)=T(¢)- 6,(¢) is called the first residue, and it is analyzed
in the same way as just described thus obtaining a new IMF
0,(r) and a second residue r,(¢). The process continues until
0, or r; is almost zero everywhere or when the residue r(z)
becomes a monotonic function from which no more IMF can
be extracted. At the end of the procedure the original time
series is decomposed into n empirical modes ordered with
increasing characteristic time scale and a residue r,(¢) which
can be either the trend or a constant. Each 6,(¢) has its very
own time scale and represents a zero mean oscillation expe-
riencing amplitude and frequency modulations. That is, each
IMF 6,(¢) is not restricted to a particular frequency, but it
experiences both amplitude and frequency modulations,
namely, it can be written as 6,(t)=A;(f)cos ®;(1), where A (1)
and @ (¢) represent, respectively, the amplitude and the phase
of the jth mode. This kind of decomposition is local, com-
plete, and in fact orthogonal [27,36]. The residue r,(¢) in Eq.
(2) describes the mean trend, “if any.” The statistical signifi-
cance of information content for each IMF, with respect to a
white noise, can be checked by applying the test by [37]. The
EMD approach is surely more appropriate when dealing with
non-stationary and even nonlinear data, like temperature
records. In these cases averages of the data, critically de-
pending on the chosen number of points, could cancel some
of relevant features in the original signal and reduce tempo-
ral resolution.

The orthogonality property of EMD modes can be ex-
ploited to reconstruct the signal through partial sums in Eq.
(2) [27,35,38]. In fact each IMF captures the empirical dy-
namical behavior of a single independent mode of the sys-
tem, namely, each j mode captures a single aspect of the
complex dynamics. This means that it makes sense to split
the EMD modes of temperature signals into three parts,
namely, a seasonal contribution S(¢), the temperature anoma-
lies AT(z), and the residual r,(z):

T(t) =S(1) + AT(¢) + r,(¢). (4)

By looking at the set of IMFs, described by the index j
=0,1,...,n—1, we can define two mutually orthogonal sets
of indices s and r, such that each j € s®r. Then, by partial
sums, we can reconstruct the seasonal contribution by using
only the subset s, that is,

S(t) = 25 6,(1), (5)

JjeEs

while the remaining IMFs are used to define temperature
anomalies

AT(H) =Y, 6,0). (6)

jer

Of course, due to the complexity of the system, the sets r and
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FIG. 1. Time history of temperatures for the Milan data set
(upper panel) and the Prague data set (lower panel). Temperatures
are given in °C.

s cannot be defined a priori; rather they will be suitably
chosen by looking at the time behavior of the various IMFs.

To check this approach, two long temperature records of
Prague and Milan from the European Climate Assessment &
Data set, available online at [39], have been analyzed in this
paper. The data sets report the daily maximum temperatures
for 230 yr (from 1775 up to 2005) and 240 yr (from 1763 up
to 2003), respectively. Since in this paper we are interested in
long-term correlations we consider the monthly averaged
samples. The time history of both temperature records is re-
ported in Fig. 1. The EMD applied to both data sets results in
a sequence of 11 IMFs and a residue, for each record, shown
in Fig. 2. As it can be seen, high values of j correspond to
larger temporal scales. The residue r|; corresponds to a
monotonic increase in temperature in the last 2 centuries of
about 1.5 °C for Prague and 5 °C for Milan probably due to
the phenomenon of urbanization, namely, a local temperature
increase due to the growth of urban areas. This contribution
is well isolated by the EMD from the other oscillating modes
related to long-term correlations. Figures 3(a) and 3(b) show
the Fourier power spectra of the raw data. A dominant 1-yr
peak, associated to the seasonal cycle, is present in both
records along with high-frequency harmonics. It must be re-
marked that the peak from Fig. 3(b) is broader than the cor-
responding peak in Fig. 3(a), probably indicating that the
seasonal cycle of the Prague data set should involve some
time scales.

To obtain the temperature anomalies, the set r in Eq. (6)
must be accurately defined. To this purpose let us discuss the
behavior of the IMFs. A careful look at the time evolution of
IMFs from the two data sets indicates substantial differences
and reveals a characteristic dynamical behavior for the Pra-
gue sample. For both data sets the first IMF 6, correspond-
ing to the lower time scale, describes monthly fluctuations.
This mode is not associated to subharmonic of the seasonal
cycle; rather it could describe the weather vagaries on
monthly scales. The highest amplitude modes 6,, character-
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FIG. 2. Time evolution of the IMFs ¢, for both data sets. Left
column refers to the Milan data set, and right column refers to the
Prague data set.

ized by a mean period of about 1 yr, can be associated to the
yearly seasonal temperature fluctuations. Let us focus on
EMD modes j=1 and j=2 from Prague shown in Fig. 4 over
a restricted time interval of about 25 yr [Figs. 4(a) and 4(b),
respectively]. The IMF 6,(¢) does not show a regular annual
oscillation revealing a sudden reduction in amplitude around
1940. On the other hand, 6,(7) is characterized by a mean
period of about 1.4 yr, and its amplitude is amplified by
about 10 around 1940. Irregular intervals within 6,(¢) indi-
cate that the whole seasonal contribution is not captured by
this mode. We conjecture that a regular seasonal cycle could
be obtained when both 6,(¢) and 6,(r) are summed up, as
shown in Fig. 4(c).

The observed behavior indicates that the seasonal fluctua-
tions are far from being stationary but are associated to some
time scales because of the presence of both amplitude and
phase modulations. In this case, the seasonal contribution is
not isolated in a single EMD mode, but it needs the two
IMFs to be completely recovered. The Milan record does not
show the above effect, and the seasonal contribution is con-
tained only in the mode j=1. It must be remarked that the
time behavior of Prague 6,() should belong to what is know
in the literature as “mode mixing” effect, namely, when a
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FIG. 3. Upper panels report the Fourier power spectra of (a)
Milan and (b) Prague temperature records. Middle panels report the
Fourier spectra of seasonal oscillation given by (c) the EMD mode
j=1 for Milan and (d) the sum of modes j=1 and j=2 for Prague.
Lower panels represent the Fourier spectra of the temperature
anomalies for both (e) Milan and (f) Prague. The numbers over the
peaks indicate the corresponding periodicity in months.

single IMF consists of signals of widely separated scales
[27]. This feature of EMD, associated to the occurrence of
intermittency, is troublesome in signal processing where the
main purpose is the signal cleanliness. In this framework, to
effectively separate IMFs without mixed scales, the noise-
assisted method named ensemble EMD (EEMD) has been
developed [30]. This approach consists of sifting an en-
semble of white noise-added signals and treats the mean as
the final true result. White noise series should cancel out in
the averaging process, when a sufficient number of different
realizations are used, thus reducing the chance of mode mix-
ing. The spread of the seasonal cycle over two modes is
detected also through EEMD procedure as shown in Ref.
[35]. This indicates that the need of two modes to describe
the seasonal cycle does not depend on the used technique,
but could be related to nonstationarity and intermittency of
the temperature records probably attributable to physical rea-
sons. To this purpose, a discussion about the physical origin
of the irregular intervals observed in the seasonal IMFs can
be found in Ref. [26]. According to this data analysis, the
irregular seasonal phase could be induced by the local chang-
ing of balance between direct insolation and the net energy
received by the Earth, with the intermittency occurrence be-
ing modulated by the Earth’s nutation. Since the temperature
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FIG. 4. Time history of the IMF (a) j=1 and (b) j=2, for a time
period of about 25 yr around an irregular seasonal period for the
Prague data set. In the lower panel we report the sum of both modes
[(a) and (b), respectively].

records are very sensitive to the local conditions, the modu-
lation due to the Earth’s nutation is detected only when a
statistical analysis, over a significant number of stations, is
performed [26]. EMD and EEMD provide an equivalent re-
sult for the purpose of anomaly calculation since we have to
cut off the modes j=1 and j=2 from the partial sums. In this
paper we chose to discuss the EMD results since the EEMD,
by introducing the white noise-added signals, could cancel
the information about the intermittency, thus cutting off
some physical information. Moreover, IMFs, because of their
orthogonality, have a more direct physical interpretation with
respect to EEMD modes.

It is important to remark that, as our results indicate, some
care must be taken in defining anomalies since nonstationary
periods could be present in the temperature records and
could also affect the regular seasonal oscillation. In these
cases the classical definition of temperature anomalies, as
that given in Eq. (1), is not more suitable. Once the set r has
been defined, our definition of temperature anomalies (6)
should be more suitable to accurately take into account these
nonstationary periods.

Taking care of the above considerations, the most natural
way to define temperature anomalies is to consider the con-
tribution of all EMD modes, but the properly defined sea-
sonal oscillation. This contribution, as we said before, is dif-
ferent for the two analyzed data sets. This means that the set
r in Eq. (6) represents the collection of EMD modes such
that r={j|0=j=11}e{j=1} for the Milan data set, while r
={j|0=j=11}e{j=1,2} for the Prague data set. With this
choice the seasonal cycle, that could present amplitude and
phase variations, is excluded by the definition of temperature
anomalies.

Fourier power spectra of S(z) from Milan [Fig. 3(c)] and
Prague [Fig. 3(d)] records indicate how the EMD isolate the
seasonal contribution. The Fourier spectra of AT(¢) for both
Milan and Prague records are reported in Figs. 3(e) and 3(f).
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FIG. 5. Autocorrelation functions of temperature anomalies for

Milan (white symbols) and Prague (black symbols) as a function of
the lag time.

It can be noted that the plot of Fig. 3(e), referring to Milan,
shows a peak at about 9 months indicating interannual peri-
odicity. The peak disappears when 6,(7) is included into s,
thus indicating that, also for the Milan record, the seasonal
fluctuations are not properly stationary. By observing that (i)
the 9-month peak amplitude in the Fourier space is about two
orders of magnitude lower than the maximum power and (ii)
the mean amplitude of the mode j=2 for Milan is of the
same order of magnitude of 65(r) from Prague data set, we
can say that the Milan temperature anomalies defined above
can be considered as deseasonalized at very good approxi-
mation.

The time decay of the autocorrelation functions of tem-
perature anomalies AT(z), for both data sets, is rather slow
(see Fig. 5). In particular, there exists an evident 3-month
correlation due to the mode j=0 which, as we said before,
describes interannual periodicities. In fact, by excluding the
mode j=0 from the set r, the 3-month autocorrelation disap-
pears (Fig. 6). In both cases, the temperature anomalies for
the Milan data set show a slower decay. In fact the first
autocorrelation coefficient which falls within the 95% confi-
dence interval for zero correlation (~0.04) is estimated for
lag times of ~10 months for Prague and ~112 months for
Milan.

autocorrelation function

020 . . ‘ ‘ ‘ ‘
0 20 40 60 80 100 120
lag time (months)

FIG. 6. Autocorrelation functions of temperature anomalies for
Milan (white symbols) and Prague (black symbols) as a function of
the lag time. Temperature anomalies are defined by excluding sub-
annual fluctuations.
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FIG. 7. The scaling function F,(n) [(a) and (b)] and logarithmic
derivative dy [(c) and (d)] as a function of the temporal scale n for
both the Milan and Prague data set. Straight lines correspond to
linear fits (see the text for details).

III. ANALYSIS OF PERSISTENCE OF TEMPERATURE
ANOMALIES

To investigate the persistence in the analyzed records, we
implemented the DFA, a commonly used tool for minimizing
externally induced nonstationary effects describable in the
form of low-order polynomials. The DFA algorithm, applied
to the temperature anomalies AT}, consists of some standard
steps. First of all from a sequence of anomalies of length N
we extract the so-called profile

k

yi= 2 AT, (7)
i=1

The profile y, is divided into boxes of equal length 7, and in
each box a polynomial curve of order p has been fitted thus
obtainin%]the local trend y{(n). The variance of the detrended
signal o’ (n)=y,—y2(n) is calculated for each box, and the

average of the variances over all boxes is defined as

N
R =\~ [P ®)
k=1

A power-law relationship F,(n) ~n%, in a certain region of
scales n, indicates a degree of persistence with exponent &,.
The scaling exponent §,=1/2, obtained for uncorrelated
Brownian-like stochastic processes, separates a persistent
process with §,>1/2 from an antipersistent process where
0,<1/2. Both the scaling range and the scaling exponent in
general depends on p. According to previous analysis
[15,16,22] we use the DFA2, namely, p=2 in Eq. (8). To
reduce the noise level the standard “sliding window” tech-
nique, where local trend removal and variance computation
were performed by choosing each possible starting value for
a given box n, has been applied. DFA2 curves for both
records, after removing the seasonal cycle, are shown in
Figs. 7(a) and 7(b) for Milan and Prague, respectively. Scal-
ing can be established for both records on time scales
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between 3 and 10 yr, namely, within the persistence range
indicated by [16]. The scaling exponent &, calculated by the
means of linear fit, assumes the values of 6=0.72*0.01
for Milan and 6=0.78 =0.01 for Prague. This result im-
plies long-term persistence, in temperature records, for time
scales between 3 and 10 yr. In order to check the strength
of this result it is interesting to focus on local details which
could be lost in the log-log F,(n) plot. Where the power-law
fit n° is right, the local logarithmic derivative dy
=d log;y F»(n)/d log,yn is constant, and its value corre-
sponds to 8. Figures 7(c) and 7(d) show the behavior of dy,
calculated by using a third-order derivative scheme, as a
function of log;o n. The local derivatives are highly variable
mainly at large time scales, where nonlinearity is particularly
impressive. However, for both data sets, in the same range of
scales, namely, 3—10 yr, defined above, dy is almost constant.
In particular, we found 6=0.74=0.22 for Milan and &
=(.78 £0.38 for Prague. Note that the larger values of un-
certainty are due to the greater accuracy of the local deriva-
tive in o calculation. We have to remark that, by using the
classical definition (1) of temperature anomalies for the same
records, a linear range for the logarithmic derivative is hardly
detectable [22].

IV. CONCLUSIONS

In this paper the scaling evolution of temperature anoma-
lies has been investigated by comparing two historical tem-
perature records lasting about 250 yr measured at Milan and
Prague stations. The EMD analysis has been used to give a
more suitable definition of temperature anomalies by recov-
ering a set of orthogonal modes called IMFs. The anomalies
have been thus obtained through partial reconstructions by
excluding IMFs associated to obvious persistence effects
such as the urban warming and the seasonal cycle. EMD
allows us to show that the seasonal contribution for the Pra-
gue data set is spread over two different modes, thus indicat-
ing that the fluctuations on yearly scales are far from being
stationary and are characterized by the superposition of vari-
ous time scales. On the other hand, the Milan seasonal fluc-
tuations behave in a more regular way and are isolated in a
single EMD mode. By defining the seasonal contribution in
the right way and deseasonalizing and detrending the tem-
perature time series, the resulting temperature anomalies
show the same degree of persistence over a reduced range of
scales, at variance to what has been reported in the literature
[15,16], where different values of persistence have been
found from some temperature records. Our results are not
compatible also with the recent results of Lanfredi er al. [22]
about the absence of persistence over a reasonable range of
scales. In our case the presence of the well-defined scaling
behavior is due to the right computation of temperature
anomalies which correctly remove the amplitude-phase
modulated seasonal component and the local trend. This
gives rise to the existence of long-term persistence from
about 3 to 10 yr with a scaling exponent similar for both data
sets. The coupling of atmospheric and oceanic processes [8]
could represent one of the possible causes of the found long-
range persistence for both stations. Other phenomena—Tlike,
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e.g., El Nifio [6]—are unlikely because of the geographical
position of the analyzed stations. It must be remarked that by
using only 6,(¢) to define the seasonal cycle in the Prague
data set, namely, if we choose r={j|0=j=11}o{j=1}, a
lower value 6=0.67=0.01 for the scaling exponent is ob-
tained. This indicates that a suitable definition of anomalies
is fundamental when persistence effect in climate is investi-
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gated. As a conclusion, temperature anomalies defined
through EMD seem to be more suitable, with respect to the
classical approaches, at least to estimate the complex sea-
sonal cycle or trend within temperature records. Of course
discussions about the universality of persistence exponents
needs a statistical analysis involving a large number of sta-
tions which will be the subject of an extended future work.
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