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The nonequilibrium self-consistent generalized Langevin equation theory of colloid dynamics is used to
describe the nonstationary aging processes occurring in a suddenly quenched model colloidal liquid with
hard-sphere plus short-ranged attractive interactions, whose static structure factor and van Hove function
evolve irreversibly from the initial conditions before the quench to a final dynamically arrested state. The
comparison of our numerical results with available simulation data are highly encouraging.
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I. INTRODUCTION

The nonstationary slowly evolving dynamics of deeply
quenched fluids, referred to as aging, has been the subject of
considerable attention over the last decade �1,2�. Concen-
trated emulsions �3�, colloidal gels �4�, and aqueous clay
suspensions �5� are some examples of aging systems. In spite
of the apparent diversity of these structurally disordered and
out-of-equilibrium materials, the appearance of certain uni-
versal features in their nonequilibrium evolution suggests the
existence of an underlying common source of the observed
dynamic properties. Although this nonstationary behavior is
associated with the formation of disordered solids, including
hard materials such as polymer glasses �6�, the main features
are best exhibited by soft materials such as those above. In
particular, the study of the dynamic properties of aging col-
loidal glasses and gels is specially interesting, since the ob-
servations provided, for example, by experimental methods
such as dynamic light scattering �7–10� can sometimes be
complemented with direct visualizations at the level of indi-
vidual particles by means of digital video imaging tech-
niques �11,12�. Computer simulation experiments in well-
defined model systems have also contributed with important
complementary information about the general properties of
aging �13–15�.

From the theoretical side the study of aging has been ad-
dressed in the field of spin glasses, where a mean-field theory
has been developed within the last two decades �16�. The
models involved, however, lack a geometric structure and
hence cannot describe the spatial evolution of real colloidal
glass formers. About a decade ago Latz �17� attempted to
extend the mode coupling theory �MCT� of the ideal glass
transition �18,19� to describe the irreversible relaxation, in-
cluding aging processes, of a suddenly quenched glass form-
ing system. Similarly, De Gregorio et al. �20� discussed time-
translational invariance and the fluctuation-dissipation
theorem in the context of the description of slow dynamics in
system out of equilibrium but close to dynamical arrest. Un-
fortunately, in neither of these two theoretical efforts quanti-
tative predictions were presented that could be contrasted
with experimental or simulated results in specific model sys-
tems of structural glass formers.

For concreteness, let us focus our discussion on the con-
ceptually simplest glass-forming system, namely, a mono-

component fluid made of N identical spherical particles in a
volume V which interact through the pair potential u�r� �al-
though in the experimental realization of this idealized
model we probably have to consider a small amount of poly-
dispersity to suppress the kinetic pathway to ordered phases�.
Assume that in the absence of external fields this system is
initially prepared in an equilibrium state corresponding to a
mean density n̄�0�=N /V and a temperature T�0�, in which the
static structure factor is S�0��k�=Seq�k ;n ,T�0��. In the simplest
idealized quench experiment, at the time t=0 the temperature
of the system is instantaneously and discontinuously changed
to a value T�f�. Let us assume that along the process that
follows the quench, the density and the temperature are con-
strained to remain uniform and constant, i.e., that n̄�r , t�
= n̄�0� and T�r , t�=T�f� at any position r in the volume V and
any time t�0. The relevant question then refers to the value
of the static structure factor S�k ; t� for t�0, and to the evo-
lution of the dynamic properties of the system along this
process.

The referred dynamic properties can be described in
terms of the relaxation of the fluctuations �n�r , t� of the
local concentration n�r , t� of colloidal particles around its
bulk equilibrium value n. The average decay of �n�r , t� is
described by the two-time correlation function F�k ,� ; t�
�N−1�n�k , t+���n�−k , t� of the Fourier transform �n�k , t�
of the fluctuations �n�r , t�, whose equal-time limit is S�k ; t�
�F�k ,�=0; t�=N−1�n�k , t��n�−k , t�. We refer to the time �
as the correlation time, and the overline refers to the average
over the probability distribution of the nonequilibrium en-
semble that governs the statistical properties of �n�r , t� at the
evolution time t. This ensemble will surely coincide with an
equilibrium ensemble only in the limit t→�, provided that
no dynamic arrest condition appears along the process.

After the sudden temperature change at t=0 has occurred
the system evolves spontaneously, searching for its new ther-
modynamic equilibrium state, at which the static structure
factor should be Seq�k ;n�0� ,T�f��. If the end state, however, is
a dynamically arrested state �a glass or a gel�, the system
may never be able to reach this equilibrium state within ex-
perimental times; one then refers to the evolution time t as
the waiting or aging time �1,8,10–12�. The dependence of
S�k ; t� and F�k ,� ; t� on t characterizes the nonequilibrium
evolution of the system, whose quantitative theoretical first-
principles description has not been available until now, in
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spite of important theoretical efforts like those referred to
above.

In recent related work �21�, however, an extension was
proposed of the self-consistent generalized Langevin equa-
tion �SCGLE� theory of colloid dynamics �22–26� and dy-
namic arrest �27–34�, aimed precisely at describing this non-
equilibrium evolution of S�k ; t� and F�k ,� ; t�. This extension
was based on Onsager’s theory of thermal fluctuations
�35–39�, adequately extended �40,41� to allow for the de-
scription of memory effects. The purpose of the present pa-
per is to provide the first practical and concrete application
of such general nonequilibrium theory of colloid dynamics
by means of its use in the quantitative description of the
aging process of a model monocomponent glass-forming
liquid.

In this particular context, such nonequilibrium self-
consistent generalized Langevin equation �NE-SCGLE�
theory consists of a closed self-consistent system of equa-
tions for S�k ; t� and F�k ,� ; t�, which we numerically solve
here for a model monocomponent fluid of particles interact-
ing through the hard-sphere plus short-ranged attractive
Yukawa potential. This model system exhibits the glass-
fluid-glass reentrance predicted by the equilibrium SCGLE
theory �30� �and originally discovered by MCT �42��. Here
we discuss the isochoric quench of this fluid from an initial
equilibrium state �n�0� ,T�0�� in the reentrant fluid pocket of
the �n ,T� state space to a final temperature T�f���T�0�� in the
vicinity and below the attractive glass transition temperature
T�a��n�0�� corresponding to the density n�0�. This process
mimics the computer simulation aging experiment reported
by Foffi et al. �14� in a similar model system �hard-sphere
plus short-ranged square well�. Here we discuss our theoret-
ical predictions in reference to the observed behavior in this
simulated quench experiment.

We start this discussion by summarizing in the following
section the full NE-SCGLE theory, which does not involve
the restrictive assumption of spatial homogeneity. In the
same section this theory is simplified according to the as-
sumption that the system is constrained to remain spatially
homogeneous and isotropic. The actual solution of the result-
ing equations are reported in Sec. III The last section con-
tains a summary of the results.

II. NONEQUILIBRIUM SELF-CONSISTENT
GENERALIZED LANGEVIN

EQUATION THEORY

The previous discussion implicitly assumes that S�k ; t�
and F�k ,� ; t� adequately represent the structural and dynamic
properties of the quenched system along the irreversible
equilibration process. This assumption, which is thought to
be accurate in the absence of external fields or when the
effects of these external fields are very small, is in reality a
strong simplifying assumption when the local concentration
fluctuations do not relax within experimental times as it oc-
curs at and near dynamically arrested states. The general
nonequilibrium SCGLE theory proposed in Ref. �21�, how-
ever, does not incorporate this simplifying assumption at the
outset. Instead, it describes the statistical properties of the

instantaneous local concentration profile n�r , t� of the colloi-
dal liquid in terms of the coupled time evolution equations
for its mean value n̄�r , t� and for the covariance ��r ,r� ; t�
��n�r , t��n�r� , t� of the fluctuations �n�r , t�=n�r , t�
− n̄�r , t�. In this section we briefly review the general NE-
SCGLE theory and then particularize it to instantaneous ho-
mogeneous quench processes.

A. General NE-SCGLE theory

The referred equations for n̄�r , t� and ��r ,r� ; t� read �21�
as

� n̄�r,t�
�t

= D0 � · b�r,t�n̄�r,t� � �	�r; n̄�t�� �2.1�

and

���r,r�;t�
�t

= D0 � · n̄�r,t�b�r,t� �


� dr1E�r,r1; n̄�t����r1,r�;t�

+ D0�� · n̄�r�,t�b�r�,t���� dr1E�r�,r1; n̄�t��


��r1,r;t� − 2D0 � · n̄�r,t�b�r,t� � ��r − r�� ,

�2.2�

in which D0 is the self-diffusion coefficient of the colloidal
particles in the absence of direct interactions, 	�r ;n� is the
electrochemical potential at position r �which is a functional
of the local concentration profile n�r��, and E�r ,r� ; n̄�t�� is
the functional derivative E�r ,r� ;n�����	�r ;n� /�n�r���
evaluated at the concentration profile n�r�= n̄�r , t�. Thus, for
given D0 and 	�r ;n�, Eqs. �2.1� and �2.2� would constitute a
closed system of equations for n̄�r , t� and ��r ,r� ; t� if it were
not for the presence of the dimensionless local mobility func-
tion b�r , t�.

This mobility function b�r , t� describes the local frictional
effects of the direct �i.e., conservative� interactions between
the colloidal particles, as deviations from the value
b�r , t�=1, and can be expressed in terms of the me-
mory function of the two-time correlation function
C�2��r ,r� ; t , t����n�r , t��n�r� , t��, which we write as
C�2��r ,r+x ; t , t+���C�x ,� ;r , t� and which is the value of
the van Hove function at a spatial location r in the system
and at an evolution time t. Since the covariance is
��r ,r� ; t�=C�2��r ,r� ; t , t�=C�x ,�=0;r , t�, it can also be
written as ��x ;r , t�. Although in the development of the non-
equilibrium SCGLE theory the assumption of absolute spa-
tial homogeneity and isotropy is avoided, these spatially
varying van Hove function and covariance do depend on the
location r in space but are assumed to be approximately
isotropic within a small volume around r so that they only
depend on the magnitude �x� of the correlation vector x. Un-
der these conditions, the local covariance ���x� ;r , t� can be
written in terms of its Fourier transform ��k ;r , t� as
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���x�;r,t� =
1

�2��3� d3ke−ik·x��k;r,t� , �2.3�

so that Eq. �2.2� may be rewritten as

���k;r,t�
�t

= − 2k2D0n̄�r,t�b�r,t�E�k; n̄�r,t����k;r,t�

+ 2k2D0n̄�r,t�b�r,t� , �2.4�

where E�k ; n̄�r , t����2��−3�d3ke−ik·xE�r ,r+x ; n̄�r , t��. Simi-
larly, the local van Hove function C��x� ,� ;r , t� can also be
expressed in terms of its spatial Fourier transform as

C��x�,�;r,t� =
1

�2��3� d3ke−ik·xC�k,�;r,t� . �2.5�

Let us notice that we can also introduce the notation
C�k ,� ;r , t�= n̄�r , t�F�k ,� ;r , t�, with F�k ,� ;r , t� being the
nonequilibrium intermediate scattering function, whose ini-
tial value F�k ,�=0;r , t�=S�k ;r , t� defines the time-evolving
spatially varying static structure factor S�k ;r , t�; this more
familiar notation will be employed later on.

According to Ref. �21�, the actual calculation of the local
mobility function b�r , t� requires the solution, at each posi-
tion r and each evolution time t, of a system of equations
involving the Laplace transform �LT� of C�k ,� ;r , t� �denoted

by Ĉ�k ,z ;r , t���0
�d�e−z�C�k ,� ;r , t��, as well as the LT of its

self-component CS�k ,� ;r , t�, and of the �-dependent friction
function �
��� ;r , t�, namely,

Ĉ�k,z;r,t� =
��k;r,t�

z +
k2D0n̄�r,t��−1�k;r,t�

1 + ��k��
̂��z;r,t�

, �2.6�

ĈS�k,z;r,t� =
1

z +
k2D0

1 + ��k��
̂��z;r,t�

, �2.7�

and

�
���;r,t� =
D0

3�2��3� dkk2	��k;r,t�/n̄�r,t� − 1

��k;r,t� 
2


C�k,�;r,t�CS�k,�;r,t� . �2.8�

with ��k� being a phenomenological “interpolating function”
given by �21,28,29�

��k� =
1

1 + � k

kc
�2 , �2.9�

where kc�2� /d, with d being some form of distance of
closest approach. A simple empirical prescription is to
choose kc as kc=kmin, the position of the first minimum �be-
yond the main peak� of the static structure factor S�k ;r , t�
=��k ;r , t� / n̄�r , t�. The local mobility b�r , t� finally follows
from the solution of these equations by means of its relation

with �
̂��z ;r , t�, namely,

b�r,t� = �1 + �
̂��z = 0;r,t��−1. �2.10�

B. Instantaneous homogeneous quench

Let us now discuss the application of this general theory
to the particular conditions referring to the irreversible evo-
lution of the structure and dynamics of a system constrained
to suffer a programmed process of homogeneous compres-
sion or expansion �and/or of cooling or heating�. Under these
conditions, rather than solving Eq. �2.1� for n̄�r ; t�, we as-
sume that the system is constrained to remain spatially uni-
form, n̄�r ; t�= n̄�t�, according to a prescribed time depen-
dence n̄�t� of the uniform bulk concentration �and/or to a
prescribed uniform time-dependent temperature T�t��. In
consistency with this assumed constraint we have that the
dependence on the position r disappears from the previous
equations so that, for example, Eq. �2.4� may be rewritten as

���k;t�
�t

= − 2k2D0n̄�t�b�t�E�k;t����k;t� − E−1�k;t�� ,

�2.11�

with E�k ; t��E�k ; n̄�t�� and with

b�t� = 	1 + �
0

�

d��
���;t�
−1

, �2.12�

where �
��� ; t� is provided by the solution of the self-
consistent system in Eqs. �2.6�–�2.8� for the uniform bulk
concentration n̄�r ; t�= n̄�t�.

Among the many possible programmed protocols �n̄�t�,
T�t�� that one could devise to drive or to prepare the system,
the simplest corresponds to the idealized quasistatic process,
in which the relaxation rate ���k ; t� /�t is virtually negligible
due to a virtually instantaneous “thermalization” of ��k ; t� to
its local equilibrium value �le�k ; t��1 /E�k ; t� �21,39�. A qua-
sistatic process, however, is a rather unrealistic concept, at
least in the limit of small wave vectors, in which the relax-
ation times diverge as k−2, as seen in the example below. In
contrast, a far more interesting and fundamental protocol
corresponds to the opposite limit, in which the system, ini-
tially at an equilibrium state determined by initial values of
the control parameters, �n̄�0� ,T�0��, must adjust itself in re-
sponse to a sudden and instantaneous change of these control
parameters to new values �n̄�f� ,T�f��, according to the “pro-
gram” n̄�t�= n̄�0���−t�+ n̄�f���t� and T�t�=T�0���−t�+T�f���t�,
with ��t� being Heavyside’s step function.

Under these conditions the formal solution of Eq. �2.11�
can be written, for t�0, as

��k;t� = �0�k�e−��k�u�t� + �E�f��k��−1�1 − e−��k�u�t�� ,

�2.13�

where E�f��k�=E�k ; n̄�f� ,T�f�� is the Fourier transform of
E��r−r�� ; n̄�f� ,T�f������	�r ;n� /�n�r���n=n̄�f�,T=T�f�,

u�t� � �
0

t

b�t��dt�, �2.14�

and
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��k� � 2k2D0n̄�f�E�f��k� . �2.15�

Clearly, the presence of the time-dependent mobility b�t�
couples this formal solution with the self-consistent system
in Eqs. �2.6�–�2.8�. For the present conditions, and in terms
of the nonstationary static structure factor S�k ; t�
���k ; t� / n̄�f� and intermediate scattering function F�k ,� ; t�
�C�k ,� ; t� / n̄�f�, we may rewrite such self-consistent system
of equations as

F̂�k,z;t� =
S�k;t�

z +
k2D0S−1�k;t�

1 + ��k��
̂��z;t�

, �2.16�

F̂S�k,z;t� =
1

z +
k2D0

1 + ��k��
̂��z;t�

, �2.17�

and

�
���;t�

=
D0

3�2��3n̄�f�� dkk2	S�k;t� − 1

S�k;t� 
2

F�k,�;t�FS�k,�;t� .

�2.18�

Equations �2.12�–�2.18� constitute our general self-consistent
description of the spontaneous evolution of the structure and
dynamics of an instantaneously and homogeneously
quenched liquid.

Of course, one important aspect of this analysis refers to
the possibility that the end state of the quench process hap-
pens to be in the region of dynamically arrested states. For
the discussion of this important aspect it is useful to consider
the long-� �or small z� asymptotic stationary solutions of
Eqs. �2.16�–�2.18� above. Just like in the equilibrium
SCGLE theory �28�, these may be analyzed in terms of the
asymptotic values of these dynamic properties �the so-called
nonergodicity parameters� given by �21�

f�k;t� � lim
�→�

F�k,�;t�
S�k�

=
��k;t�S�k;t�

��k;t�S�k;t� + k2��t�
�2.19�

and

fS�k;t� � lim
�→�

FS�k,�;t� =
��k;t�

��k;t� + k2��t�
, �2.20�

where the squared localization length ��t� is the solution of

1

��t�
=

1

6�2n̄�f��
0

�

dkk4



�S�k;t� − 1�2�2�k;t�

���k;t�S�k;t� + k2��t�����k;t� + k2��t��
.

�2.21�

These equations are the nonequilibrium extension of the cor-
responding results of the equilibrium SCGLE theory, and
their derivation from Eqs. �2.16�–�2.18� follows the same
arguments as in the equilibrium case �24�.

In the following section we numerically solve Eqs.
�2.12�–�2.18� for still more specific conditions, namely, for
an isochoric quench of a model colloidal system, in which
n̄�f�= n̄�0� and Eq. �2.13� can be written in terms of the time-
evolving static structure factor S�k ; t�=��k ; t� / n̄�f� as

S�k;t� = S0�k�e−��k�u�t� + Sf
eq�k��1 − e−��k�u�t�� , �2.22�

with Sf
eq�k���n̄�f�E�f��k��−1. Let us notice that in the limit in

which the friction function �
��� ; t� vanishes, b�t�=1 and
hence u�t�= t, so that Eq. �2.22� reads

S��k;t� = S0�k�e−��k�t + Sf
eq�k��1 − e−��k�t� . �2.23�

This limiting expression describes an exponential interpola-
tion of S�k ; t� between its initial value S0�k� and its final
equilibrium value Sf

eq�k���n̄�f�E�f��k��−1. It is then important
to notice that the general solution S�k ; t� in Eq. �2.22� can be
written in terms of this particular solution as S�k ; t�
=S��k ;u�t��, with u�t� given by Eq. �2.14�. This means that a
sequence of static structure factors S��k ;un� generated by this
simple exponential interpolating formula when the time t is
given a sequence of values un, say un=n�u �with n
=0,1 ,2 , . . .�, will be identical to the sequence S�k ; tn� gener-
ated when the exact solution in Eq. �2.22� is evaluated at a
different sequence tn �n=0,1 ,2 , . . .�, provided that the times
un and tn are related by un=�0

tnb�t��dt�. This observation
greatly simplifies the mathematical analysis and the numeri-
cal method of solution of the full self-consistent theory under
the particular conditions considered here.

The solution ��t� of Eq. �2.21� provides a dynamic order
parameter in the sense that when it is infinite we can say that
at that waiting time t the system remains ergodic, whereas if
it is finite, we say that the system became dynamically ar-
rested. A practical manner to use this criterion is to first
construct a sequence of static structure factors S��k ;un� using
Eq. �2.23� for the uniform sequence un=n�u �with n
=0,1 ,2 , . . .�. Each member of this sequence is then em-
ployed as the static input to solve self-consistently Eqs.
�2.16�–�2.18�, thus evaluating, using Eq. �2.12�, a mobility
sequence b�un�. Since the sequence S��k ;un� is identical to
the sequence S�k ; tn� provided that un=�0

tnb�t��dt�, the mobil-
ity b�un� must be identical to b�tn�, and the corresponding
time sequence tn can be determined by means of the approxi-
mate recursive relation tn+1= tn+ ��u� /b�tn�. If the dynamic
arrest condition occurs along this process, i.e., if a value u�a�

exists such that ��u� �determined using S��k ;u� in Eq. �2.21��
is infinite for u�u�a� and finite for u�u�a�, then b�u�→0
when u→u�a� from below, and it is then not difficult to real-
ize that the corresponding dynamic arrest time t�a� will di-
verge and u�a�=�0

�b�t��dt�. The following numerical results
illustrate the physical implications of this singular behavior.

III. ILLUSTRATIVE APPLICATION

Let us now apply the theory just presented, to a concrete
model system, namely, a dispersion of colloidal particles in-
teracting through the hard-sphere plus attractive Yukawa pair
potential expressed, in units of the thermal energy kBT=�−1,
as
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�u�r� = 
� , r � �HS

− K
exp�− z�r/�HS − 1��

�r/�HS�
, r � �HS.� �3.1�

The state space of this system is spanned by the volume
fraction �=�n̄�HS

3 /6 and the reduced temperature T��K−1,
as illustrated in Fig. 1. The equilibrium phase diagram of this
system includes the gas and liquid disordered phases and
crystalline solid phases. Here we will describe the equilib-
rium static structure factor Seq�k ;� ,T��= �n̄Eeq�k ; n̄ ,T���−1 of
the disordered phases within the mean spherical approxima-
tion �MSA� �43�. Using this approximation and the com-
pressibility equation �44� one can determine the spinodal
curve of the gas-liquid transition by means of the condition
1 /Seq�k=0;� ,T��=0; the result is plotted in Fig. 1 for
z=20.

Using the same MSA equilibrium static structure factor
Seq�k ;� ,T�� in the equilibrium version of Eq. �2.21� we can
scan the state space �� ,T�� to determine �eq at any point
�� ,T�� �30�. In this manner one locates the dynamic arrest
transition line indicated by the solid curve of Fig. 1. The
region to the right and below this curve is thus predicted to
correspond to dynamically arrested states. This figure fo-
cuses on the high-density glass-fluid-glass reentrance region
that was first discovered using mode coupling theory �42�.
We now follow the approach introduced by Foffi et al. �14�
in a simulation experiment on a very similar model system �a
hard-sphere plus square-well fluid�. Such experiment corre-
sponds to suddenly quenching the system under isochoric
conditions from an initial state ��0 ,TI

�� located in the fluid
pocket of the reentrance �point I in Fig. 1�, to a final state

near the fluid-“attractive glass” transition line �either point F
or point F� in Fig. 1�. In the first case the end state ��0 ,TF

��
lies slightly above the transition line, whereas in the second,
the end state ��0 ,TF�

� � lies in the region of arrested states.
For this process we solve the general self-consistent sys-

tem of equations in Eqs. �2.12�–�2.18�. The specific calcula-
tions are performed along the isochore �0=0.555 with initial
temperature TI

�=0.159 and final temperature TF
� =0.0604.

Figure 2 illustrates the irreversible evolution of the static
structure factor S�k ; tw� as a sequence of snapshots corre-
sponding to five intermediate waiting times tw �from now on
denoted by tw, rather than simply by t�. We observe that the
structure, initially described by Seq�k ;�0 ,TI

��, relaxes to the
expected final value Seq�k ;�0 ,TF

�� and that this process is
faster at large wave-vectors, where it involves the appear-
ance of stronger oscillations with k and a general shift of the
maxima of S�k ; t� to larger wave-vectors. To a large extent
these features can be understood in terms even of the simple
interpolating expression in Eq. �2.23�.

The corresponding adjustment of the main peak of S�k ; tw�
from its initial value Seq�kmax;�0 ,TI

�� to its final value
Seq�kmax;�0 ,TF

����Seq�kmax;�0 ,TI
��� occurs, however, noto-

riously more slowly than at large wave-vectors and in an
apparently nonmonotonic manner, as illustrated in the inset
of Fig. 2, which zooms on the evolution of the main peak. As
observed there, as the system evolves, the maximum of
S�k ; tw� moves to the right while decreasing in height to a
value smaller than Seq�kmax;�0 ,TF

��, bouncing back at later
times to reach this final value. The origin of the predicted
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FIG. 1. �Color online� State space �� ,T�� of the hard-sphere
plus attractive Yukawa model system �z=20�. The dotted line is the
spinodal curve and the solid line is the dynamic arrest line calcu-
lated using Eq. �2.21� within the mean spherical approximation
�MSA� for the equilibrium static structure factor Seq�k ;� ,T��. We
consider an instantaneous quench process at t=0 from the ergodic
initial state I to the final state F near but slightly above the attractive
glass “branch” of the dynamic arrest line. We also consider a second
process, now to the point F� below this dynamic arrest line but still
above the spinodal curve.
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FIG. 2. �Color online� Nonequilibrium evolution of the static
structure factor S�k , tw�. The system, initially equilibrated at
��0 ,TI

��= �0.555,0.159�, with S�k ; t=0�=Seq�k ;�0 ,TI
�� ��black� dot-

ted curve�, is instantaneously quenched at tw=0 to the final point
��0 ,TF

��= �0.555,0.0604�. The static structure factor then evolves
continuously along a sequence of nonequilibrium values ��red�
point-dashed lines� illustrated by the snapshots corresponding to
tw / t0=3.2, 60.87, 174.29, 945.39, 2023.54, and 4858.84, with t0

���2 /D0�. Since the point F lies outside the dynamic arrest region,
S�k , tw� eventually attains its final equilibrium value S�k ; tw=��
=Seq�k ;�0 ,TF

�� ��blue� dashed curve�. The main figure shows the
resulting relaxation process in a wide k-range and the inset zooms
on the evolution of the main peak of S�k , tw�.
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nonmonotonic behavior can also be understood on the basis
of the simple interpolation expression in Eq. �2.23�, which
implies that S�k ; t� will not change with waiting time for the
wave vectors k� at which the initial and the final static struc-
ture factors are already identical, Seq�k� ;�0 ,TI

��
=Seq�k� ;�0 ,TF

��. It is then not difficult to see that if the con-
dition kmax

�I� �k��kmax
�F� occurs, as it happens in our example,

we shall observe this nonmonotonic effect.
A more interesting effect, which is perceptible in Fig. 2,

but which is illustrated in more detail in Fig. 3, is the evo-
lution of S�k ; tw� at smaller wave vectors. This refers to the
emergence of a nonequilibrium low-k peak that indicates the
appearance of spatial heterogeneities of average size �1�tw�
�2� /k1�tw�, with k1 being the position of this emerging
low-k maximum. Figure 3�a� provides a zoom on this effect
in the case of the slightly deeper quench, now to the final
state point F� in Fig. 1, with temperature TF�

� =0.0588
slightly below the dynamic arrest line. These heterogeneities
may be associated with the appearance of voids whose aver-
age size and importance increase with waiting time, as sug-
gested by the increasing height of the peak and by its shift to
smaller wave vectors observed as the system evolves. The
emergence of this peak is associated with the vicinity of the
gas-liquid spinodal region. In fact, it has the same origin as
the low-k peak that characterizes the process of early spin-
odal decomposition �45�, even though in our case the final
state ��0 ,TF�

� � lies outside the spinodal region.
As said above, this phenomenon is already observed in

the shallower quench of Fig. 2. In that case, however, al-
though the system slows down considerably, the final struc-
ture of the irreversible evolution of S�k ; tw� is still the ex-
pected final equilibrium static structure factor Seq�k ;�0 ,TF�,
i.e., limtw→� S�k ; tw�=Seq�k ;�0 ,TF� and the position k1�tw� of
this low-k peak decreases indefinitely. In contrast with that
scenario, in the deeper quench illustrated in Fig. 3, the final
structure of the system is no longer Seq�k ;�0 ,TF��; instead,
the asymptotic long-tw limit of S�k ; tw� is given by S�a��k�
�S��k ;u�a��, where u�a� is the value of u at which the dy-
namic arrest condition is satisfied. This value is determined

using the structure factor S��k ;u� of Eq. �2.23� as the struc-
tural input in Eq. �2.21�, as discussed at the end of Sec. II. In
Fig. 3�a� we can compare the nonequilibrium arrested struc-
ture factor S�a��k� with the equilibrium structure
Seq�k ;�0 ,TF� that would have been attained if no dynamic
arrest condition had appeared along the equilibration process
of S�k ; tw�.

In the same figure we also illustrate the evolution of
S�k ; tw� toward its asymptotic limit S�a��k� with a series of
snapshots corresponding to a set of increasing waiting times.
The most interesting feature revealed by these snapshots is
the existence of an early evolution regime, in which S�k ; tw�
evolves rather quickly toward the close neighborhood of
S�a��k�. As illustrated by these snapshots, this occurs within a
finite waiting time tw

�c��1500t0. This early regime is fol-
lowed by an asymptotic long-tw regime, in which the evolu-
tion of S�k ; tw� to actually reach the exact asymptotic value
S�a��k� becomes extremely slow and completely impercep-
tible in the scale of the figure.

This is illustrated in the inset of Fig. 3�a�, where we plot
the evolution of the position k1�tw� of the low-k peak of
S�k ; tw� for various waiting times between the last two snap-
shots of the main figure �i.e., 1265t0� tw�1522t0�. We no-
tice that in this regime the last few data for k1�tw� may be
fitted approximately by a power law k1�tw��10.22

 �tw�−1/5. In fact, the crossover waiting time tw

�c� can be es-
timated more accurately by the condition 10.22
 �tw

�c��−1/5

=k1
�a�, with k1

�a�=2.34 being the asymptotic value of k1�tw�
corresponding to S�a��k�. This yields tw

�c��1589t0. The slow
evolution regime tw� tw

�c�, corresponding to asymptotically
long times, cannot be observed, by definition, in the struc-
tural evolution illustrated in Fig. 3. It can, however, be ob-
served in the evolution of the dynamic properties, as we
discuss below.

Let us emphasize the difference between the two quench
processes just discussed �i.e., those involving the final state F
or F��. For this, Fig. 3�b� plots the evolution of S�k ; tw� for
the latter process in the same manner as Fig. 2 does for the
former. Let us point out that the quench simulated by Foffi et
al. �14� corresponds to the conditions illustrated in Fig. 3,
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FIG. 3. �Color online� Nonequilibrium evolution of the static structure factor S�k , tw� for the deeper quench to the final state point F�. The
system, initially equilibrated at ��0 ,TI

��= �0.555,0.159�, with S�k ; t=0�=Seq�k ;�0 ,TI
�� ��black� dotted curve�, is instantaneously quenched at

tw=0 to the final point �� ,TF��= �0.555,0.0588� inside the dynamic arrest region. The static structure factor then evolves continuously along
a sequence of nonequilibrium values ��red� point-dashed lines� illustrated by the snapshots corresponding to tw / t0=0.0, 1.23, 3.84, 140, 490,
975, 1265, and 1522 ��tw

�c� / t0�. Panel �a� focuses on the low-k peak of S�k , tw�, and its inset shows the dependence of the position k1�tw� of
this low-k peak on the waiting time tw �empty circles�, with the solid line being the fit of the last few points with k1�tw���tw�−� and �
� 1

5 . Panel �b� shows the behavior in a larger k regime, similar to Fig. 2, with its inset zooming on the evolution of the main peak.
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i.e., to the process ending in the state F� just below the
dynamic arrest line. We recall that in the process illustrated
in Fig. 2 nothing prevents the evolution of S�k ; tw� from
reaching the final structure factor Seq�k ;�0 ,TF�, and this
leads to the upturn of the peak illustrated in the inset of that
figure. In contrast, as observed in the inset of Fig. 3�b�, the
main difference is that now the main peak of S�k ; tw� de-
creases but seems to stop evolving when tw reaches tw

�c�, and
this happens to occur before the upturn of the peak toward
Seq�k ;�0 ,TF�� has a chance to develop. This is in agreement
with what is observed in the simulated quench of Foffi et al.,
in which the main peak only decreases without exhibiting
any upturn. On the other hand, our results in the inset of Fig.
3�b� also predict that the peak shifts slightly to the right, but
in the simulation results such a shift is not appreciable.

Similarly, in the report of the simulated quench of Foffi et
al. �14� no reference is made to the low-k peak predicted by
our theory according to the illustrative results in Fig. 3�a�.
Thus, at this stage we cannot make a definitive statement on
the level of a fine quantitative comparison between our the-
oretical predictions and the simulation results for the evolu-
tion of S�k ; tw�, partially because of the differences in the
model and in the conditions �volume fraction, for example�
in which the quench was performed. While it is clearly de-
sirable to carry out a systematic comparison on identical con-
ditions, the agreement with important features observed in
the simulation experiments is encouraging.

Let us conclude this exercise by showing the irreversible
evolution of the � dependence of the intermediate scattering
function F�k ,� ; tw� for the quenching process I→F�. This is
presented in inset �a� of Fig. 4, where the correlator
f�k ,� ; tw��F�k ,� ; tw� /S�k ; tw� is plotted as a function of the
correlation time � at representative waiting times correspond-

ing to the snapshots of S�k ; tw� of Fig. 3, namely, tw / t0=0.0,
1.23, 3.84, 140, 490, 975, 1265, and 1522 ��tw

�c� / t0�. These
results illustrate the fact that the decay of the temporal cor-
relation of the fluctuations slows down notoriously as the
system ages, developing a two-step relaxation: the initial �
relaxation to an increasingly better defined plateau, followed
by the � relaxation from this plateau. This is a typical be-
havior observed in the simulation and experimental studies
of aging �1,8,10–15�. Another feature associated with aging
is the superposition of the alpha relaxation at different wait-
ing times on a single master curve well-fitted by a stretched
exponential function f�k ,� ; tw��A�k ; tw�exp�−�� /�����. Our
theoretical results also exhibit this scaling property, as dem-
onstrated in the main panel of Fig. 4. The exponent � is
independent of tw �although it may depend on k�. For the
case illustrated in the figure we find ��0.9. The
�-relaxation time �� does depend on k and on tw, and the
values of �� corresponding to each waiting time tw are plot-
ted in the inset �b� of the same figure. At short times, these
values are well fitted by a power law ��� tw

z characterized by
the exponent z�0.7. In the simulation experiment of Foffi et
al. �14� this scaling of the correlator is not fully apparent,
although “in a crude tentative of data scaling,” the authors
report an exponent z�0.38. At this point we should mention
that, beyond detailed quantitative issues, the general pre-
dicted scenario illustrated in Fig. 4 is completely similar to
that reported in the simulated experiment of Foffi et al. �14�,
which, in its turn, was found to be similar to that observed
experimentally by Pham et al. �8�.

Regarding the low-k peak predicted by our theory �see
Fig. 3�, let us notice that, although the final temperature of
the quench is still above the spinodal temperature for this
isochore, the asymptotic approach of S�k ; tw� to the nonequi-
librium structure S�a��k� is strongly suggestive of some form
of arrested spinodal decomposition. In fact, preliminary cal-
culations using our theory indicate that the scenario de-
scribed in the main panel and the inset of our Fig. 3�a�
above, regarding this low-k peak and the phenomenon of
arrested spinodal decomposition, is also predicted to occur at
lower concentrations, in qualitative agreement with experi-
mental observations �see Figs. 4�b� and 4�c� of Lu et al.
�12��. Further comparisons and analysis lie, however, outside
the scope of this illustrative presentation of the possible ap-
plications of the nonequilibrium SCGLE theory to the de-
scription of dynamic arrest phenomena, including aging, in
instantaneously quenched uniform systems.

IV. CONCLUDING REMARKS

In this manner, in Sec. III we have illustrated with a num-
ber of quantitative predictions for a specific model system
�involving hard sphere plus short-ranged attractive interac-
tions� the predictive nature of a generic theory of the non-
equilibrium irreversible evolution of the state of a homoge-
neous system subjected to a homogeneous and instantaneous
quenching process. This theory is summarized by the self-
consistent system of equations in Eqs. �2.12�–�2.18�. The
time-evolving state of the system was described in terms of
the static structure factor S�k ; tw� and of the � dependence of
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FIG. 4. �Color online� Theoretical predictions for the depen-
dence of the intermediate scattering function F�k ,� ; tw� on correla-
tion time � for the quench to the final state F� corresponding to the
waiting times tw / t0=0.0, 1.23, 3.84, 140, 490, 975, 1265, and 1522
��tw

�c� / t0�. In inset �a� and in the main figure the correlation time is
scaled, respectively, by t0 and by the relaxation time �� of the
stretched exponential fit of the final relaxation of F�k ,� ; tw�. Inset
�b� plots �� as a function of waiting time, with the line being the fit
��� tw

0.7 �both times in units of t0�.
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the intermediate scattering function F�k ,� ; tw� as a function
of the waiting time tw after the quench.

The specific process discussed corresponds to the sudden
isochoric quench from an initial fluid state ��0 ,TI

�� to a final
state near the “attractive glass” transition. We observed that
if the final state is also ergodic, the structure relaxes to its
value equilibrium value Seq�k ;�0 ,TF

��, whereas if the final
state is in the dynamically arrested state, the structure satu-
rates asymptotically to a nonequilibrium value
S�a��k ;�0 ,TF

��. In the latter case, S�k ; tw� develops a nonequi-
librium low-k peak that indicates the appearance of spatial
heterogeneities of average size �1�tw��2� /k1�tw�, with k1
being the position of this emerging low-k maximum. The
emergence of this peak is associated with the vicinity of the
gas-liquid spinodal region. Regarding the evolution of the
dynamics with aging time, the theory predicts that the inter-
mediate scattering function F�k ,� ; tw� develops a two-step
relaxations as the system ages. The theory also predicts the
superposition of the alpha relaxation at different waiting
times on a single master curve well-fitted by a stretched ex-
ponential function, as observed in the simulation and experi-
mental studies of aging.

Let us stress that the theory proposed in Sec. II, however,
is not limited to instantaneous quench processes; in principle
it is easily extendable to other quench “programs” by going

one step back and use Eq. �2.11� instead of Eq. �2.13�. In this
manner, a number of relevant questions could readily be ad-
dressed, such as the dependence of the aging of S�k ; tw� and
F�k ,� ; tw� on the quench protocol. Furthermore, in reality the
theory of irreversible relaxation in colloidal dispersions de-
veloped in Ref. �21�, and summarized in Sec. II, is not even
limited to spatially homogeneous nonequilibrium states. The
present work, however, was meant to provide the first explor-
atory application of this general theory in the simplest pos-
sible conditions. The specific results reported here suggest
that this theory provides a qualitatively and quantitatively
sound basis for the first-principles theoretical discussion of
the complex nonequilibrium phenomena associated with the
aging of structural glass-forming colloidal systems.
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