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We study the critical behavior of the d=3 Ising model with bond randomness through extensive Monte Carlo
simulations and finite-size scaling techniques. Our results indicate that the critical behavior of the random-bond
model is governed by the same universality class as the site- and bond-diluted models, clearly distinct from that
of the pure model, thus providing a complete set of universality in disordered systems.

DOI: 10.1103/PhysRevE.82.062101 PACS number�s�: 05.50.�q, 75.10.Nr, 64.60.Cn, 75.10.Hk

Understanding the role of impurities on the nature of
phase transitions is of great importance, both from experi-
mental and theoretical perspectives. First-order phase transi-
tions are known to be significantly softened under the pres-
ence of quenched randomness �1–5�, whereas continuous
transitions may have their exponents altered under random
fields or random bonds �6,7�. There are some very useful
phenomenological arguments and some, perturbative in na-
ture, theoretical results, pertaining to the occurrence and na-
ture of phase transitions under the presence of quenched ran-
domness �2,8,9�. Historically, the most celebrated criterion is
that suggested by Harris �6�. This criterion relates directly
the persistence, under random bonds, of the nonrandom be-
havior to the specific-heat exponent �p of the pure system.
According to this criterion, if �p�0, then disorder will be
relevant, i.e., under the effect of the disorder, the system will
reach a new critical behavior. Otherwise, if �p�0, disorder
is irrelevant and the critical behavior will not change. Pure
systems with a zero specific heat exponent ��p=0� are mar-
ginal cases of the Harris criterion and their study, upon the
introduction of disorder, has been of particular interest �10�.
The paradigmatic model of the marginal case is, of course,
the general random two-dimensional �2D� Ising model and
this model has been extensively debated �11�.

Respectively, the three-dimensional �3D� Ising model
with quenched randomness—which is a clear case in terms
of the Harris criterion having a positive specific heat expo-
nent in its pure version—has also been extensively studied
using Monte Carlo �MC� simulations �12–19� and field the-
oretical renormalization group approaches �20–22�. Espe-
cially, the diluted model can be treated in the low-dilution
regime by analytical perturbative renormalization group
methods �23–25�, where a new fixed point independent of
the dilution has been found, yet for the strong dilution re-
gime only MC results remain valid. Historically, the first
numerical studies of the model suggested a continuous varia-
tion of the critical exponents along the critical line, but it
became clear, after the work of Ref. �14�, that the
concentration-dependent critical exponents found in MC
simulations are the effective ones characterizing the ap-

proach to the asymptotic regime. Note, here, that a crucial
problem of the new critical exponents obtained in these stud-
ies is that the ratios � /� and � /� occurring in finite-size
scaling �FSS� analysis are almost identical for the disordered
and pure models. In fact, for the pure 3D Ising model, accu-
rate values are �26� �=0.6304�13�, � /�=0.517�3�, � /�
=1.966�3�, and �=0.1103�1�. Respectively, for the site- and
bond-diluted model, the most accurate sets of asymptotic ex-
ponents �� /� ,� /� ,�� have been given by the extensive nu-
merical works of Ballesteros et al. �16� and Berche et al. �19�
are �0.519�3�, 1.963�5�, 0.6837�53�� and �0.515�5�, 1.97�2�,
0.68�2��.

The above estimates of critical exponents provided evi-
dence that the 3D Ising model with quenched uncorrelated
disorder belongs to a single universality class, distinct from
that of the pure model, as also indicated by the Harris crite-
rion, independent of the considered disorder distribution. Yet,
in a very recent paper Murtazaev and Babaev �27� using MC
simulations and FSS methods on the site-diluted model the
above view was contradicted and these authors suggested
that the model has two regimes of critical behavior univer-
sality, depending on the nonmagnetic impurity concentration.
Motivated by the above contradictions and the great theoret-
ical interest of the existence of universality classes in disor-
dered models, we have chosen to investigate the 3D Ising
model with bond disorder in order to compare all these three
kinds of disorder �site-, bond-dilution and bond disorder� and
to verify whether these lead to the same set of new critical
exponents, as would be, in principle, expected by universal-
ity arguments �19�. In this contribution we show that, indeed,
the 3D Ising model with quenched, uncorrelated bond disor-
der belongs to the same universality class as the site- and
bond-diluted models, defining in this way a complete univer-
sality class in disordered spin models.

In the following we consider the 3D bond-disorder Ising
model whose Hamiltonian with uncorrelated quenched ran-
dom interactions can be written as

H = − �
�ij�

Jijsisj , �1�

where the spin variables si take on the values −1,+1, �ij�
indicates summation over all nearest-neighbor pairs of sites,*nfytas@phys.uoa.gr
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and the ferromagnetic interactions Jij �0 follow a bimodal
distribution of the form

P�Jij� =
1

2
���Jij − J1� + ��Jij − J2�� , �2�

where J1+J2=2, J1�J2, and r=J2 /J1 reflects the strength of
the bond randomness. Additionally, we fix 2kB / �J1+J2�=1 to
set the temperature scale. The value of the disorder strength
considered throughout this work is r=1 /3.

Resorting to large scale MC simulations is often neces-
sary, especially for the study of the critical behavior of dis-
ordered systems. It is also well known that for such complex
systems traditional methods become inefficient and thus in
the last few years several sophisticated algorithms, some of
them are based on entropic iterative schemes, have been
proven to be very effective �28�. The present numerical study
has been carried out by applying our recent and efficient
entropic scheme �29�. In this approach we follow a two-stage
strategy of a restricted entropic sampling �30� based on the
Wang-Landau �WL� algorithm �31�. As we do not wish to
reproduce here the details of our implementation, we give
only a brief discussion on the nature of the WL method. The
usual WL recursion proceeds by modifying the density of
states G�E� according to the rule G�E�→ fG�E� and initially
one chooses G�E�=1 and f = f0=e. Once the accumulative
energy histogram is sufficiently flat, the modification factor f
is redefined as f j+1=�f j, with j=0,1 , . . . and the energy his-
togram reset to zero until f is very close to unity �i.e., f
=e10−8

	1.000 000 01�. Once f is close enough to unity,
systematic deviations become negligible. However, the WL
recursion violates the detailed balance from the early stages
of the process and care is necessary in setting up a proper
protocol of the recursion. In spite of the fact that the WL
method has produced very accurate results in several models,
it is fair to say that there is not a safe way to access possible
systematic deviations in the general case. This has been
pointed out and critiqued in a recent review by Janke �32�.
However, from our experience and especially from our re-
cent studies on 2D and 3D disordered spin models �33�, the
WL implementation followed in these papers has produced
excellent results, enabling the discrimination between com-
peting theoretical predictions on that model. Using this com-
bined approach we performed extensive simulations for sev-
eral lattice sizes L� 
8,16,24,32,40,64�, over large
ensembles of random realizations of the order of 1000–3000.
Each disorder realization was simulated at least 10–20 times
with different initial conditions to improve accuracy.

It is well known that, extensive disorder averaging is nec-
essary when studying random systems, where usually broad
distributions are expected leading to a strong violation of
self-averaging �17,34�. A measure from the scaling theory of
disordered systems, whose limiting behavior is directly re-
lated to the issue of self-averaging �17� may be defined with
the help of the relative variance of the sample-to-sample
fluctuations of any relevant singular extensive thermody-
namic property Z as follows: RZ= ��Z2�av− �Z�av

2 � / �Z�av
2 .

Closely related to the above issue of self-averaging in disor-
dered systems is the manner of averaging over the disorder.

This nontrivial manner may be performed in two distinct
ways when identifying the finite-size anomalies. The first
way corresponds to the average over disorder realizations
�� . . . �av� and then taking the maxima �� . . . �av

� �, or taking the
maxima in each individual realization first, and then taking
the average ��. . .��av�. Closing this brief outline, let us com-
ment on the statistical errors of our numerical data. The sta-
tistical errors of our WL scheme on the observed average
behavior were found to be of small magnitude �of the order
of the symbol sizes� and thus are neglected in the figures. On
the other hand for the case �. . .��av the error bars shown re-
flect the sample-to-sample fluctuations.

We briefly present here our numerical results for the 3D
random-bond Ising model. Figure 1 illustrates in the main
panel the shift behavior of 6 pseudocritical temperatures es-
timated via the second way of averaging discussed above,
i.e., by taking the average over the individual pseudocritical
temperatures. The error bars reflect the sample-to-sample
fluctuations.

The pseudocritical temperatures considered correspond to
the peaks of the following six quantities: specific heat C,
magnetic susceptibility 	, derivative of the absolute order
parameter with respect to inverse temperature K=1 /T:
���M�� /�K= ��M�H�− ��M���H� �35� and logarithmic deriva-
tives of the first �n=1�, second �n=2�, and fourth �n=4�
powers of the order parameter with respect to inverse tem-
perature � ln�Mn� /�K= �MnH� / �Mn�− �H� �35�. Fitting our
data for the whole lattice range to the expected power-law
behavior �TZ

��av=Tc+bL−1/�, where Z stands for the different
thermodynamic quantities mentioned above, we find the
critical temperature to be Tc=4.4219�49� well below the
critical temperature of the pure model and the estimate �
=0.6843�67� for the critical exponent of the correlation
length. This value is in excellent agreement with the values
0.6837�53� and 0.68�2� given by Ballesteros et al. �16� and
Berche et al. �19�.

Using the above sample-to-sample fluctuations of the
pseudocritical temperatures and the theory of FSS in disor-

FIG. 1. Shift behavior of several pseudocritical temperatures as
defined in the text. The error bars reflect the sample-to-sample fluc-
tuations. The inset shows the FSS of the sample-to-sample fluctua-
tions of the pseudocritical temperature of the magnetic
susceptibility.
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dered systems as introduced by Aharony and Harris �34� and
Wiseman and Domany �17�, one may further examine the
nature of the fixed point controlling the critical behavior of
the disordered system. According to the theoretical predic-
tions �17,34�, the pseudocritical temperatures TZ

� of the dis-
ordered system are distributed with a width ��TZ

��av, that
scales, in the case of a new random fixed point, with the
system size as ���TZ

��av�
L−1/�. In the inset of Fig. 1 we plot
these sample-to-sample fluctuations of the pseudocritical
temperature of the magnetic susceptibility. The solid line
shows a very good power-law fitting giving the value
0.688�15� for the exponent �, which is also in very good
agreement with the value 0.6843�67� obtained via the classi-
cal shift behavior and the most accurate estimates in the lit-
erature �16,19�.

In Figs. 2 and 3 we provide estimates for the magnetic
exponent ratios of the model. In particular, in Fig. 2 we
present the FSS of the maxima of the disorder-averaged
magnetic susceptibility �	�av

� in a double logarithmic scale.

The solid line presents a linear fitting using the total lattice
range spectrum, giving the estimate 1.967�3� for the ratio
� /� ��	�av

� 
L�/��. The inset shows the ratio RZ, where Z
= �	��av as a function of the inverse lattice size indicating a
strong violation of self-averaging of the magnetic properties
of the 3D Ising model with bond disorder. Respectively, in
Fig. 3 we plot the disorder-averaged magnetization at the
estimated critical temperature, as a function of the lattice size
L, also in a log-log scale. The solid line is a linear fitting
��M�av�T=Tc�
L−�/�� giving the value � /�=0.516�11�. Ad-
ditional estimate for the ratio � /� can be obtained from the
FSS of the derivative of the absolute order parameter with
respect to inverse temperature which is expected to scale as
L�1−��/� with the system size �35�. Thus, in the corresponding
inset of Fig. 3 we plot the data for ���M�� /�K averaged over
disorder as a function of L, also in a double logarithmic
scale. The solid line is a linear fitting that gives an estimate
of 0.518�9� for the ratio � /�. Thus, overall the values for the
ratios of the magnetic exponents are in excellent agreement
with the best estimates for the site-�� /�=0.519�3� and � /�
=1.963�5�� �16� and bond-diluted �� /�=0.515�5� and � /�
=1.97�2�� �19� cases reinforcing the scenario of a single dis-
tinctive universality in the 3D Ising model with quenched
uncorrelated disorder, independent of the disorder distribu-
tion.

Using our estimates for the critical exponents and the
Rushbrooke relation �� /�+2� /�+� /�=2 /��, we estimate
the ratio � /� to be −0.085�10�. In Fig. 4 we present the FSS
of the maxima of the disorder-averaged specific heat data as
a function of the linear size L. The solid line shows a typical
power-law fitting attempt of the form �C�av

� 
L�/�, that gives
a value � /�=−0.08�1�.

This is a further reliability test of our numerical method
and extended simulations. The corresponding inset of Fig. 4
presents the ratio R�C��av

as a function of the inverse linear
size. As in the inset of Fig. 2, also here a violation of self-
averaging is observed, yet this is, in absolute numbers, much
smaller than that of the magnetic susceptibility.

Summarizing, we have presented in this Brief Report con-
crete evidence that the critical behavior of the 3D Ising

FIG. 2. FSS of the maxima of the disorder-averaged magnetic
susceptibility in a log-log scale. The inset shows the limiting be-
havior of the ratio R�	��av

.

FIG. 3. FSS of the disorder-averaged order parameter at the
estimated critical temperature in a log-log scale. The inset illustrates
the FSS of the maxima of the disorder-averaged inverse-
temperature derivative of the absolute order parameter.

FIG. 4. FSS of the maxima of the disorder-averaged specific
heat. The inset shows the limiting behavior of the ratio R�C��av

.
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model with quenched uncorrelated disorder is controlled by a
new random fixed point, independent of the way randomness
is implemented in the system. This result has been obtained
through extensive numerical simulations and classical finite-
size scaling techniques. Particular interest was paid to the
sample-to-sample fluctuations of the pseudocritical tempera-
tures model and their scaling behavior that was used as a
successful alternative approach to criticality that verified the
above scenario. Although we acknowledge that Ballesteros et

al. �16� and Berche et al. �19� were the first to support nu-
merically the above view, we believe that the present contri-
bution puts a further significant step on this intensively de-
bated issue of universality in disordered spin models. Very
interesting would be also to study more complicated models,
where disorder couples to the order parameter, and one such
prominent candidate is the 3D random-field Ising model
�36�. For these type of models, the existence of universality
classes has been severely questioned �37�.
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