
Resistance to antitumor chemotherapy due to bounded-noise-induced transitions

Alberto d’Onofrio*
Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, I20141 Milano, Italy

Alberto Gandolfi
IASI-CNR, Viale Manzoni 15, I00185 Roma, Italy

�Received 20 July 2010; revised manuscript received 20 October 2010; published 2 December 2010�

Tumor angiogenesis is a landmark of solid tumor development, but it is also directly relevant to chemo-
therapy. Indeed, the density and quality of neovessels may influence the effectiveness of therapies based on
blood-born agents. In this paper, first we define a deterministic model of antiproliferative chemotherapy in
which the drug efficacy is a unimodal function of vessel density, and then we show that under constant
continuous infusion therapy the tumor-vessel system may be multistable. However, the actual drug concentra-
tion profiles are affected by bounded even if possibly large fluctuations. Through numerical simulations, we
show that the tumor volume may undergo transitions to the higher equilibrium value induced by the bounded
noise. In case of periodically delivered boli-based chemotherapy, we model the fluctuations due to time
variability of both the drug clearance rate and the distribution volume, as well as those due to irregularities in
drug delivery. We observed noise-induced transitions also in case of periodic delivering. By applying a time
dense scheduling with constant average delivered drug �metronomic scheduling�, we observed an easier sup-
pression of the transitions. Finally, we propose to interpret the above phenomena as an unexpected non-genetic
kind of resistance to chemotherapy.
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I. INTRODUCTION

Clonal resistance �CR�, i.e., the emergence through fast
mutations of drug-insensitive cells in a tumor under chemo-
therapy, was up to the recent past, and to some extent it is
still at present, the main paradigm used to explain the high
rate of relapses during chemotherapeutic treatments of tu-
mors �1�.

However, in the last ten years, a number of investigations
�2� revealed that a significant fraction of cases of resistance
to therapy is actually linked to phenomena that may, broadly
speaking, be defined as physical resistance �PR� to drugs �3�.
This means that resistance cannot only be imputed to a sort
of Darwinian evolution of the cancerous population through
the birth of new clones but also to the dynamics of the mol-
ecules of the drugs in the tumor. A nonexhaustive list of such
physical phenomena is the following: �i� limited ability of
the drug to penetrate into the tumor tissue because of inef-
fective vascularization �4� and poor or nonlinear diffusivity
�5�; �ii� binding of drug molecules to the surface of tumor
cells or to the extracellular matrix �6�; �iii� scarce effective-
ness of cytotoxic drugs due to the existence of large regions
of hypoxia and to the consequent prevalence of quiescent
cells in the tumor cell population �7�; and �iv� collapse of
blood vessels �8�.

We recently proposed �9� a deterministic population-
based model to describe the cytotoxic chemotherapy of vas-
cularized solid tumors that may have multiple stable equilib-
ria under constant continuous drug infusion, unlike other
models of tumor growth. That model describes the modula-
tion of the average drug concentration in the tumor tissue by

means of a nonmonotone and unimodal function of the den-
sity of tumor vessels that multiplies the blood drug concen-
tration. The variability of the drug concentration in the tumor
tissue is due to two facts: �i� for small vessel density there is
a minor drug perfusion and �ii� for large vessel density the
drug penetration may be reduced since the tumor vessels in
such condition are mostly dysfunctional with respect to the
physiological ones �10�. The multistability is the conse-
quence of the interplay between these physical vessel-related
phenomena and the population dynamics of the tumor cells.

We have shown in a deterministic framework that the
gradual onset of mild forms of clonal resistance, with a con-
sequent decrease in the effectiveness of the drug, may induce
jump phenomena. Here we suggest the possible existence of
a third path for the insurgence of the resistance, different
from CR and having some relationships with PR, due to the
interaction between the multistability of the tumor and the
unavoidable fluctuations of the blood concentration of the
delivered drug, through the well-known mechanism of noise-
induced transitions �12�. This non-genetic kind of resistance
thus comes from the complex interplay among the pharma-
kocinetics of the agent, the physiological condition of the
patient, the physical barriers caused by the abnormal nature
of tumor blood vessels, and the interaction between tumor
and endothelial cell populations.

However, in contrast with the classical theory of noise-
induced transition, we shall not assume that the noise affect-
ing the drug concentration is Gaussian. In �13,14� we
stressed that possible biological inconsistencies might derive
from the use of Gaussian noise, and here we shall then con-
sider only bounded noises, whose theoretical study has re-
cently attracted a number of physicists �14–16�.

Concerning the origin of those fluctuations, we shall con-
sider two separate and different settings, corresponding to
two different ways of delivering the antitumor chemothera-*Corresponding author; alberto.donofrio@ifom-ieo-campus.it
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pies. In the first, we shall consider a continuous infusion of
drug during which, because of temporal changes of the phar-
macokinetics parameters and/or imperfect delivering, the
agent concentration in blood is not constant and affected by
stochastic fluctuations. In the second case, we consider a
therapy periodically delivered by means of boli. Here we
may have two different irregularities: the first is inherent to
intrasubject temporal variability of pharmacokinetics param-
eters, among them the clearance rate constant�s� of the drug.
The other source of fluctuations is linked with irregularities
of the time of delivering. Note that in case of boli-based
therapy there is the copresence of both stochastic fluctuations
and periodic deterministic fluctuations due to the periodicity
of the administration of the agent.

II. GROWTH AND THERAPY OF A VASCULARIZED
SOLID TUMOR

The vascularization of a tumor is a milestone of tumoral
development in vivo. Solid tumors in their first phase of
growth, indeed, are small aggregates of proliferating cells
that receive oxygen and nutrients only through diffusion
from external blood vessels. In order to grow beyond
1–2 mm3, the formation of new blood vessels inside the
tumor mass is required. Poorly nourished tumor cells start
producing a series of molecular factors that stimulate and
also control �via inhibition� the formation of an internal vas-
cular network �17�. This process, called neoangiogenesis, is
sustained by a variety of mechanisms �17�, such as the coop-
tion of existing vessels and the formation of new vessels
from the pre-existing ones. As far as the tumor-driven control
of the vessel growth is concerned, endogenous antiangio-
genic factors have been both evidenced experimentally �19�
and studied theoretically �18,19�.

To describe the interplay between the tumor and its vas-
culature, we further generalize a family of models previously
proposed in �9� that includes as particular cases the models
in �18,20–22� �for different approaches to the modeling of
untreated vascularized tumors or of tumors undergoing anti-
angiogenic therapies, see �23��. We assume that �i� the car-
rying capacity K�t� of the tumor vasculature is simply pro-
portional to the amount of vessels and that �ii� the specific
growth and apoptosis rates of the tumor and the specific pro-
liferation rate of vessels depend on the ratio � between the
carrying capacity and the tumor size. Following Hahnfeldt
et al. �18�, the growth of the neovasculature is antagonized
by endogenous factors that depends on the tumor volume.
Since the ratio �=K /V may be interpreted as proportional to
the tumor vessel density, assumption �ii� agrees with the
model proposed by Agur et al. �24�. As a consequence, we
can write in absence of therapy

V� = P�K

V
�V − ��K

V
�V , �1�

K� = K���K

V
� − ��V� − �� , �2�

where P�u� is the �specific� proliferation rate of the tumor
with P�0�=0, P��u��0, and P�+����; ��u� is the apopto-

sis rate with ���u��0 and ��+��=0; ��u� is the proliferation
rate of the vessels with ��0�	+�, ���u��0, and ��+��
=0; ��V� represents the vessels loss due to the possible ac-
cumulation into the tumor of endogenous inhibitory factors
secreted by the tumor cells, and � represents the natural loss
of vessels. We prescribe P�1�=��1� so that at the equilibrium
Ke /Ve=1.

As an example of possible expressions of the net prolif-
eration rate F�u�= P�u�−��u� we may consider the general-
ized logistic: F�u�=
�1−u−��, ��0. The function ��u� may
include power laws ��u�=bu−w, w�0, functions such as
��u�=�M / �1+kun�, n�1, i.e., Hill functions in the variable
u−1, and combinations of the above two expressions: ��u�
=�1u−w+�2 / �1+kun�. The power law with w=1 yields
K��K /V�=bV, as proposed by Hahnfeldt et al. �18�. Con-
cerning the function �, we recall that ��V�=dV2/3 has been
assumed in �18�.

The model predicts, as it is easy to show, that the system
has a unique equilibrium point, which is globally attractive.

The antiproliferative or the cytotoxic efficacy of a blood-
born agent on the tumor cells will depend on its actual con-
centration at the cell site, and thus it will be influenced by the
geometry of the vascular network and by the extent of blood
flow. The efficacy of a drug will be higher if vessels are close
each other and sufficiently regular to permit a fast blood
flow; it will be lower if vessels are distanced or irregular and
tortuous so to hamper the flow. To represent simply these
phenomena, we assume, as in �9�, that the drug action to be
included in Eq. �1� is dependent on the vessel density, i.e., in
our model on the ratio �=K /V. If 
�t� is the concentration of
the agent in blood, we assume that its effectiveness is modu-
lated by an unimodal function ���� with ��0�=0, and � in-
creasing for � small and decreasing for large � after having
reached a unique absolute maximum.

As far as the measure units are concerned, we shall as-
sume that volumes are measured in cubic millimeters, the
time is measured in days and that the concentration of the
agent in blood is appropriately nondimensionalized. In order
to make simpler the notation, we shall uniquely denote the
temporal units.

III. ANTIPROLIFERATIVE DRUGS

In case of delivering of an antiproliferative agent, Eq. �1�
has to be modified by including in it a multiplicative factor
0�Z�1 that expresses the drug-induced reduction of the
proliferation:

V� = Z�K

V
;
�t��P�K

V
�V − ��K

V
�V , �3�

where Z�� ;
� is a decreasing function with respect to the
variable 
 and such that in absence of therapy the normal
proliferation is unaffected, i.e., Z�� ;0�=1. According to the
above assumption, the dependence of Z on � and 
 will be
expressed through the product �(��t�)
�t�, and an example
might be a function like:

Z���t�;
�t�� =
H50

H50 + �„��t�…
�t�
.
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In the case of constant continuous infusion �for example,
realized for drugs with small clearance rate constant by a
frequent delivery at small doses so that the blood drug con-
centration can be considered constant with good approxima-
tion� it is 
�t�=C, and by setting V�=0, equilibrium values
for the ratio � are determined by the equation

A��� = J��;C� , �4�

where A���= P��� /���� and J�� ;C�=1 /Z�� ;C�. Note that
A��� is an increasing function of �, whereas J�� ;C� is an
unimodal function of �. It is easy to verify that Eq. �4� for
C�0 has n�1 solutions: 1��1�C���2�C�� ¯ ��n�C�.
Provided that �(�i�C�)−��0, the equation K�=0 has the
unique positive solution:

Vi�C� = �−1	���i�C�� − �
 .

Of course, this suggests that if it exists C� such that
�(�1�C��)−�=0, then for C�C� there is tumor eradication.
However, since � is usually small, the eradication would be
only possible for very large values of C. If C�C�, then there
are m	n co-existing equilibria Ei= �Vi ,Ki�. It is easy to
show that the condition A���i����J��i ;C� guarantees the lo-
cal stability of Ei, which, on the contrary is unstable if
A���i��J���i�.

IV. CYTOTOXIC DRUGS

In case of cytotoxic drugs, Eq. �1� will be modified by
adding the logarithmic-kill term ����
�t�V�t� but also Eq. �2�
has to be modified since often cytotoxic agents also disrupt
the vessels �see �11� and references therein�, leading to the
following model �proposed in �9��:

V� = V�F�K

V
� − ��K

V
�
�t�� , �5�

K� = K���K

V
� − ��V� − � − �
�t�� , �6�

where: F���= P���−���� and ��0.
In case of constant continuous infusion 
�t�=C, we have

�9� n�1 equilibrium vessel densities �i�C�, whose corre-
sponding equilibrium volumes Vi�C� are given by

Vi�C� = �−1	���i�C�� − � − �C
 ,

provided, of course, that M�C ;��=�(�i�C�)−�−�C�0.
Thus, also here there is a threshold drug level C�, defined by
M�C ;��=0, and such that C�C� implies tumor eradication.
We note that the main difference with the tumor response to
antiproliferative agents is that now, if ��0, the eradication
is more easy to be reached, whereas if �=0 also in this case
the eradication is difficult or impossible. The vessel-
disrupting action of a chemotherapic agent so appears very
important for the cure.

V. HYSTERESIS BIFURCATION

Let us assume that an antiproliferative drug is delivered
through a constant continuous infusion therapy, 
�t�=C, and
let us set C as bifurcation parameter. Since

d�i

dC
=

�CJ��i;C�
A���i� − ��J��i;C�

,

it holds that if i is odd then �i��C��0, else if i is even then
�i��C��0. With standard methods �25� it is easy to show that
this implies that if the number m, m	n, of coexisting equi-
libria is such that m�3 then there is at least a hysteresis
bifurcation, as shown in Fig. 1. In Fig. 1, m=3 and there are
two bifurcations at C=C1 �with a “jump” to a larger tumor
size� at C=C2 �with a jump to a smaller size�. With reference
to Fig. 1, it is C1�0.327 and C2�0.827. For the simulation
of Fig. 1, we chose in model �2� and �3� P���=
�� / �a
+���, ����=
�−0.5 / �a+1�, Z�� ,C�=1 / �1+����C�, ����
=� / 	1+ ���−�m� /R�2
, ����=b /�, ��V�=dV2/3, and 

=Ln�2� /1.5, a=1, �m=2, R=0.35, b=4.64, d=0.01, and �
=0.

Similar bifurcating behavior is possible also in the case of
delivering of a cytotoxic drug �9�.

VI. BOUNDED NOISE-INDUCED TRANSITIONS:
CONSTANT CONTINUOUS INFUSION THERAPIES

The hysteresis bifurcations, as that in Fig. 1, are charac-
terized by the existence of two values of the bifurcation pa-
rameter such that infinitesimal changes in the parameter im-
ply that the behavior of the solutions has a sudden change.
This means that near those two points “the behavior of the
system is extremely sensitive to any kind of perturbations…
As a result the treatment.. requires that the fluctuations be
explicitly incorporated into” the model �12,26�.

These observations led Horsthemke and Lefever to define
the theory of noise-induced transitions �NITs� �12� that study
the phase transitions that are induced by zero-mean noises in
nonequilibrium systems. Those transitions depend on charac-
teristics of the noise, such as its variance, and have the effect
of changing the nature of the stationary probability density
functions of state variables, for example, from unimodal to
bimodal or vice versa. Note that NITs are also called phe-
nomenic stochastic bifurcations �27�. The NIT theory is of
the utmost interest in biomedicine, since “in-vivo the envi-
ronmental situations are… extremely complex and thus
likely to present important fluctuations” �28�. For applica-
tions in the field of oncology see �28,29�.
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FIG. 1. Chemotherapy with an antiproliferating agent: occur-
rence of hysteresis bifurcation. Left panel: changing number of
equilibria when varying C. In gray it is plotted A���, J�� ;C� is
plotted in black. Dotted curve: C=1.2, one equilibrium point; thick
curve: C=0.5, three equilibria; dashed curve: C=0.1, again a single
equilibrium point. Right panel: bifurcation diagram, Ve �normal-
ized� versus C. Dashed: unstable equilibria; solid: locally stable
equilibria.
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The properties of our models strongly suggest that also in
the therapy of solid vascularized tumors such noise-induced
transitions may occur because of the unavoidable presence of
stochastic fluctuations in some parameters. The most remark-
able point is that such transitions would correspond to sud-
den tumor relapses during therapy that are not due to genetic
causes or to physical resistance.

Although these transitions may be caused by any of the
parameters appearing in the equation modeling the dynamics
of V�t�, here we are mainly interested on the fluctuations of
the chemotherapy, since, in case of constant infusion therapy,

�t�=C is an idealization. Thus, in order to give a more
realistic description, we set


�t� = Cm + ��t� ,

where ��t� is a “noise” and Cm is the average value of the
drug profile.

A classical approach consists in assuming that ��t� is a
Gaussian white noise, however this is, in our case, an inap-
propriate solution for two reasons. The first is linked to the
functional form of our models, since the white noise might
be used for the model of cytotoxic treatment, where the de-
pendence of model �5,6� on 
�t� is linear, whereas it would
have no sense in the case of model �2,3�. In fact it is well-
known that when the dependence on a fluctuating parameter
is nonlinear, this kind of noise cannot be used �12�. The
second reason is more general, since, as stressed in �13� in
analyzing a different kind of Gaussian noise-induced transi-
tion, the use of Gaussian noise leads to biological inconsis-
tencies. Let us consider indeed model �5,6�, and let us allow
that ��t� be a Gaussian noise.

Since the noise is unbounded, there will be a non-null
probability that 
�t��0 in any arbitrary time interval �t. In
other words, there will be a non-null probability that a cyto-
toxic chemotherapy adds neoplastic cells to its target tumor,
which is a nonsense. As a consequence, the Gaussian noise
cannot be applied to investigate the effects of fluctuations in
the concentration of a chemotherapic drug.

For these reasons, we shall assume that ��t� is a bounded
noise, i.e., that it exists a B�0 such that 
��t�
�B�+�,
with Cm−B�0.

Although the literature devoted to the study of bounded
noises is far more limited than that concerning the Gaussian
noise, in recent years a number of interesting works have
been published �15,16,30�. In particular, there is an increas-
ing body of literature �14,15� �and references therein� focus-
ing on the noises ��t� that are defined by the following fam-
ily of Langevin equations:

���t� = �−1�− f��� + �2D��t�� . �7�

Equation �7� describes the velocity of a nonlinearly over-
damped particle subject to a random force, where ��t� is a
Gaussian noise with zero mean and unitary variance and f���
is a function that is continuous in �−1,1�, antisymmetric
f�−��=−f���, and such that f�−B+�=−�, f�B−�=+�. Of par-
ticular interest is the family of noises obtained choosing for
f�t� the form �15�

fq��� =
�

1 −
��1 − q�

D

�2

2

, q � 1. �8�

Such non-Gaussian noises, which we shall call Tsallis noises,
have zero mean and the following bounds:

− B � ��t� � B, B =� 2D

��1 − q�
. �9�

The stationary density of � is

PTS��� = A�q,B��1 −
�2

B2�
+

1/�1−q�

,

where A�q ,B� is a normalization constant. Note that the den-
sity at �B is null. Finally, the autocorrelation is approxi-
mately given by �15�

���t���t + s��
��2�t��

� exp�−

s


�corr
� ,

where

�corr =
2�

5 − 3q
.

Another interesting class of noise is the so-called sine-
Wiener noise �16,30�, i.e., the process

��t� = B sin�� 2

�s
w�t�� , �10�

where w�t� is a Wiener process. The stationary density for
this process is �30�

PSW��� =
S

��B2 − �2
,

implying that PSW��B�=+� and �corr=�s.
Because of the structure of their stationary densities, the

Tsallis and the sine-Wiener noises are somewhat comple-
mentary. A real noise may lie in between them, so we shall
adopt in our simulations the assumption that the noise � is
generated by Eqs. �7� and �8� or by Eq. �10�, and we shall use
as main bifurcation value the bound B.

3300 3335
0

60

V(365)

De
ns
ity

3000 10000
0

350

V(365)

De
ns
ity

FIG. 2. �Color online� Constant continuous infusion chemo-
therapy with an antiproliferative agent whose blood profile is af-
fected by Tsallis noise. Plot of the conditional probability density
function of the random variable V�365� �mm3�. Parameters: Cm

=0.36, �corr=0.5 day, and q=0.0. Left panel: for B=0.01 the PDF
is unimodal; right panel: for B=0.06 the PDF is bimodal.
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VII. NUMERICAL SIMULATIONS OF CONSTANT
INFUSION THERAPY

In this section we shall study numerically the qualitative
changes of the conditional probability density function
�PDF� of the tumor volume at time tref, namely the density Q
defined by

Q�V,tref ;V0,K0�dV = Prob	V � V�tref� � V + dV
�V,K��0�

= �V0,K0�
 .

With a slight abuse of notation we shall call such qualitative
changes noise-induced transitions at time tref.

In all simulations �if not explicitly noted� we set V�0�
=3900 and K�0�=8000, i.e., we chose an initial value be-
longing to the basin of attraction of the smaller equilibrium
point of system �2� and �3� when 
�t�=C=0.36, i.e., Ve
�3315. As reference time tref, we set tref=365 day.

A. Proliferation inhibiting agents

We start our numerical investigation by analyzing the tu-
mor behavior in response to the delivering of an antiprolif-
erative drug, whose blood concentration profile stochasti-
cally fluctuates around the average value Cm.

We performed our simulations by using the functions and
parameters reported in Sec. V. In a first set of simulations we

set Cm=0.36 and �corr=0.5 day. In case of Tsallis noise with
q=0, we observed a noise-induced transition at B=B�

�0.04. For B=0.01 the PDF of tumor volume is unimodal
�left panel of Fig. 2�, whereas for B=0.06 the PDF is bimo-
dal �right panel of Fig. 2�. Similar patterns were observed
with sine-Wiener noise �see Fig. 3�.

Our simulations evidenced that in case of Tsallis noise the
effect of decreasing �corr is to reduce the extent of the NIT by
increasing the B value needed for this phenomenon to hap-
pen, whereas by increasing �corr the onset of NIT is facili-
tated and there is a greater probability of escape from the low
equilibrium. This is illustrated in Fig. 4, where we show that
for B=0.04 and for �corr=0.1 days there is no bimodality in
the PDF �left upper panel�, whereas the right upper panel of
the same picture shows the bimodal PDF for �corr=1 day. As
far as the sine-Wiener noise is considered, the lower panel of
Fig. 4 shows that in such a case to reverse the bimodality one
has to use a quite smaller value of the correlation time.

Concerning the role of the initial conditions, we simulated
a continuous therapy �Cm=0.36� affected by fluctuations
modeled with a Tsallis noise with q=0, �corr=0.5 day and
B=0.06, setting �V�0� ,K�0��= �390,800�. Unlike the case
with �V�0� ,K�0��= �3900,8000�, no transitions at one year
were observed.

We also performed some simulations to asses the influ-
ence of the parameter q. The simulations suggest that the
peak at the larger tumor volumes is decreasing with q,
whereas the peak at the smaller volumes is increasing, and
the transition can disappear �see Fig. 5�.

Finally, to compare the above results with the effect of a
deterministic pattern of disturbances, we performed some
simulations by assuming a periodic oscillating therapy:

�t�=Cm+B sin�2�t /Tp�. For values of B=0.04 and Cm
=0.36, for which there is bimodality in the stochastic setting
for �corr of the order of fractions of days, in the deterministic
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FIG. 3. Constant continuous infusion chemo-
therapy with an antiproliferative agent whose
blood profile is affected by sine-Wiener noise.
Plot of the conditional probability density func-
tion of the random variable V�365� �mm3�. Pa-
rameters: Cm=0.36 and �corr=0.5 day. Left
panel: for B=0.01 the PDF is unimodal; right
panel: for B=0.06 the PDF is bimodal.
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FIG. 4. �Color online� Effect of changing �corr of the noise af-
fecting a constant continuous infusion therapy with an antiprolifera-
tive agent. Cm=0.36, noise amplitude B=0.04. Left panel: Tsallis
noise with q=0 and �corr=0.1 day: the PDF is unimodal, as it is for
�corr=0.2 day. Central panel: Tsallis noise with q=0 and �corr

=1 day: Right panel: sine-Wiener noise with �corr=0.07 day: for
larger values the PDF is bimodal. Tumor volumes in mm3.
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FIG. 5. �Color online� Effect of changing q in the Tsallis noise
affecting a constant continuous infusion therapy with an antiprolif-
erative agent. Cm=0.36, noise amplitude B=0.04 and �corr=1 day.
Left panel: q=0; right panel q=0.8. Tumor volumes in mm3.
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case we obtained switches to the larger equilibrium only for
huge values of the periods Tp, namely, for Tp�11 month.

B. Cytotoxic agents

Here we report simulations of a chemotherapy based on a
cytotoxic agent delivered in constant continuous infusion to
a tumor having the following dynamic features �see model
�5� and �6��: F���= �ln�2� /1.5��1−�−0.5�, ����=4.64 /�, �
=0, ����=1 / 	1+ ���−2� /0.35�2
 �slightly different from the
one that was used for antiproliferative agents�, and ��V�
=0.01 V2/3. With these values, there are two hysteresis bifur-
cations at Ca�0.133 76 and at Cb�0.2866.

In the simulations we assumed an average drug profile
Cm=0.15, whose associated equilibrium points are E1
= �3323,6924�, U= �4053,7398� and E3= �8794,9577�. Also
here we used as initial condition �V0 ,K0�= �3900,8000�,
which belongs to the basing of attraction of E1.

In case of Tsallis noise with q=0 and �corr=0.5 day, we
observed a noise-induced transition for B slightly greater
than 0.02. Indeed, for B=0.02 the PDF is unimodal �see Fig.
6�, whereas at B=0.036 the PDF is bimodal. Similar patterns
are observed in case of sine-Wiener noise �see Fig. 7�.

Also in this case our simulations showed that the effect of
decreasing �corr is to reduce the occurrence of NITs by in-
creasing the B value needed for this phenomenon to happen,
whereas by increasing �corr the onset of NIT is facilitated.
This is illustrated in Fig. 8, where we show the case of
therapy with Cm=0.15 and Tsallis noise with B=0.05, q=0,
and �corr=0.5 day �left panel� and �corr=1 day �right panel�.
Similar results were obtained in case of sine-Wiener noise
�not shown�.

VIII. BOLI-BASED THERAPIES

Although continuous infusion therapies are increasingly
important from the biomedical point of view, and although

they allow interesting analytical inferences, the majority of
therapies are scheduled by means of periodic delivery of boli
of an antitumor agent. Thus, in the hypothesis that the agent
has monoexponential pharmacokinetics, we have that the
drug concentration profile is ruled by the following impul-
sive differential equation:


� = − a
 , �11�


�nT+� = 
�nT−� + S, n = 0,1,2, . . . , �12�

where S is the ratio between the delivered dose and the dis-
tribution volume W of the agent, T is the constant interval
between two consecutive boli, and a is the clearance rate
constant �also called elimination rate �31��.

We start our analysis by examining the major stochastic
factors that could perturb system �11� and �12�. Although the
delivered doses might, in principle, not be constant, nowa-
days their dosing is quite accurate. For this reason we shall
disregard this source of fluctuations, and instead, we shall
focus on three phenomena of relevance in clinical oncology:
�i� stochastic fluctuations in the clearance of the drug �32�
that are due to changes that affect the physiologic mecha-
nisms of drug elimination by the body. The reasons underly-
ing this kind of noises are due to manifold factors of dispar-
ate endogenous and exogenous nature, including, for
example, the meals that may be considered among the major
perturbations �33�; �ii� the scheduling itself of the drug is
source of irregularities since the times of delivering may be
subject to unpredictable delays and anticipations �34�; and
�iii� stochastic fluctuations of the distribution volume.

A. Stochastic fluctuations in the clearance rate

Equations �11� and �12� are here modified by considering
a stochastic time-varying clearance rate

a�t� = am + �a�t� ,

where �a�t� is a bounded noise defined by the stochastic Eq.
�7� such that am+�a�t��0. Moreover, we suppose that the
pair �am ,T� is such that, in absence of noise, the tumor size
asymptotically oscillates around a low value, i.e., in the de-
terministic setting there is no jump to large tumor size. Note
that, given the structure of the pharmacokinetic equations,
the noise here is “filtered.”

We started by simulating a cytotoxic therapy character-
ized by am=1 /7 day−1, T=6 day, and in the deterministic
case by Cm=0.18 so that the delivered bolus is S=TamCm
=0.154. The initial conditions of the tumor were V�0�
=3900 and K�0�=8000. In case of Tsallis noise with q=0
and �corr=0.5 day, we observed the onset of NIT at B
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FIG. 6. �Color online� Constant continuous infusion chemo-
therapy with a cytotoxic agent, whose blood profile is affected by
Tsallis noise. Plot of the conditional probability density function of
the random variable V�365� �mm3�. Parameters: Cm=0.15, �corr

=0.5 day, and q=0.0. Left panel: for B=0.02 the PDF is unimodal;
right panel: for B=0.036 the PDF is bimodal.
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FIG. 7. Constant continuous infusion chemo-
therapy with a cytotoxic agent whose blood pro-
file is affected by sine-Wiener noise. Plot of the
conditional probability density function of the
random variable V�365� �mm3�. Parameters:
�corr=0.5 day, Cm=0.15�C1. As in the Tsallis
noise case, for B=0.02 �left panel� the PDF is
unimodal. For B=0.036 the PDF is bimodal.
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�0.1am. The bimodal PDF of the random variable V�365�
for B=0.2am is shown in the right upper panel of Fig. 9,
whereas in the left upper panel it is shown the unimodal PDF
for B=0.08am. In case of sine-Wiener noise, the density is
bimodal also for B=0.11am �not shown�.

In a second simulation, we changed the scheduling pass-
ing to a more time dense �metronomic �36�� scheduling,
without decreasing the total quantity of delivered drug.
Namely, we halved both the period, T=3, and the dose of the
bolus, S=0.077. The effect obtained is the almost total sup-
pression of the bimodality in the PDF at B=0.2am, as illus-
trated in the lower panel of Fig. 9. Suppression of the bimo-
dality was also observed in case of Sine-Wiener noise where
at B=0.2am the density turned to be unimodal.

This result suggests that metronomic scheduling might
have not only the beneficial effects of reducing the side-
effects as well as of being more effective in reducing the
tumor mass, but they also might reduce the possibility of
relapse, here suggested, due to the nonlinear interplay be-
tween tumor and vessels.

B. Stochastic fluctuations in the delivery times

Here we shall assume that the clearance rate and the de-
livered dose are constant, whereas the time of delivering is
slightly irregular, so that the initial conditions prescribed by
Eq. �12� become


�Tn
+� = 
�Tn

−� + S , �13�

Tn = nTm + �n, n = 0,1,2, . . . , �14�

where �n is a discrete-time stochastic process such that
��n�=0 and Tm+�n�0. Thus, �Tn�=nTm.

In our simulations of a citotoxic therapy we have sup-
posed that 	�n
 are independent random variables uniformly
distributed in the interval �−A ,A�. The simulations showed
that noise-induced transitions occur for A�0.33 day.

C. Stochastic fluctuations in the distribution volume

In this case we shall consider that the clearance rate, the
delivered dose and the delivery times are not affected by
fluctuations, whereas the distribution volume W�t� is stochas-
tically changing according a law of the type:

W�t� = Wm�1 + ��t�� ,

where ��t� is a bounded noise such that ��t��−1. As a con-
sequence, the initial conditions prescribed in Eq. �12� be-
come:


��nT�+� = 
��nT�−� +
S

1 + ��nT�
. �15�

Our simulations of the cytotoxic therapy, which—as sug-
gested by the nature of the phenomenon under study—
assumed large autocorrelation times ��corr�30 day�, suggest
that both considering ��t� being a sine-Wiener noise �see Fig.
10� or a Tsallis noise �results not shown� a noise-induced
tumor regrowth is possible.

IX. ALTERNATE CONTINUOUS INFUSION THERAPIES

In this section, we shall briefly analyze a class of thera-
pies that is intermediate between the constant continuous in-
fusion therapy analyzed in Sec. VII and the boli-based thera-
pies studied in Sec. VIII. We refer to periodic therapies in
which intervals of constant infusion alternate with intervals
where no therapy is delivered. Indicating with T as the period
of the therapy and with u as the fraction of the period when
the constant infusion is delivered, we may set


�t� = C�	1 − Heaviside�mod�t,T� − uT�
 . �16�

Note that �
�t��=uC�.
Our simulations show that also under this kind of drug

scheduling noise-induced transitions may onset. For ex-
ample, setting T=7, u=2 /7 �i.e., 2 day of therapy followed
by 5 day of rest�, C�=0.675 and �corr=0.5, we observed that
in case of Tsallis noise with q=0 and B=0.1 there is an
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FIG. 8. �Color online� Effect of changing �corr days of the Tsallis
noise affecting a constant continuous infusion therapy with a cyto-
toxic agent. Cm=0.15, noise amplitude B=0.05, and q=0. Left
panel: �corr=0.5 day; right panel: �corr=1 day. Tumor volumes in
mm3.
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FIG. 9. �Color online� Stochastically varying clearance rate
a�t�=am+��t� of a cytotoxic agent. Parameters: T=6, am=1 /7, and
S=0.154. ��t� is a Tsallis noise with q=0 and �corr=0.5 day. Upper
left panel: plot of the PDF at one year for B=0.08am. Upper right
panel: plot of the bimodal PDF for B=0.2am. Lower panel: suppres-
sion of the bimodality for B=0.2am by metronomic scheduling with
T=3 and S=0.077. Tumor volumes in mm3.
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unimodal PDF of tumor volume located at small tumor size,
whereas for B=0.1575 the density is bimodal and the peak at
the large tumor size is bigger than the other maximum �left
panel of Fig. 11�. Also by using a sine-Wiener noise with
B=0.09 �and the same autocorrelation time�, the PDF is bi-
modal, with large prevalence of the second maximum �right
panel of Fig. 11�.

X. CONCLUDING REMARKS

In this work, we have presented an analysis of the pos-
sible onset of resistance to chemotherapy in vascularized tu-
mors induced by the effects of bounded noises. The noises
model stochastic fluctuations in the time course of the con-
centration of the agents in blood. Their interplay with the
intrinsic multistability of the system may generate noise-
induced transitions. The multistability in our model origins
from the drug effectiveness that is dependent on the vessel
density.

The assumption of boundedness for the noise, in contrast
with the use of Gaussian noises, allows a more faithful mod-
elization of real biological phenomena and allows us to avoid

artifact results deriving from the temporary negativity of pa-
rameters. Moreover, in nonlinear systems of the form X�
= f�X ; p�, where p is a parameter, in the vast majority of
cases the velocity f�X ; p� of the state variables depends non-
linearly on the parameters, and this fact precludes the possi-
bility of modeling the fluctuations of p by means of Gaussian
white noise, whereas such fluctuations are perfectly model-
izable by means of bounded noises.

We started our work by defining a mathematical model of
antimitotic therapy in solid tumors, where the effectiveness �
of the delivered agent is unimodally dependent on a variable,
�, summarizing the average vessel density, and where the
growth rate of the tumor is nonlinearly dependent on the
drug concentration in blood. We concisely studied the system
and showed that it may exhibit multistability and hysteresis
bifurcations, similarly to what we had previously found in a
model of cytotoxic chemotherapy �9�. The assumption of
unimodality for the function � was based on the biological
background illustrated in the Introduction. We stress, how-
ever, that multistability may also be retained in case of in-
creasing and saturating ����.

These bifurcations, novel in the context of nonimmuno-
genic tumors, suggested the possible onset of noise-induced
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FIG. 11. �Color online� Therapy with a cytotoxic agent delivered by following an alternate constant infusion or rest scheduling, as
described by Eq. �16� with T=7 day, u=2 /7, and C�=0.675. Effect of Tsallis and sine-Wiener noises are shown. In both cases: �corr

=0.5 day. Left panel: NIT induced by a Tsallis noise with q=0 and B=0.1575; right panel: sine-Wiener noise with B=0.09. Initial
conditions: V�0�=3900 and K�0�=8000. Tumor volumes in mm3.
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FIG. 10. Therapy with a cytotoxic agent delivered at times Tn=nT, where T=6 day, with distribution volume affected by sine-Wiener
noise with �corr=30 day. Parameter of the 
�t�: Cm=0.18, a=1 /7, and S=TaCm. Initial conditions V�0�=3900 and K�0�=8000. For B
=0.07 the distribution is unimodal although horn-shaped �left panel�, whereas the bimodality is present for B=0.09 �right panel�. Tumor
volumes in mm3.
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transitions that might represent a nongenetic and non-
diffusion-related path for resistance to chemotherapy in the
class of tumors under study. We numerically approached the
study of the onset of such resistance by means of a series of
targeted numerical simulations.

Our simulations suggest the possibility of dangerous tran-
sitions in case of therapies potentially able of leading to a
stable disease, in a variety of biologically meaningful sce-
narios, which may be divided in two classes: �i� delivery-
related fluctuations �continuous infusion therapy and bolus-
based therapy irregularly delivered� and �ii� stochasticity of
pharmacokinetics �fluctuations in the clearance rate constant
or in the distribution volume�.

As far as the control of the effects of fluctuations in the
drug clearance rate is concerned, in order to reduce the pos-
sibility of relapse �i.e., of noise-induced transitions� our
simulations suggest a possible beneficial option in the so
called metronomic scheduling of the therapeutical agent.
Moreover, our simulations of the case of irregular intake of
the therapy show that a rigorous adherence to the prescribed
scheduling can avoid therapeutic failures. More difficult ap-
pears the control of other fluctuation sources such as the
distribution volume of the drug, which should probably re-
quire a feedback adaptation of the delivered dose.

Finally, the proposed model might be extended to include
dose saturation effects by multiplying ����, e.g., in Eq. �5�,
by a saturating function of 
�t�. However, let us consider a
sharp saturation at 
=
cr. If �
�t�� is such that �
�t��+B
�
cr, then 
�t� is fully in the linear zone and the presence

or absence of noise-induced transition is not influenced by
the saturation. On the contrary, if �
�+B�
cr and �
�−B
�
cr then the onset of a noise-induced transition will be
“helped” by the saturation, because the largest positive fluc-
tuations of 
 are now less effective in reducing the tumor
volume.

Summarizing, we may say that the possible multistability
of the chemotherapy in solid tumors, suggested by our
model, calls for a more effort in monitoring the drug deliv-
ery, also in view of therapy optimization. We also stress that
we have selected only some of the major causes of fluctua-
tions during therapy. Among the chronobiological phenom-
ena that we have not considered, a prominent role is played
by the circadian oscillations �35�. Indeed, we shall devote a
follow up work to the influence of those rhythms on the
effectiveness of chemotherapy, where we shall also investi-
gate for the possible emergence of stochastic resonances
�37�, as a result of the interaction between circadian oscilla-
tions and the above illustrated stochasticity of therapies.
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