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We present a derivation of the recently proposed eighth-order phase-field crystal model �A. Jaatinen et al.,
Phys. Rev. E 80, 031602 �2009�� for the crystallization of a solid from an undercooled melt. The model is used
to study the planar growth of a two-dimensional hexagonal crystal, and the results are compared against similar
results from dynamical density functional theory of Marconi and Tarazona, as well as other phase-field crystal
models. We find that among the phase-field crystal models studied, the eighth-order fitting scheme gives results
in good agreement with the density functional theory for both static and dynamic properties, suggesting it is an
accurate and computationally efficient approximation to the density functional theory.
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I. INTRODUCTION

Understanding crystal formation from an undercooled
melt is of significant academic interest due to the complex
phenomena involved in crystallization, and also of practical
interest due to its relevance to a vast amount of industrial
processes. During the past decade, rapidly evolving progress
in microscopic understanding of phenomena involved in so-
lidification has followed the introduction of the phase-field
crystal �PFC� model �1,2�. This model was first introduced as
a phenomenological extension of the traditional phase-field
models �3� such that the order parameter field exhibits the
crystalline nature of the underlying crystal lattice. The most
significant advantage of PFC type of models over the tradi-
tional phase-field models is that including the periodic struc-
ture of the field in the model will naturally result in inclusion
of many crystal structure related properties, such as elastic-
ity, plasticity, and grain boundaries �1�. Since its introduc-
tion, the PFC model has been applied to modeling elastic and
plastic deformation of materials �2,4�, dislocation dynamics
�5�, crystal growth �6,7�, static and dynamic properties of
driven two-dimensional overlayers �8–10�, etc.

Because of the periodic nature of the order parameter field
in the PFC model, it is not hard to come up with an intuitive
interpretation that the field must be related to the atomic
number density of the underlying system. On the other hand,
studies of classical density functional theory �DFT�, most
commonly in the context of inhomogenous liquids �11�, have
aimed at a microscopic derivation of the static �and more
recently dynamic �12�� properties of the systems under study
by using the microscopic density as a field variable in the
theory. The extension of this approach to crystallization is
known as the DFT of freezing, which has, in its many forms,
been applied to study freezing of many different classical
systems with a varying degree of success �13,14�. In 2007,
Elder et al. �15� introduced the idea that assuming the field
under study in the PFC model to be linearly proportional to
the atomic number density in the DFT, the PFC model can be
viewed as a simplified version of the DFT, and showed that
the free energy functional used in PFC studies can be derived
from the DFT by making certain approximations. Wu and

Karma �16� introduced another way of obtaining the param-
eters for the PFC model using a DFT-like approach. In a
recent paper, the strengths and weaknesses of the approaches
proposed in Refs. �15,16� were studied, and a new variant of
the PFC model known as the eighth-order fitting model
�EOF�, which reproduces certain thermodynamic properties
of the material under study significantly more accurately
than the previously proposed methods, was proposed �17�.
More recently, the EOF model has been applied to study
grain boundaries �18� and homogenous nucleation �19� of
body-centered cubic iron.

In the present work, we will present an alternative inter-
pretation of the EOF model, in which the field under study in
the EOF is related to the physical atomic number density
through a convolution, which filters out the subatomic wave-
length Fourier modes from the atomic number density. Using
this interpretation, we are able to derive the free energy of
the EOF model in a way which we believe is more consistent
with the original DFT than the previously presented deriva-
tions. Predictions of the EOF model are then tested against
the DFT and other related PFC models. While most studies
of the PFC model’s connection to DFT have concentrated on
the free energy, i.e., the static properties of the model, we
will also compare the predictions for crystal growth rates,
which is a dynamical phenomenon. Similar comparison be-
tween crystal growth rates in DFT and PFC models has pre-
viously been published by van Teeffelen et al. who found the
growth rates of colloidal crystals in the early stages of so-
lidification agree relatively well between the DFT and their
choice of PFC models �not including the EOF� �7�. In the
present work, we aim at a more thorough assessment of the
crystal front propagation in the DDFT and PFC models. In-
stead of the initial growth rate, we aim at assessing the
steady-state front propagation velocity in both the diffusion
controlled and interface kinetics controlled regimes using
both DDFT and EOF models. In addition, the results from
these models are compared to results of a more traditional
fourth-order PFC approach, and the “PFC1” model that van
Teeffelen et al. proposed, and argued to be a more accurate
approximation to DFT than the other model utilized in their
comparison �7�. We find that among the PFC models studied,
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the EOF gives results in best agreement with the DFT for
both static properties and crystal growth.

II. THEORY

We study solidification dynamics in a two-dimensional
ensemble of Brownian particles interacting via an inverse
twelfth-power pair potential,

v�r� = ���

r
�12

, �1�

where r is the interparticle separation, � sets the energy scale
and � is the diameter of the particles. Due to scaling prop-
erties, all structural and thermodynamic properties of this
model system only depend on the scaled density

�̃ = � �

kBT
�1/6

��2, �2�

where kBT is the thermal energy scale and �=N /A is the
number of particles per unit area. According to molecular
dynamics simulations of Broughton et al., the equilibrium
state of the system is a fluid at densities up to �̃l=0.987, and
a hexagonal solid at densities above �̃s=1.006, while be-
tween these two densities the equilibrium state is a coexist-
ence of the solid and liquid phases �20,21�. As we assume
that hydrodynamic interactions and the inertial terms can be
neglected, the equations of motion for the particles are given
by

ṙi = �−1�Fi + fi�, i = 1 . . . N , �3�

where the dot denotes time derivative, � is a friction coeffi-
cient, Fi is the force from the other particles and an external
field acting on particle i, and fi is a Gaussian random force
that fulfills the fluctuation-dissipation theorem.

A. Dynamical density functional theory

In the DDFT approach, instead of solving the positions of
individual particles as a function of t, one derives an equa-
tion of motion for the one-particle density defined by

��r,t� = �
i

���r − ri�t��	 , �4�

where the angular brackets denote a noise average �7�. Mar-
coni and Tarazona �12� have shown that from the equations
of motion �3�, one can derive an equation of motion for
��r , t� through a coordinate transformation and a subsequent
noise averaging. In another procedure, Archer and Evans
�22� have derived the same equation of motion by using the
Smoluchowski equation as their starting point. The equation
of motion for ��r , t� resulting from both of these derivations
reads

�̇�r,t� = �−1 � 
��r,t� � ��F���r,t��
���r,t� �� , �5�

where F���r , t�� is the Helmholtz free energy of the system
described by a density field ��r , t�. As noted in the recent
work of Ramos et al. this equation of motion can also be

obtained in the overdamped limit of a more general equation
of motion for the number and momentum densities, if the
effective Hamiltonian is replaced by the free energy and ther-
mal fluctuations are ignored �23�.

The free energy F consists of three parts, F=Fid+Fex
+Fxs, where the first term represents the ideal gas contribu-
tion,

Fid = kBT� dr��r�
ln���r��T
2� − 1� , �6�

where �T is thermal de Broglie wavelength and the second
term is a contribution from an external field,

Fex =� dr��r�uex�r� , �7�

where uex�r� is an external field acting on the particles. The
third part of F is the excess, which is due to the interparticle
interactions. For this quantity, exact expressions only exist
for a very limited range of cases, and more generally, ap-
proximations will have to be made �11�. In the present work,
we will use the simplest possible nonlocal approximation
that is an expansion of Fxs in powers of ��=�−�0 around a
uniform reference density �0, where

Fxs = − kBT� drc�1���0����r� −
kBT

2

	� � drdr����r�c�2���r − r��,�0����r�� , �8�

where c�n� are called nth order direct correlation functions.
The quantity c�2� is the Ornstein-Zernike direct correlation
function that can be obtained from experiments, computer
simulations or a number of approximate closure relations to
the Ornstein-Zernike equation �11�. In the present work, we
will utilize the well-known Percus-Yevick closure relation
with the pair potential Eq. �1� to obtain c�2�. The reference
density �0 is chosen such that F has two equal minima: the
trivial uniform minimum ��r�=�0 and another where ��r�
has a hexagonal structure �the external field uex is set to
zero�. This is the procedure taken in most DFT studies of
freezing, and the resulting �0 is interpreted as the freezing
point of the liquid. Indeed, the free energy functional defined
by Eqs. �6� and �8� is the simplest free energy functional
used in static DFT studies of freezing, and its success has
varied from case to case ��14� and references therein�. The
free energy defined by Eqs. �6� and �8� is also the free energy
functional to which Elder et al. attempted to connect the free
energy used in PFC studies �15�.

Putting our free energy functional �with uex=0� together
with Eq. �5�, and rescaling the density field variable as
��r , t�=�0�1+n�r , t��, we end up with an equation of motion

�n

�

= �2n − �
�1 + n� �� dr�C��r − r���n�r��� , �9�

where the rescaled time 
=�−1kBTt and C=�0c�2�. Very few
studies of the dynamics of crystallization using Eq. �9� are
found in the literature. Van Teeffelen et al. have studied the
dynamics of colloidal crystal nucleation and found results
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that seemed to agree well with the results of molecular dy-
namics simulations �24�. The same group has studied the
initial growth velocity of a colloidal crystallization front us-
ing Eq. �9� and compared the results against the results ob-
tained from the PFC model �7�. To our knowledge, no other
attempts to assess solidification dynamics by direct applica-
tion of Eq. �9� exist in the literature.

B. Eighth-order phase-field crystal model

The eighth-order phase-field crystal model �EOF� was re-
cently presented in Ref. �17� in the context of quantitative
modeling of body-centered cubic iron. In that case, the
model was shown to reproduce the anisotropic solid-liquid
interfacial free energies, bulk moduli of solid and liquid
phases, and the equilibrium coexistence gap between them to
a quantitatively satisfactory precision. While some of these
properties had been reproduced in previous versions of
phase-field crystal models, the combination seemed inacces-
sible without the eighth-order extension �17�. In a subsequent
study, it was shown that the EOF is also capable of describ-
ing grain boundary energies of bcc iron quantitatively �18�.

Despite its quantitative success, there remain open issues
in the EOF model. First, the previously presented derivation
of the EOF is based on the assumption that the field n, re-
lated to the atomic number density as in the case of DFT, is
small, such that the logarithmic term in the free energy could
be expanded as a power series. However, it is well known
that the actual atomic number density in the solid resembles
a set of highly localized Gaussians, which does not agree
with the assumption of n being small. Neither does it suggest
that the nonlocal part of the free energy could be assumed
local in k-space, as must be assumed, when expanding the
direct correlation function in k-space around its main maxi-
mum. The equilibrium n-field resulting from these approxi-
mations is highly localized in k-space, having little resem-
blance to the Gaussian-like density obtained from the DFT.
Most prominently, in the supposedly empty spaces between
the lattice sites, the field n resulting from the EOF reaches
values smaller than −1, corresponding to unphysical negative
densities.

In what follows, we will present an alternative derivation
of the EOF model which, although far from exact, avoids the
previously mentioned caveats. The key to our derivation is
the obvious fix in the interpretation of the field n used as the
field variable in the EOF model: instead of insisting that the
field n in the EOF model would be locally and linearly re-
lated to � in the same way as in the DDFT model, we will
assume they are related through a weighing function w as

n�r� = �0
−1� dr�w��r − r������r� − �0� . �10�

In the current approach, the weighing procedure introduced
in Eq. �10� will act as a Fourier filter, cutting off the short
wavelength modes of � that have very small amplitude in the
periodic solutions of the PFC model. In other words, the field
n in the bulk of the solid phase will closely resemble the
one-mode approximation,

n�r� � n0 + 2u
cos� 4�y
�3dnn

� − 2 cos�2�x

dnn
�cos� 2�y

�3dnn
�� ,

�11�

where n0 is the fractional density change and dnn is the
nearest-neighbor distance, even though the underlying den-
sity field were highly peaked around lattice sites.

A convenient choice for w is a function, whose Fourier
transform is given by

ŵ�k� =� 1 − Ĉ�k�

1 − ĈEOF�k�
, �12�

where CEOF�k� is the “approximation” to C�k� introduced in
�17�,

ĈEOF�k� = Ĉ�km� − ES� km
2 − k2

km
2 �2

− EB� km
2 − k2

km
2 �4

, �13�

where km is the position of the main peak in Ĉ�k�, ES is
chosen such that second derivatives at the peak of the origi-
nal and the approximated curves are equal, and EB is then
chosen such that the infinite-wavelength �k=0� limits are

equal. The function ĈEOF�k� will follow the original Ĉ�k�
very closely from the k=0 limit up to the main peak at km,

after which the two curves diverge, Ĉ�k� approaching zero in

an oscillatory fashion, while ĈEOF�k� falls in the negative
infinity, such that ŵ�k� defined by Eq. �12� will fall close to
zero rapidly after the main peak, providing the desired Fou-
rier filter property mentioned earlier.

What makes the choice of ŵ�k� defined by Eq. �13� par-
ticularly convenient is that the linear part of the free energy
�linearization of Eqs. �6� and �8�� can now be exactly written
as

�Flin

�0
=

�0
−2

2
� � drdr����r����r − r�� − C�r − r������r��

=
1

2
� drn�r��1 − CEOF��2��n�r� , �14�

where � is the Dirac delta function and CEOF��2� is the in-

verse Fourier transform of ĈEOF�k�, i.e., Eq. �13� with −k2

replaced by �2.
Unfortunately for the nonlinear parts of the free energy,

�Fnl = ��F − Flin� =� dr���r�ln���r�/�0� − ���r�

−
���r�2

2�0
� , �15�

the situation is not nearly as trivial because the expressions
will become both nonlocal and nonlinear. However, as we
know that Flin defined by Eq. �14� already provides us with
both a preferred wavelength of fluctuations in the system,
and a large free energy penalty for Fourier modes with k

km, we argue that if the amplitudes u in Eq. �11� vary on
length scales larger than the range of the weighing function,
it may be sufficient to approximate Fnl with a functional that
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is local in terms of the field n. To fit this purpose, we postu-
late a simple, local, nonlinear functional, consisting of third
and fourth-order terms,

�Fnl,EOF

�0
=� dr�−

a

6
n�r�3 +

b

12
n�r�4� , �16�

where a and b are phenomenological constants. As a conse-
quence of this crude approximation, ignoring practically all
information about the Fourier modes with k
km, it is admit-
tedly obvious that the density field obtained from a solution
of the EOF model through inverting Eq. �10� will not be an
accurate approximation to the real underlying density field,
unless a more accurate approximation to Fnl will be pre-
sented in subsequent studies.

It should be noted that the free energy functional for the
EOF obtained by summing up Eqs. �14� and �16� is exactly
the same as used in previous EOF studies �17,18�. One cru-
cial difference, in addition to the different approximations
involved, is that the current derivation does not suggest that
a=b=1, like the previous version, based on Taylor expan-
sion, did �17�. Instead, in the current approach, it is clear that
the proper way to choose parameters a and b is such that free
energies of relevant density profiles are reproduced as accu-
rately as possible �in the end, to correct for the flaws in the
derivation, fitting the parameters a and b with the desired
amplitude of the solid phase was the approach taken in the
previous studies as well�. In order to gain insight into how
these parameters should be chosen, consider a density field
consisting of an infinite set of normalized Gaussians in a
triangular lattice,

��r� = �
i

�

�
e−��r − Ri�

2
, �17�

where Ri’s are positions of lattice points that belong in the
underlying hexagonal lattice. It is well known that in the
bulk of the solid, this is a fairly accurate approximation to
the density profile that results from DFT of freezing �14�.
More specifically, consider the case when the density of lat-
tice points 2 / ��3dnn

2 �=�0 and the length of the principal re-
ciprocal lattice vector �Gm�=4� / ��3dnn� coincides with po-

sition of the main peak in Ĉ, i.e., �Gm�=km. Then, through
Eqs. �10� and �12�, the field n will be closely approximated
by Eq. �11�, with n0=0, and the amplitude u is related to the
Gaussian parameter � as

u = e−�Gm�2/2�. �18�

It is then straightforward to calculate from Eqs. �14� and �16�
that free energy of the system described by this single-mode
n field will be given by

�FEOF

N
= 3�1 − Ĉ�km��u2 − 2au3 +

15

2
bu4. �19�

In what follows, this expression will be related to the small
and large � limits of the original free energy, given by Eqs.
�6� and �8�, in the Gaussian approximation.

In the limit of small �, deviations from uniformity in the
density field are small, and therefore, instead of the full free

energy functional, it is sufficient to consider the linearized
version defined by Eq. �14�,

�F

�0
�

�0
−2

2
� � drdr����r����r − r�� − C�r − r������r��

=
1

2�
i

�1 − Ĉ��Gi���e−�Gi�
2/� �20�

where the sum is over all nonzero reciprocal lattice vectors.
Using Eq. �18�, this can be rewritten in terms of u as

�F

�0
�

1

2�
i

�1 − Ĉ��Gi���u2��Gi�/�Gm��2
. �21�

Now it is easily observed that in the limit where u is small,
the leading contribution to the sum in Eq. �21� comes from
the shortest reciprocal lattice vectors, for which �Gi�= �Gm�.
As the number of vectors in this first star of reciprocal lattice
vectors is six, we obtain exactly the same small-u behavior
from Eqs. �19� and �21�. This result may not be surprising,
due to the exact relation between the linear parts of free
energies in the models.

In the limit of large �, i.e., highly localized density peaks,
the free energy can be accurately evaluated by ignoring the
overlap between peaks in the ideal gas term �14�, resulting in

�F

N
� ln� �

��0
� − 1 −

1

2�
i

Ĉ��Gi��e−�Gi�
2/�. �22�

Using Eq. �18�, this can also be expressed as a function of u
as

�F

N
� ln� 2�

�3e
� − ln�− ln�u�� −

1

2�
i

Ĉ��Gi��u2��Gi�/�Gm��2
.

�23�

We note that it might be possible to come up with a form
of Fnl,EOF that would resemble this form more closely than
the simple fourth-order polynomial in Eq. �19�. For the time
being, however, we find it sufficient to study the implications
of Eq. �23� to the parameters a and b of Eq. �16�. Perhaps the
most interesting of these implications is the contribution of
the ideal gas term in the parameters a and b. Ignoring all

terms that are proportional to Ĉ�k� in Eqs. �19� and �23�
leaves us with the problem of finding coefficients aid and bid
�subscript id refers to the ideal free energy�, such that

3u2 − 2aidu3 +
15

2
bidu4 � ln� 2�

�3e
� − ln�− ln�u�� . �24�

There are, of course, an infinite number of ways to perform
this fit. After experimenting with least-squares fits on differ-
ent intervals of u, we found that for example by choosing
aid=3 /4 and bid=1 /5, we obtain a reasonably good agree-
ment between the two curves over a large interval of u, as
shown in Fig. 1. Even though details in the fitting procedure
will affect the obtained numbers to some extent, a common
feature observed in all reasonable fits is that the parameter
aid is always on the order of 1, while bid is almost an order of
magnitude smaller. Thus, this argument explains why the pa-
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rameters that were observed to be practicable in our previous
studies �17� were so different from unity, suggested by the
naive Taylor expansion of the log-term.

Further refinement to the parameters a and b could be

obtained by studying the terms related to Ĉ�k� in Eq. �23�.
However, as the expressions for � and n used in deriving
Eqs. �19� and �23�, we suggest using numerical fitting meth-
ods in order to achieve maximum accuracy. In order to find a
functional, that gives such a field n that best approximates
the original DFT, the most obvious choice is to find such a
and b that a numerical free energy minimization results in
the same u as obtained from the DFT, and the solid that
exhibits this u coexists with the liquid phase �given that is
the case in the original DFT functional as well�.

For dynamics of the EOF model, we use the form widely
used in PFC studies, i.e.,

�n

�

= �2��FEOF

�n
�

= �2��1 − Ĉ�km��n −
a

2
n2 +

b

3
n3 + ES� km

2 + �2

km
2 �2

n

+ EB� km
2 + �2

km
2 �4

n� , �25�

where 
 is defined as earlier. Motivation to choosing this
equation of motion is that it is probably the minimum com-
plexity model satisfying the usual requirements for conserv-
ing the total mass and evolving toward minimum of the free
energy, that also catches approximately the same dynamics
as the DDFT in the near-uniformity limit, for the relevant
Fourier modes up to km �linearized version of Eq. �9� is

�
n̂�k�=−k2�1− Ĉ�k��n̂�k�, while that of Eq. �25� would be

the same, but with Ĉ replaced by ĈEOF�. For studying solidi-
fication, we believe the limit of near-uniformity is the domi-

nant factor affecting the solidification front velocity, even
though some details of the dynamics on the solid side of the
front may have a secondary effect on the front propagation.

C. Other phase-field crystal models

In addition to comparing the results of the EOF model
with those of the DDFT model, we will also compare their
results to two other PFC models presented in the literature.
The first model we will include is essentially the Swift-
Hohenberg �SH� model used in almost all the PFC studies up
to date. Where the EOF model contains gradients up to
eighth order in the linear part of the free energy, the SH
formulation only contains gradients up to fourth order. The
procedure we use for obtaining parameters for the SH model
such that it could be used to model real parameters is essen-
tially the one introduced by Wu and Karma �16�. In the
framework of the present work, we may also view the SH-
based approach an approximation to the EOF, where EB=0,
and the parameters a and b are fitted through the same pro-
cedure as in the EOF. The equation of motion for this model,
which we will call the fourth-order fit �FOF� for the remain-
der of this paper, becomes

�n

�

= �2��1 − Ĉ�km��n −

a

2
n2 +

b

3
n3 + ES� km

2 + �2

km
2 �2

n� ,

�26�

We note here that even though many formulations of the
SH-based PFC models do not include the third order term
−an3 /6 in the free energy, it has been shown that the model
without that term can be exactly recovered from Eq. �26�
after appropriate scaling of the field variable and the param-
eters �25�.

In addition to the FOF and EOF models, another interest-
ing PFC model was proposed in the recent work of van Teef-
felen et al. �7�. In the model they call PFC1, they start with

the DDFT, and approximate the function Ĉ�k� by expanding
it around km in a fourth-order power series, in a similar man-
ner as in the FOF model. However, as the excess part of the
free energy in this approach would not be sufficient to stabi-
lize the solid at any reasonable density �7,17�, the excess part
of the free energy is multiplied by a scaling factor �. Thus,
the equation of motion in this model becomes

�n

�

= �2n − � � ��1 + n� � �
Ĉ�km� − ES� km

2 + �2

km
2 �2�n�� .

�27�

Using arguments based on a single mode approximation to
the free energy of the solid, van Teeffelen et al. come up with
�=1.15 for the case of colloids interacting via r−3 potential
which they studied �7�. In the present work, we will utilize
numerical fitting methods to find an �, such that the correct
freezing point from the DFT is reproduced in the PFC1
model. Van Teeffelen et al. also showed that this PFC1
model performs slightly better than their “PFC2” model,
which is based on FOF with a=b=1 and �=1.15, in repro-
ducing the initial crystallization velocities of the DDFT, ar-

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

u

β
F

id
N

−
1

FIG. 1. Ideal free energy as a function of u in the one-mode
approximation to the EOF model, as indicated in Eq. �24� with
aid=3 /4 and bid=1 /5 �solid line�. Dashed lines represent the small-
and large-u limits obtained from the original Fid in the Gaussian
approximation. For comparison, the dashed-dotted line shows the
curve expected from a Taylor expansion of Fid �i.e., aid=bid=1�
which is seen to significantly overestimate Fid.
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guing that the better success is due to fewer approximations
made in the derivation �7�. In the following, we shall see
how the PFC1 model compares with EOF and FOF for the
case under study in the present paper.

III. STATIC RESULTS AND MODEL PARAMETERS

In order to find the freezing density of the fluid in the
DFT model, we have calculated the direct correlation func-
tion for the pair potential defined by Eq. �1� at different
densities by using the well-known Ornstein-Zernike equation
together with the closure relation by Percus and Yevick �PY�
�26�. At each density, we then find the nontrivial minimum of
the free energy, in which the density field has a hexagonal
structure �at densities where it exists�, by a similar free en-
ergy minimization method as utilized in �17�. Of the mini-
mization method, it is worthy of noting that unlike in most
DFT studies �7,14� �and like in �17��, we do not restrict the
calculations to a perfect lattice �i.e., zero vacancy concentra-
tion� constraint, for the reason that in a dynamical simula-
tion, it is not possible to control this issue without modifying
the free energy.

Repeating the procedure of finding the direct correlation
function and the solid minimum of free energy at many dif-
ferent reference densities, we find that freezing occurs at �̃l
=0.9156, because for that reference density, the minimum
free energy of the solid equals that of the liquid at �=�0.
That is also the reference density �0 that will be used for all
the calculations in the remainder of this paper. Compared
with the previously mentioned result from molecular dynam-
ics simulations, this result is an underestimation of the freez-
ing density by approximately 7%. This difference could be
due to multiple sources of error, including approximating Fxs
by Eq. �8�, the PY closure relation or not including the per-
fect lattice constraint. However, for our purposes, the result
is acceptable, especially given that the width of the coexist-
ence gap ���= ��s−�l� /�l�2% �21� is reproduced well: our
DFT result is ���=2.20%.

From the direct correlation function at freezing point, we

find the PFC model parameters km=6.3965 /�, Ĉ�km�
=0.7855, ES=14.5487, and EB=63.7814. The direct correla-
tion function, together with the expansions of EOF �Eq. �13��
and FOF �Eq. �13� with EB=0� are shown in Fig. 2. As men-
tioned in the previous section, for the EOF and FOF models,
the parameters a and b are then defined such that the solid
phase coexists with the liquid phase at �=�0, and the ampli-
tude of Fourier modes corresponding to the first star of re-
ciprocal lattice vectors of the solid phase

us =� drn�r�eiG·r, �28�

where G is any reciprocal lattice vector from the first star,
equals that obtained from the DFT, us=0.7914. Based on
numerical iteration, these two constraints yield a=0.8082
and b=0.1388 for the EOF, which are notably rather close to
the values of aid and bid presented in the previous section.
For FOF, the same fitting procedure results in only slightly
different numbers, a=0.7812 and b=0.1438. For PFC1, the

parameter � is chosen to fulfill only first of the constraints
for EOF and FOF, i.e., that the solid coexists with the liquid
at �=�0. This yields �=1.1934.

As expected �7,17�, the solid state density profiles we find
from the DFT are much more peaked around the lattice sites.
From all PFC models, we find the field n resembles the one-
mode approximation rather closely. The n fields found from
EOF and FOF are very similar to each other, and to the field
obtained from the DFT through filtering the higher order
Fourier modes in the density. The solution from PFC1 differs
from the two other PFC models in that the amplitude of
density fluctuations is us=0.2051, which is smaller than in
the DFT and the other PFC models by about a factor four.
The coexistence gap ��� is 1.57% in the EOF, 7.70% in the
FOF, and 0.68% in the PFC1. Comparing the coexistence
gaps of the PFC models with the previously mentioned re-
sults from molecular dynamics and DFT, the EOF gives the
closest, although not perfect result. In FOF, too small a bulk
modulus results in too large a coexistence gap �17�. In PFC1,
the small us and ��� indicate that the transition from solid to
liquid is a weaker first order transition than in the two other
models.

We have also studied properties of the solid-liquid inter-
face in these models in the close-packed �10� direction. Due
to scaling properties of the potential, the interfacial free en-
ergy of the system is given by

� =
kBT

�
� kBT

�
�1/6

�̃ , �29�

where �̃ is the dimensionless interfacial free energy in res-
caled units. Initializing a system with a slab of solid at �̃s in
the middle of a liquid at �̃l, we find after numerical free

energy minimization �̃=0.234 in the DFT. From the EOF
and FOF we find almost exactly the same interfacial ener-

gies, i.e., �̃=0.222 in the EOF and �̃=0.223 in the FOF.
These results also agree rather well with the DFT result. On

the other hand, from PFC1 we find �̃=0.0086, which is more
than an order of magnitude smaller than in all the other mod-
els. Density profiles of the interface layer in the different
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FIG. 2. Direct correlation function at �̃l=0.9156 as obtained
from the PY closure relation �solid line�, and the fitted EOF �dashed
line� and FOF �dashed-dotted line� expansions.
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models are shown in Fig. 3. It can be seen that in PFC1, the
interface layer is considerably wider than in all the other
models, while the interface widths in EOF and FOF are very
similar to that in the DFT. We are not aware of any computer
simulation predictions for the surface free energy of r−12

disks.
As an aside, we note that the justification for a and b

being different from unity presented in the previous section
is not the only one published. Berry et al. �27� have noted
that a local n3 term can also be justified by considering the
k=k�=0 contribution from a third order term in the density
expansion of Fxs. Technically, this is equivalent to assuming
that the density field is slowly varying compared with the
range of three body correlations. If such term is included in
Eq. �8�, and the logarithm is expanded in a Taylor series, it is
straightforward to derive an explicit expression for a,

a = 1 + �0
2ĉ�3��0,0� , �30�

where ĉ�3��0,0� is the k=k�=0 mode of the three body direct
correlation function. Using the Ornstein-Zernike relation
with Percus-Yevick closure, ĉ�3��0,0� can be calculated by
noting that it is related to the k=0 mode of the two body
direct correlation function through the sum rule

ĉ�3��0,0� =
� ĉ�2��0;�0�

��0
. �31�

The prediction for a we obtain from this approach is a�
−410, which is not only large in terms of absolute value, but
also has the wrong sign with respect to stabilizing the solid

phase. Similar consideration for the fourth-order term b, con-
sidering k=k�=k�=0 contribution from the four-body corre-
lation term, yields b�1.35	103. Based on these consider-
ations, we conclude that our values for a and b cannot be
justified in terms of higher order correlations.

IV. DYNAMICAL SIMULATIONS

The solidification front dynamics in the DDFT and the
different PFC models were studied by growing a hexagonal
crystal from an undercooled liquid �i.e., a liquid with an
initial density �i��l� in the �10� direction. In the direction
perpendicular to the solidification front propagation, the size
of the array in our computations is exactly one interparticle
spacing, and periodic boundary conditions are used. Due to
the periodic boundaries, our simulations represent an infi-
nitely wide crystal seed that propagates into the liquid. That
the size of our simulation box is only one interparticle spac-
ing in the �01� direction means that no instabilities that could
roughen the surface are allowed. Initial condition for the
DDFT, EOF and FOF simulations is such that eight mono-
layers of perfect solid are placed in the middle of the under-
cooled liquid, with a slight smoothing in the boundary of
solid and liquid phases, while for PFC1, we had to use a
crystal seed of 12 monolayers in order to initialize the
growth process at even the smallest undercoolings studied.
Once the simulation starts, the solid seed grows in both di-
rections, and we measure its position as a function of time.
Position of the surface is defined as the point where a line
drawn through the local maxima of the density correspond-
ing to the solid particles reaches one half of its maximum
value. In the direction of growth, the length of our array was
usually 512 interparticle spacings.

For numerically integrating the EOF and FOF models, we
use the well-known semi-implicit operator splitting method
�28� with Fast Fourier transforms. For spatial resolution, we
use �x=�3dnn /16 and �y=dnn /16 �dnn is the nearest-
neighbor distance�, time step is �
=10−3, and the Laplace
operator is discretized in k-space as �k

2 =−k2. For the DDFT,
we employ a similar procedure, by treating the �2n term in
Eq. �9� implicitly and the term related to Fxs explicitly. The
nonlocal term is evaluated in k-space and derivatives in x and
y directions are discretized in k-space as ikx,y. For DDFT, in
order to resolve the sharp density peaks, the linear spatial
resolution of the PFC is doubled, i.e., �x=�3dnn /32 and
�y=dnn /32. The time step we use for DDFT is �
=10−3 in
the regime of low undercooling. In the regime of high un-
dercooling we found that retaining the numerical accuracy
required us to decrease the time step to �
=10−4, which is
smaller than we utilized in EOF and FOF models by an order
of magnitude. This, together with the difference in spatial
resolution, means that using our methods, simulations with
the DDFT are approximately two orders of magnitude slower
than with the EOF and FOF models. For PFC1, we modified
the method used for DDFT such that the implicitly treated
part is �2�1−�CPFC1��2��n, leaving ��n� �CPFC1��2�n�
treated explicitly. Even though for PFC1 this modification
brought great advantage in numerical stability, handling the
nonlinear part still involves explicit evaluation of sixth de-
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FIG. 3. �Color online� On the top, we show density profiles of
the solid-liquid interface, from top to down, in the DFT, EOF, FOF,
and PFC1 models. Darker shades of gray correspond to larger den-
sities in these images, with a scale such that the maximum of n in
each case corresponds to black, and minimum to white. In the low-
est image, we show the field n averaged in the direction parallel to
the interface, as a function of the spatial coordinate perpendicular to
the interface. Black solid line corresponds to DFT, red dashed line
is EOF, and solid, light green line is PFC1 �FOF is not shown
because it would be practically indistinguishable from EOF in this
plot�.
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rivative. Therefore, we found the PFC1 to be numerically
most unstable among the models studied. In order to ease the
requirement this model places on the time step, we dropped
the spatial resolution perpendicular to growth below that
used in other PFC models, to �y=dnn /8, which we did not
find to have any profound effect on any results predicted by
the model. However, this only allowed us to utilize time
steps that are one order of magnitude smaller than in the
DDFT, making the PFC1 numerically approximately equally
demanding to DDFT using current methods. In addition to
the differences in �x, �y, and �
 between the models, we
note that progressing a single time step in DDFT and PFC1
models requires a total of five Fourier �or inverse Fourier�
transforms, where in EOF and FOF, only three are required.

If the undercooling is small, such that �i��s, then forma-
tion velocity of the solid �whose density is always at least �s
to be stable� is expected to be limited by the diffusion of
mass to the interface, in an analogous manner to the more
commonly considered case where growth of the solid is lim-
ited by transport of heat away from the surface �29�. Density
of the solid seed in these simulations is chosen to be that of
the solid coexisting with the liquid. As the planar solidifica-
tion front propagates, the layer through which diffusion must
take place widens, and therefore one expects the solidifica-
tion front to propagate as x�
0.5. Diffusion-controlled
growth in the PFC model has been previously studied by
Tegze et al. �6�, but to our knowledge, no studies of the
subject utilizing a nonlocal DDFT have been published. On
the other hand, when density of the liquid from which the
solid is formed exceeds �s, propagation of the solidification
front does not require diffusion of additional mass to the
surface. Therefore, one expects the front to propagate with a
constant velocity, i.e., x� t, that depends on the attachment
rate of particles on the interface.

The different regimes of growth, as well as differences
between the different models, are illustrated in Figs. 4 and 5.
In Fig. 5 we show the interface position as a function of time
from all models, for a case where �i=1.0044�l, which is in
the ��1 regime of all models. At the very beginning of the
solidification process, kinetics define how fast the particles

attach to the interface from the liquid with a density �i. Dur-
ing the initial stages, a depletion layer is formed in front of
the liquid. As time goes on, width of the depletion layer
increases, and x�
� approaches the expected x�
0.5 behavior.
By close inspection of Fig. 4 it can be seen that at the very
beginning of the process, interface motion in the PFC1
model is slightly faster than in the DDFT. On the other hand
in the EOF and FOF models, the initial interface motion is
slightly slower than in DDFT, indicating more restriction to
growth due to interface kinetics. In the EOF and FOF mod-
els, the initial velocities are strikingly similar. On the other
hand, Fig. 5 shows interface positions as a function of time
for an initial density of �i=1.088�l, which is in the ��1
regime of all models. Again, in the initial stages of solidifi-
cation, a depletion layer is formed in front of the moving
interface. However in this case the width of the depletion
layer, and thus the propagation velocity of the interface,
quickly approach constant values, and therefore the growth
seems linear.

In order to quantify the detection of the different growth
regimes, we have fitted a power law growth function,

x = x0 + c�
 − 
0��, �32�

in the surface positions as a function time resulting from the
different models at different initial densities. The first quarter
of the x�
� data is ignored in these fits in order to minimize
the effect from the initial stages, while still obtaining a fairly
robust fit for the four free parameters. The exponents � re-
sulting from these fits are shown in Fig. 6. The growth ex-
ponents obtained from the FOF and PFC1 models are in
general close to the ideal results �even at unit undercooling,
the observed exponent ��0.70 from FOF is close to the
expected anomalous exponent �=2 /3 �29,30��, whereas in
DDFT and EOF models, the transition from the diffusion
controlled to kinetics controlled regime seems more continu-
ous. The discrepancy between observed and expected expo-
nents is due to insufficient simulation time for the formation
of the steady-state depletion layer in DDFT and EOF models.
The discrepancy is most evident in the EOF model. This is
most likely because the combination of small coexistence
gap, fast diffusion in the solid, and relatively slow interfacial
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FIG. 4. �Color online� Interface position as a function of time
when �i=1.0044�l. Black solid line is the result obtained from the
DDFT, red dashed line is from the EOF, blue dash-dotted line is
from the FOF, and green solid line is from the PFC1.
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FIG. 5. �Color online� Interface position as a function of time
when �i=1.088�l. Different lines are as in Fig. 4.
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kinetics makes the formation of a quasi-steady-state deple-
tion layer in the EOF slowest among the models.

In the ��1 regime, we have quantified the effect of the
initial density on the quasi-steady-state velocity of front
propagation by fitting the x�
�’s resulting from different
models for different �i’s with the expected growth law,

x = x0 + d�
 − 
0�1/2, �33�

ignoring the early stages where x�−1�50. Equation �33� is
mathematically equivalent to Eq. �32� with � set to 0.5. De-
spite the previously mentioned discrepancies between the ob-
served and now preset growth exponents, we are able to
obtain good fit with Eq. �33� for all models in the regime
��0.6, as shown in Fig. 7. The d resulting from these fits is
shown in Fig. 8. Beyond �=0.6, we have less confidence in
having reached close enough to a steady-state diffusion-
controlled growth regime, especially in the EOF model, and
therefore the data is only shown for undercoolings up to �
=0.6.

It is seen in Fig. 8 that among the PFC models, the EOF
in general gives the closest agreement with the DDFT. Due
to scaling properties of the problem, if the growth were
purely diffusion limited, one would expect the position of the
interface to depend on the dimensionless undercooling � and
�D
, where D=1− Ĉ�0� �for PFC1, multiply Ĉ�0� by �� is
the effective diffusion constant in a given model �in the limit
of small, long-wavelength density fluctuations, with this
definition, all the models studied reduce to the diffusion
equation �
n=D�2n�. Such a scaling law for the growth rates
is illustrated in the inset of Fig. 8, where we show that the d’s
scaled by �D as a function of � in DDFT, EOF, and FOF
models follow the same curve, indicating that differences in
microscopic details of those models are unimportant in de-
termining the front velocity in the diffusion-controlled re-
gime. Results from PFC1 lie slightly above those from the
other models in the rescaled plot, which we believe is most
likely a result of numerical inaccuracy. These scaling prop-
erties of the problem are the reason why the EOF, which has
exactly the same D and close to the same ��� as DDFT,
reproduces the result of the DDFT with higher accuracy than
the FOF, which results in a d that is approximately an eighth
of the result obtained from the DDFT for the same �i. The
scaling argument also suggests that the close agreement of
PFC1 to EOF and DDFT in the small density limit probably
results from a cancellation of errors due to the smaller D and
smaller ��� in the PFC1 model.

In the regime where ��1, the results have been fitted
with a linear growth law,

x = x0 + v
 , �34�

where the effect of the initial transient was removed by ig-
noring data for which x�100�. The resulting v as a function
of �i from all the models are shown in Fig. 9. As expected,
the front velocity increases as the initial density is increased
in all the models. It is also apparent that for any given initial
density, the velocity obtained from the EOF is the closest
approximation to the DDFT among the present PFC models.
If the density axis is rescaled by subtracting the density of

0 1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

∆

α

FIG. 6. Growth exponents obtained from the different models.
Circles are results from DDFT model, squares from EOF, diamonds
from FOF, and triangles from PFC1, while dashed line shows the
ideal behavior.

1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

log
10

(D(τ−τ
0
))

lo
g 10

((
x−

x 0)
/σ

)

∆ = 0.2

∆ = 0.4

∆ = 0.6

FIG. 7. �Color online� Logarithmic plot of rescaled interface
positions as a function of rescaled time from different models in
��0.6 regime. The black dashed line shows the expected slope,
while other lines are labeled as in Fig. 4.

1 1.01 1.02 1.03 1.04 1.05
0

2

4

6

8

10

ρ
i
/ ρ

l

d
/σ

0 0.2 0.4 0.6
0

0.5

1

∆

d
σ−

1
D

−
1/

2

FIG. 8. Growth rates d obtained in the diffusion-controlled re-
gime. Circles are results from DDFT model, squares from EOF,
diamonds from FOF, and triangles from PFC1, with lines connect-
ing the symbols. Inset shows scaled data.

EIGHTH-ORDER PHASE-FIELD-CRYSTAL MODEL FOR… PHYSICAL REVIEW E 82, 061602 �2010�

061602-9



the solid coexisting with the liquid, the results from FOF
seem to agree with DDFT practically as well as those from
the EOF, as shown in the inset of Fig. 9. On the other hand,
the velocities observed in PFC1 model seem to be a signifi-
cant overestimation when compared with the results from all
the other models studied, even after rescaling the densities.
This suggests that the smaller amplitude of density fluctua-
tions and wider crystal-melt surface result in a kinetic barrier
which is somewhat smaller than in the other models.

V. CONCLUSIONS

We have presented a new way to derive the eighth-order
phase-field crystal model �EOF� from the density functional
theory of classical systems. The model was applied to study
solidification front dynamics in a two-dimensional ensemble
of particles interacting via r−12 potential. Predictions from
the EOF were compared with similar predictions from dy-
namical density functional theory �DDFT� of Marconi and
Tarazona, and two previously presented phase-field crystal

�PFC� models. For the static properties of the system in these
models, we find that the DFT predicts freezing of the r−12

disks at a density that is about 7% lower than seen in mo-
lecular dynamics simulations. From the PFC models studied,
we find that the EOF gives the most accurate description of
the static properties of the material under study. By studying
crystal growth in the diffusion-controlled regime, we find
that the EOF gives the best agreement with DDFT among the
phase-field crystal models, due to the most accurate descrip-
tion of liquid diffusion constant and solid-liquid coexistence
gap in the model. In the regime of interface kinetics con-
trolled growth, we again find the EOF gives closest agree-
ment to the DDFT for all initial densities, although if the
initial density is rescaled by the melting point of the solid,
the fourth-order fitting scheme slightly outperforms the EOF.
These results suggest that among the PFC models studied,
the EOF gives the closest approximation to the DDFT. This
implies that the EOF is a good candidate for a model to be
used for atomistic scale simulations of the growth of two-
dimensional hexagonal crystals of Brownian particles, at
least in the absence of an external field. In the presence of an
external field, a further study would be required to quantify
the response in the different models. It should also be noted
that while the current study has considered a simple two-
dimensional problem, a similar study of the growth of a three
dimensional crystal could also quantify the differences in
anisotropy of the different phenomena in the models.
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