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The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous
matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two
components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that
a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that
the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which
connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid
from which it is prepared. Crucial simplifications result for the computation of important structural quantities,
both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the

field of dynamics in confinement or in strongly asymmetric mixtures are suggested.
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I. INTRODUCTION

The physics of fluids under nanoscale confinement is a
topic of great interest from a fundamental, applied, and in-
terdisciplinary point of view at once (see [1-3] for reviews).
This is, however, a rather difficult one for theorists. Indeed,
since many porous solids are structurally disordered, one is
usually faced with a complex interplay of finite-size effects,
adsorption phenomena, topology, and randomness, which is
not easily captured with analytically or numerically tractable
models.

In the past few years, a widely used class of models for
theoretical and computational studies of fluids adsorbed in
disordered porous media has been one in which the fluid
molecules evolve in a statistically homogeneous random ar-
ray of particles frozen in a disordered configuration sampled
from a prescribed probability distribution. Recent works in-
clude investigations of the nonequilibrium phenomena in the
adsorption or desorption processes [4-7], of the critical be-
havior at fluid-fluid transitions [8—12], and of the glassy dy-
namics in confinement [13-24].

The first elaborate theoretical treatment of this type of
systems has been derived by Madden and Glandt [25] for the
model of the so-called “quenched-annealed” (QA) binary
mixture. In this model, the probability distribution of the
porous matrix is chosen as the equilibrium distribution of
some simple fluid system, so that the solid samples can be
thought of as the results of instantaneous thermal quenches
of this original equilibrium system, hence the denomination
“quenched” for the matrix component. Then the fluid (the
“annealed” component) equilibrates in the random potential-
energy landscape created by the frozen matrix particles.
Thanks to the property of statistical homogeneity of the
solid, Madden and Glandt have demonstrated that the QA
mixture can be studied with great ease via simple and direct
extensions of standard liquid-state theoretical methods. In
their pioneering and subsequent works [25-28], they used
diagrammatic techniques to investigate the distribution func-
tions and thermodynamic properties of the system. Later,
Stell and co-workers rederived, extended, and, in some cases,
corrected these results with the help of the replica trick
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[29-32]. Interesting developments in the framework of the
density-functional theory have been reported as well
[33-36].

Following this breakthrough, other prescriptions have
been put forward for the preparation of the disordered porous
matrix, resulting in a variety of models. In a depleted system
[37,38], the matrix is obtained by quenching configurations
of a one-component fluid and by removing at random a frac-
tion of its particles. Strategies for a correlated depletion step
have recently been suggested [39,40]. In a templated system
[41-44], the porous medium is produced by freezing con-
figurations of a binary mixture and by removing one of its
components, which acts as a template for the remaining one.
In both models, the probability distribution of the solid can
be explicitly and easily related to the equilibrium distribution
of an underlying simple fluid system, as in the QA mixture.
This need not be the case. Indeed, for many aspects of the
formalism, it has been shown that it is enough to know the
structure of the solid, typically at the pair level, instead of its
full statistics [27,45]. This has allowed theoretical investiga-
tions of fluids confined in realistic porous media generated
through out-of-equilibrium processes, such as the diffusion-
limited cluster-cluster aggregation process [46].

In all the above examples, the preparation of the matrix
and thus its statistical properties are independent of the fluid
that will be imbibed in it. This looks like the most reasonable
way to proceed since this actually reproduces the usual ex-
perimental situation. However, a rather popular model in
computer simulation studies of confined fluids does not dis-
play this feature [18,19,47-52]. This model is the randomly
pinned (RP) system, which is considered in the present paper
with one of its natural generalizations. Operationally, it can
be described as follows. While exploring the configuration
space of an equilibrium bulk fluid system, snapshots are se-
lected at random times, in which a fraction of the particles is
chosen randomly and pinned down, thus generating samples
of rigid disordered matrices. The remaining unpinned par-
ticles then become the confined fluid phase which evolves
under the influence of the same interactions as in the original
bulk system. Note that a very similar setup can be realized
experimentally in two dimensions by squeezing a binary col-
loidal mixture between two glass plates [53,54].
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It will be shown in the following that the RP model is
actually a special case of a templated system. As such, its
core physics does not display any fundamental difference
compared to any other type of fluid-matrix model. However,
in this specific setup, it is also clear that the fluid and matrix
properties are unusually and irremediably entangled. In fact,
since the porous matrix is prepared in the presence of the
fluid, there is a very peculiar complementarity between the
mobile and frozen phases, from which we will show that
nontrivial configurational properties emerge which make the
RP model worth special attention. Furthermore, among the
different particle-based models of disordered porous media,
the RP system is unique in allowing of an interpretation as a
limiting case of an equilibrated binary mixture, whereby the
mass of the pinned particles is sent to infinity (for the New-
tonian dynamics) or their free-diffusion coefficient to zero
(for the Brownian dynamics) [47-49,52]. Its study is thus
relevant for the understanding of the dynamics of mixtures
with a strong dynamical asymmetry, in which it represents an
asymptote.

One of the properties that will be established in the
present paper has already been observed in the above-cited
computer simulation studies, namely, that the pair distribu-
tion functions of the bulk system on which the RP model is
based are preserved after the pinning process [18,47,48,50].
Up to now and depending on the authors, however, it was
never clear whether this finding was reflecting an exact prop-
erty of the system or was just a good approximation. The
issue is settled here in favor of the first interpretation. In
addition, it will be shown how other distribution functions,
which are characteristic of systems with quenched disorder
and usually quite difficult to compute efficiently, should be
easily accessible in the very special case of the RP model.

The paper is organized as follows. In Sec. II, the RP
model and a useful generalization are described with their
defining probability distributions. In Sec. III, configurational
identities are derived, which relate different types of aver-
ages. They are the main results of this work, whose possible
applications in computer simulation studies are discussed.
Their consequences for the structure at the pair level and
their implications for integral equation theories are consid-
ered in Sec. IV, while a dynamical point of view is developed
in Sec. V. Section VI is devoted to concluding remarks.

II. MODELS AND PROBABILITY DISTRIBUTIONS

In this section, the RP model is defined and its essential
statistical properties are derived. To achieve this goal, we
proceed in two steps. First, a formal link is established be-
tween the RP and templated systems, which leads to a natural
generalization of the problem. Second, the relevant probabil-
ity distributions are provided in this extended framework.

The simplest version of the RP model, which is sufficient
to illustrate the main properties of this type of systems, de-
rives from a one-component bulk fluid through a random
pinning process, as sketched in Fig. 1 [55]. More specifically,
for each configuration of the fluid which occurs with a prob-
ability distribution corresponding to a prescribed statistical
ensemble, a fraction x of its particles is randomly chosen and
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FIG. 1. Simple schematics of the fluid-matrix models studied in
this work. In all panels, the immobile particles are represented in
black and the mobile ones in white, with arrows symbolizing their
movement. (a) Randomly pinned system. In a precursor one-
component fluid (left panel), a predefined fraction of the particles is
chosen at random in an instantaneous configuration and pinned
down to form the matrix (middle panel, the pinning fraction is x
=1/3), in which the remaining particles continue their motion (right
panel). (b) Partly pinned system. Starting with an equilibrated bi-
nary mixture (left panel), one component is pinned down in an
instantaneous configuration to form the matrix (middle panel), in
which the other component continues its movement (right panel).

pinned down to form a disordered porous matrix, while the
complementary 1—x fraction remains mobile and provides
the confined fluid. Different ensembles can be considered,
which are all equivalent in the thermodynamic limit [32]. In
existing computer simulation studies [18,19,47-52], both the
fluid and the matrix have always been treated in the canoni-
cal ensemble, i.e., with no fluctuations in their particle num-
bers and thus in the pinning fraction. Here, we find more
convenient to resort to a grand-canonical description in
which, in particular, the pinning fraction is allowed to fluc-
tuate around its mean value.

Accordingly, we start with a one-component bulk fluid in
a volume V at temperature T (as usual, we define B=1/kzT)
and activity z. From well-known statistical mechanics [56],
the configurational probability density of finding this system
with N particles located at (r,r,,...,ry)=r"is

: (1)

where Vi (N,r") denotes the potential energy of the fluid.
The partition function By, is simply

N
N BVour )

Ebulk = TrT7 (2)

where the shorthand notation for the trace operator Tr---
=317 fdr- -+ is used.

During the pinning process, for every configuration of the
fluid, each particle in the system might be pinned down with
probability x or left mobile with probability 1—x. It results
that the joint probability density of generating a matrix with
N,, immobile particles located at (q;,q,....qy,) =q"m
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while N, unpinned particles are located at (s;,s;,...,sy)
=sM at the time of the pinning process, with N,,+N,=N, is

N_ N,
ZNm+Nthm(l __x)NIe_BVbulk(Nm"'qu m,st)

—
EpuikNm! V!

Poue(Npns qusN tsSNt) =

b}

3)

which is basically Eq. (1) modified by a combinatorial factor
due to the random pinning process. For clarity, different no-
tations are used for the locations of the pinned and unpinned
particles, and, in anticipation of the coming interpretation,
the subscripts m and t for “matrix” and “template,” respec-
tively, have been introduced. The probability density of the
matrix configurations immediately follows by tracing out the
unpinned particles,

Pm(Nm, qu) = Trt 7Dmt(]vm’ qu’N[’ SN‘) . (4)

This is exactly what would be obtained for a depleted system
[37,38]. This is not surprising since it is rather intuitive that
a RP system is equivalent to a depleted system in which the
depleted particles are reinjected as the confined fluid.

A similar equivalence can be established with a templated
system [41-44]. Indeed, thanks to the binomial identity,
Epul can be rewritten as

N N,
ZNm+NI_me(1 _x)Nte_ﬁVbu]k(Nm+Ntvq m,s™)

N, IN,!

Ebuik = Tryy Tr,

(5)

Poe(Npm-qVm, N, s™) is then easily recognized as the grand-
canonical configurational probability density of an ideal bi-
nary mixture, with activities z,,=zx and z=z(1—x) for the
components m and t, respectively, and P,,(N,,,q"m) as the
probability distribution of the templated matrices that can be
generated from this ideal mixture, components m and t being
the matrix and template components, respectively. Note that
Viuuk appears unchanged because the potential energy of an
ideal binary mixture is, by definition, independent of its com-
position and thus equal to that of any one of its components
alone. Therefore, a RP system with a pinning fraction x is
equivalent to a templated system based on an ideal binary
mixture with a matrix number fraction x, in which the tem-
plate particles are reinjected as the mobile phase.

An immediate generalization of the problem follows from
this equivalence by relaxing the restriction to ideal mixtures
(see Fig. 1). We call the corresponding extended class of
models the partly pinned (PP) systems, which might be stud-
ied generically and only specialized afterward to deal with
the RP model. Thus, instead of Egs. (3) and (5), we shall
consider the generic expressions for templated systems, i.e.,

Pml(Nm» quva SN‘)

VN1 BV i Vi €0 +V i (N g N804V (Ns™0)
m_“t

= (6)

—
EpuVm !Ny

for the grand-canonical configurational probability distribu-
tion of the bulk matrix-template system and for the joint
probability density of generating a matrix with N, particles
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located at q"m while N, template particles are located at s™,
with
2NN =PV i (Vo @)V (N g N 5™ + V(N 5M0)

m

N, IN,!

Ebuik = Tryy Tr,

)

for the normalizing partition sum. Equation (4) still generates
the matrix probability distribution. In the above equations, z,
and z, are the activities of the matrix and template compo-
nents in the bulk binary mixture, and V,,(N,.q"m),
Vet NV @Vm N, sM), and Vi (N,,s™) are the matrix-matrix,
matrix-template, and template-template contributions to the
potential energy of the mixture, respectively.

So far, only probabilities relative to the matrix and its
preparation process have been considered. We now turn to
the confined fluid statistics. As mentioned above, the con-
fined fluid is assumed to be in grand-canonical equilibrium in
the presence of the porous matrix and, by construction of the
model, to inherit its properties from the template. Thus, its
activity zy (the subscript f is used for properties of the con-
fined fluid) is taken equal to the template activity z, and, for
a particular realization of the matrix with N, particles lo-

cated at ¢"m, its potential energy is chosen as
Vit N s @¥m, N, V) + Vi (N, vV1) when N; fluid particles lo-
cated at (r;,rs,... ,er)Eer are present in the system. It

follows that the probability density of such a configuration,
which depends parametrically on the matrix configuration
(Nm’qu)» iS

Mo BVinNin " NV +V (Npr )]
t

H

P(N’erN L] Nm)= f—

(8)
with the confined fluid partition function

Nt =LV (No " N )+ Vi (N )

Ef(jvm’ qu) = Trf (9)

N¢!
Combining Egs. (6) and (8), a very simple equality can be
derived,

Pmt(Nm’ qu’Nla SNt),Pf(Nf’ erle’ qu)
= mt(Nm’qu7Nf’er)Pf(NtvSNt|Nm’qu)’ (10)

which reflects the very peculiar symmetries of the system

under study and will play a crucial role in the following.
Armed with these results, we might now investigate the

configurational properties of the RP and PP systems.

III. CONFIGURATIONAL IDENTITIES

Dealing with quenched-disordered fluid-matrix systems,
two types of configurational averages have to be considered
when computing their properties [25,27]. The first one is the
ordinary thermal average denoted by (), taken for a given
realization (N,,,q"m) of the matrix with the probability den-
sity Pi(N;,rVt|N,,,q"m). The second one is the disorder av-

erage over the matrix realizations, denoted by - - -, to be taken
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with the probability density P,,(N,,,q"m) after the thermal
average. We shall not dwell on subtleties of the physics of
quenched-disordered systems, but it might be worth recalling
that this average over disorder is equivalent to an average
over macroscopic subparts of a macroscopic system for ad-
ditive quantities and to a volume average over a macroscopic
sample for locally defined quantities [57].

These two types of averages might be combined in many
different ways. For instance, computations of free-energy
differences typically involve expressions of the form In{A).
Here, we shall concentrate on two specific examples for
which simple results can be derived. They correspond to
double averages (A) and to products of the form (A)B).
Such quantities are often combined to generate correlation
functions characterizing the two physically distinct types of
fluctuations present in disordered systems. Thus, the typical
thermal fluctuations are quantified by the so-called connected
averages of the form (AB)—(A){B), while the disorder-
induced fluctuations of thermal quantities are measured by
the so-called disconnected averages defined as (A)B)
—(A)B). The distinction between these two types of correla-
tion functions is an essential feature of the physics of disor-
dered systems, whose significance is, for instance, stressed
by the fact that the thermodynamic susceptibilities, such as
the isothermal compressibility [28,32], are always expressed
as connected averages.

In order to shorten the equations in this rather formal
section, a condensed vector notation will be used. Thus, we
define m=(N,,,q"m), t=(N,,s™), and f=(N;,r"). With
these definitions, Eq. (10) now reads

Pont(m, ) Py(f|m) = Py (m, £) Py(t{m). (11)

Generically, a configurational variable for a quenched-
disordered fluid-matrix system is a function A(x;m,f) of the
matrix and fluid particle numbers and coordinates, possibly
with other variables (such as space variables when dealing
with n-particle densities) collectively denoted by x. Its ther-
mal average for a given matrix realization is defined as

(A(x;m,f)) = Tr; Pi(flm)A(x;m,f), (12)

so that its double average after tracing out the matrix vari-
ables reads

(A(x;m,f)) = Tr,, Pp,(m)Tr; Pe(fim)A(x;m,f). (13)

Specializing to the PP systems and introducing an explicit
reference to the original matrix-template mixture, this can be
rewritten as

(A(x;m,f)) = Tr,, Tr, Try Pp(m, t) Pe(fim)A(x;m, f),
(14)
which, thanks to Eq. (11), is transformed into
(A(x;m,f)) = Try, Tr, Try Po(m, ) P(tjm)A(x;m,f),
(15)

eventually leading to
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(A(x;m,f)) = Tr,, Tr; P, (m,f)A(x;m,f) (16)

since Tr, Py(t|m)=1 appears factorized in Eq. (15).

The right-hand side of Eq. (16) is immediately recognized
as a thermal average for the bulk matrix-template mixture,
which will be denoted by (- - ).k So, the first sought-for
configurational identity reads

(A(x;m,£)) = (A(x;m, £) . (17)

That is, the double-averaged configurational properties of a
PP system coincide with the corresponding quantities in the
bulk fluid on which it is based [58]. This, in particular, ap-
plies to the n-particle densities and distribution functions and
explains past observations in computer simulation studies
[18,47,43,50].

There are different possible ways of taking advantage of
this result in computer simulation studies. An immediate idea
is that one can completely avoid the computation of double
averages for the PP fluid-matrix systems. Instead, the corre-
sponding calculations can be performed on the bulk fluid,
which in any case has to be simulated in order to generate the
porous samples and for which the problem is conceptually
simpler (only one type of average is required and it is an
ordinary thermal average) and the sampling of the configu-
ration space is often more efficient, thanks to faster dynamics
[18,47,48,50-52]. Another option is to use the computation
of double averages as a means to calibrate the parameters of
the simulation study. Indeed, the above identity is not ex-
pected to hold on a sample-by-sample basis. It becomes valid
only after the disorder average is performed. Therefore, one
can use the comparison between double averages and high
quality data for the bulk as a guide to estimate the minimal
number of matrix realizations that is required in order to
achieve a satisfactory convergence of the disorder averaging
procedure.

In the case of two configurational variables A(x;m,f) and
B(y;m,f), the typical value of the product of their thermal
averages is defined as

(A(x;m,£))}B(y;m,f')) = Tr,, Pp,(m)Tr; Py(fim)A(x;m,f)
XTr{ P(f'[m)B(y;m.f'),  (18)
where Try simply represents the trace over primed fluid vari-

ables. Through Eq. (4), this might be rewritten for a PP sys-
tem as

(A(x;m,f))(B(y;m,f")) = Tr,, Tr, T Tr{ Py (m, t)P(flm)
XA(x;m, ) P(f' |/m)B(y;m,f’).
(19)

Thanks to Eq. (11), one can exchange the variables t and f’
between P, (m,t) and Py(f'|m) (one could choose to ex-
change t and f instead, but this would simply amount to an
exchange of A and B which play symmetric roles in the
original problem), then perform the trace Tr, which reduces
to a normalization condition as above. It remains
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(A(x;m,£))(B(y;m,f")) = Tr,, Tr; Tr; Py, (m,f')
X Py(flm)A(x;m,f)B(y;m,f"),
(20)

whose meaning is illuminated by a simple change of dummy
variables leading to

<A(X’maf)><B(y’m’f,)> = TI’m Trl Trf Pml(mat),])f(ﬂm)
XA(x;m,f)B(y;m,t). (21)

The right-hand side of the latter equation takes the form of a
double average, but now with a modified disorder average
involving the matrix-template probability distribution
Pui(m,t), which will be denoted by ---" in the following.
Such a modification is very natural if one includes the tem-
plate variables (N,,s™) in the set of configurational param-
eters describing the system and accordingly deals with con-
figurational variables of the form A(x;m,t,f). Strictly
speaking, this extension is not required by the physics of the
system, which can be discussed uniquely in terms of fluid
and matrix parameters [27], in which case, as it should be,
the modified disorder averaging procedure does not change
anything, as attested by identities such as

(A(x;m,f))" =(A(x;m,f)). (22)

However, the consideration of template degrees of freedom
offers a very pictorial way to capture how the matrix-
template and template-template correlations imprinted in the
porous solid during its preparation are transferred to the
fluid. It can also lead to important technical simplifications in
formal developments. One example based on the interpreta-
tion of Eq. (21) will follow. Another one is provided by the
integral equation theory of the generic templated systems
[41-44], where the introduction of total and direct correla-
tion functions involving the template leads to equations that
preserve standard diagrammatic prescriptions (no nodal
points in direct correlation functions), at variance with Mad-
den’s more compact formalism [27].

Coming back to Eq. (21), the second sought-for configu-
rational identity thus reads

(A(x;m,f)}B(y;m,f") =(A(x;m,f)B(y;m,t))", (23)

where, since the matrix and template variables are static
quantities, B(y;m,t) can be placed inside or outside the ther-
mal average. So, in a PP system, the disorder-averaged prod-
uct of two thermal averages coincides with the modified
double-averaged product of a fluid-matrix configurational
variable with a template-matrix function. Interestingly, this
result can be formulated in terms of nonequilibrium quanti-
ties as well. Indeed, since the fluid and the template compo-
nents are essentially identical, the template coordinates at the
time of preparation of the matrix can be considered as initial
conditions for an ulterior fluid dynamics inside the matrix.
So, the right-hand side of Eq. (23) can be interpreted as the
correlation of a thermal average with a function of these
initial conditions.
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The availability of Eq. (23) represents a major simplifica-
tion for computational studies of PP systems compared to
other particle-based models of disordered porous media. In-
deed, the modified double average on its right-hand side
should be no more difficult to compute than the standard
double average on fluid and matrix configurations met in all
this family of systems. The only additional price to pay is to
keep track of the positions occupied by the template particles
at the moment of the matrix production. Thus, through Eq.
(23), quantities of the form (A){B), which are required to
compute the physically important connected correlations, are
made numerically accessible via a simple and controlled pro-
cedure.

The relevance of this result is best illustrated through an
example, which is the computation of the two-point correla-
tion function,

g(re,r’) = (e D) (e ), (24)

where ﬁ%l)(r;f) is the microscopic fluid density operator

Ny
ﬁgl)(r;f) => 8- r;). (25)
i=1

For a generic fluid-matrix system, one typically has to cal-
culate (p\"(r;f)) on a grid for each matrix realization and to
compute the autocorrelations as sums over the grid points
before disorder averaging [59]. Unfortunately, the outcome
of this procedure has been found to be marred by artifacts
related to the finite size of the grid cells. Analogous difficul-
ties are present in reciprocal space calculations of the struc-
ture factor associated with ¢(r,r’) [60]. In the case of a PP
system, however, Eq. (23) can be used to obtain

pe,r) = (0 (015 1), (26)

where p(r;t) is the template analog of p\"(r;f). Further
simplification occurs by noting that the product
P (r:H)p(x ;t) is simply the two-particle fluid-template
density operator ﬁl(ctz)(r,r’ ;f,t), so that eventually

Yr.x') = (R (e 1) (27)

The computation of (r,r’) is thus turned into the rather
innocuous problem of computing the pair-correlation func-
tion between the fluid particles and the template sites, which
does not require the use of a grid and thus is obviously free
of grid artifacts. It is interesting to note that an analogous
possibility to replace the direct computation of a discon-
nected correlation function by the computation of an equiva-
lent pair-correlation function also exists for ideal gases in
disordered environments, thanks to the fact that the con-
nected pair-correlation functions identically vanish in these
systems. The case has been investigated on one specific ex-
ample in Ref. [59], where it is reported that the latter strategy
yields better results than the former. This clearly lends sup-
port to the suggestion that the availability of Eq. (23) and the
resulting simplifications for PP systems should facilitate the
accumulation of high quality computer simulation data.
Finally, the above equations, formulated in the framework
of the PP systems, can be easily adapted to the case of the
one-component-fluid-based RP models. In particular, using
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Eq. (17), the double-averaged quantities in the RP system
can be related to corresponding thermal averages in the one-
component bulk fluid. One only needs to revert the mapping
to an ideal template-matrix mixture described in Sec. II. Un-
fortunately, the simplicity of the above identities is lost in the
process since the dependence of the resulting expressions on
the pinning fraction is found to change with the configura-
tional variable under consideration. For this reason, we do
not report any specific results for the RP model here. Some
important ones will appear in Sec. IV.

IV. PAIR CORRELATIONS AND INTEGRAL
EQUATION THEORIES

The description of the structure of fluids at the pair level
is a central issue of liquid-state theory. In this section, we
examine how the above identities impact on this problem for
the PP and RP fluid-matrix models.

Since we are dealing with special cases of templated sys-
tems, the natural framework for the present study is the
theory developed by Van Tassel and co-workers [41-44]. For
a generic templated system with no special symmetries, they
introduced eight total correlation functions in order to fully
describe the structure at the pair level. Six of them are the
standard functions reflecting the two-body correlations be-
tween the different types of particles involved in the model.
They are the matrix-matrix, matrix-template, template-
template, matrix-fluid, template-fluid, and fluid-fluid total
correlation functions, denoted by hy,(r), Andr), hy(r),
hi(r), hy(r), and hg(r), respectively. They can be expressed
in terms of double-averaged two-particle density operators
f)sz)(r,r’), i,j=m,t,f (for notational convenience, the depen-
dence on the particle numbers and configurations is omitted
here and in the following), as

(pP(r,r"))’

— PiP;

hij(|r - 1',|) = (28)

PiP;

where pi=(f)glj(r))’ is the number density of species i [see
Eq. (25) for the expression of f)f-l)(r)]. Note that a modified
(primed) disorder average is used because it is required for
the proper definition of quantities pertaining to template par-
ticles. When only matrix and/or fluid particles are involved,
it can safely be replaced by the usual matrix average on the
basis of Eq. (22). Through these averages, the statistical isot-
ropy and homogeneity of the system are restored, hence the
dependence of all pair-correlation functions on the scalar
|r—r’| only.

The two remaining functions are specific to quenched-
disordered systems and give an account of the correlations
between the one-body fluid densities at two different points
induced by the disorder. They are the blocking or discon-
nected total correlation function,

BPE)E ) - p?

hy(jr —1'|) = 5 , (29)
Pr

and the connected total correlation function,
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(PR ) = ) ()
ot

hence, the discussion of the function #(r,r’) in Sec. III.

Note that hg(r), hy(r), and h(r) are not independent since

they obey hg(r)=hy(r)+h(r).

Using diagrammatic techniques or the replica trick, the
Ornstein-Zernike (OZ) equations are easily derived which
connect the above total correlation functions to the corre-
sponding set of direct correlation functions, ¢;;(r), c,(r), and

¢.(r). They read (for convenience, the r dependence is omit-
ted)

he(Jr —r'[) . (30)

hmt = Cmt + pmcmm ® hmt + ptcmt ® htt’ (3 lb)
hy = Cy+ PmCint ® e + PiCye ® Dy, (31c)

hmf = Cmf t PmCmm ® hmf + PCme ® htf + PrCrnt ® hc’
(314)

Iy = Cip+ PmCrnt © Pinp + PiCy ® Mg+ pycyg @ he,  (31e)

hep= Coe+ PmCimg @ e+ s ® hyg + pycer ® g — prey, @ hy,
(31f)

Iy, = Cp + PmCimg @ e+ pCys @ hyg+ pee @ hy + prey, @ he,
(31g)

he=c.+pice ® he, (31h)

where ® represents a convolution in real space. As for the
total correlation functions, one gets c(r)=c,(r)+c.(r). The
first three equations are simply the OZ equations for the bulk
binary matrix-template mixture from which the porous me-
dium is formed, while the others relate to the structure of the
fluid adsorbed in the random solid.

Specialization to the present systems of interest is
achieved by working out the consequences of identities (17)
and (23) on the one- and two-body densities. For a generic
PP system, one obtains

P = Prs (32a)
(1) = (), (32b)
hy(r) = hy(r), (32¢)
hy(r) = hy(r), (324d)

and equivalently for the direct correlation functions, so that
the OZ equations reduce to

hmm =Cmmt PmCmm ® hmm + PCrmt ® hmfs (338.)
hmf= Cmf T PmCmm ® hmf+ PtCmf ® hffa (33b)
it = Cir+ PmCimt ® hing + prcee @ hyy, (33¢)
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hy = o+ PrCrn ® Hing + picee ® hgg— psce ® he,  (33d)

he=c.+ prce ® he. (33e)

For a RP system with pinning fraction x based on a one-
component bulk fluid with density p and total and direct
correlation functions (r) and c(r), well-known properties of
ideal binary mixtures lead to

Pm=Xp, (3421)
pfz(l _X)P, (34b)
hff(r) = hmf(r) = hmm(r) = h(r)’ (34C)

and analogously for the direct correlation functions, so that
the OZ equations become

h=c+pc®h, (35a)
hy=cp+pc® h—(1-x)pc, ® he, (35b)
he=c.+ (1 =x)pc, ® he. (35¢)

Some features of the above equations are very appealing
with a view to developing integral-equation theoretical ap-
proaches. The most obvious one is their mere number. In-
deed, not surprisingly, a significant reduction in the number
of unknown functions and OZ equations linking them ensues
from the special symmetries of the PP and RP systems. It is
particularly drastic in the case of the RP system, where only
two linearly independent OZ equations remain [remember
that hg(r)=hy(r)+h.(r) and cg(r)=cy(r)+c.(r)]. Since one
generically needs at least two of the three functions hg(r),
hy(r), and h(r) in order to characterize the pair structure of a
fluid in a statistically homogeneous disordered environment,
this is actually the smallest possible number whose only
known realization so far was in the case of a Gaussian ran-
dom field [61], i.e., of a nonparticle-based disordered envi-
ronment. Thanks to this extreme compactness of the formal-
ism, with its minimal number of unknowns and coupled
equations, one can reasonably expect that the development
and the implementation of advanced integral equation theo-
ries for the present class of systems will be made much
easier.

The situation is actually even more favorable than that.
Indeed, from Egs. (33) and (35), one can immediately see
that the problem of computing the pair correlations between
the different types of particles present in the system, which
amounts to a calculation on the bulk fluid from which the
confined fluid-matrix system is prepared, is completely sepa-
rated from the one of obtaining the two contributions to /(r)
which split under the effect of randomness. Therefore, since
well established integral equation schemes exist, which al-
low one to successfully tackle the first problem for a variety
of interaction potentials [56,62], one can build on them, so
that the only actual issue for the present systems of interest
boils down to the computation of &, (r) and h.(r), hg(r) being
considered as known.

There are different possible ways of taking advantage of
this result. One of them is to note that, because of the sepa-
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ration of the bulk- and confinement-specific parts of the cal-
culation, one should not feel bound to treat both problems
with the same type of approximation. Therefore, for a given
description of the bulk fluid system, one can freely experi-
ment with closures for i, (r), h.(r), cp(r), and c.(r). In com-
bination with quantitative comparisons with computer simu-
lation data, whose accumulation is greatly facilitated by the
use of Egs. (17) and (23) (see the discussion in Sec. III), this
should lead to insight into this crucial but not so well under-
stood aspect of the physics of fluids in random environments,
with a real prospect that accurate theories can be developed
not only for the PP and RP systems but also for fluids in
quenched disorder in general.

An alternative strategy is to use the same closure approxi-
mation for both parts of the calculation and to concentrate on
integral equation theories that have analytic solutions in the
bulk, trying to generate analytic solutions for the confined
system as well. Such solutions are extremely scarce in the
theory of fluids in disordered environments, even within ba-
sic approximation schemes. They might be useful in a num-
ber of different ways. For instance, as demonstrated by many
advances in the case of bulk systems [56,62], they might
represent precious starting points for the development of
more elaborate approximations. They might also be used to
produce at a minimal computational cost the large amounts
of structural data that are required as input by other types of
calculations, such as the prediction of dynamical phase dia-
grams in the framework of the mode-coupling theory
[20-23].

It turns out that closures which fall in the class of the
so-called Madden-Glandt approximations, i.e., characterized
by an identically vanishing blocking direct correlation func-
tion [29-31], are particularly well suited for such an ap-
proach. They include the Percus-Yevick (PY) and mean-
spherical approximations, for which, precisely, a number of
analytic solutions for bulk systems are well known [56,62].
As an illustration of this procedure, we report in Fig. 2 the
structure factors of a hard-sphere RP system obtained ana-
lytically with the PY closure. Since cy,(r)=0 and c.(r)=c(r)
in this approximation, they are simply expressed in terms of
the analytically known Fourier transform of the PY direct

correlation function of the bulk hard-sphere fluid, &(¢) [f(¢)
denotes the Fourier transform of f(r)], as

1

S(q) =1+ ph(q) = o) (36a)

Sl =1+ )= L (o

Sc(q) =1+ pehe(q) = m, (36¢)
Sb(q) = prln(q) = K1 - )pely)” (36d)

[1-pc(g)][1-(1-x)pc(q)]

where S(g) is the structure factor of the bulk fluid from
which the fluid-matrix system is prepared, and Si(q), S.(q),
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0 b) 10 15 20
qd

FIG. 2. Structure factors of a hard-sphere randomly pinned
fluid-matrix system, obtained analytically in the Percus-Yevick ap-
proximation. Si(q), Sc(¢), and Sy(g) are, respectively, the fluid-
fluid, the connected, and the blocking structure factors of the con-
fined system, while S(g) is the structure factor of the bulk fluid from
which the fluid-matrix system is prepared. The compacity of the
original bulk system is ¢=(7/6)pd®>=0.36, with d as the diameter
of the spheres, and the pinning fraction is x=2/3.

and Sy(g) are, respectively, the fluid-fluid, the connected, and
the blocking structure factors of the confined system.

Finally, beside integral equation theories, other liquid-
state theoretical approaches could either be directly applied
to the PP and RP systems or at least take advantage of their
simplifying features in some parts of their development. For
instance, one might turn to perturbation theory [56] and, in
the same spirit as in previous work on QA systems [63] and
fluids in aerogels [46], study athermal PP or RP reference
systems decorated with attractive fluid-matrix and fluid-fluid
interactions. One would then benefit from all the above re-
sults for the description of the reference system. Note in
passing that, while integral equation theories enforce the
complementarity between the fluid and the matrix at all state
points and thus deal with a temperature-dependent structure
of the porous solid, this would not be the case in such a
perturbative scheme, where the disordered matrix exclu-
sively inherits its properties from the reference athermal sys-
tem.

V. APPLICATIONS IN DYNAMICAL STUDIES

So far, the discussion has essentially been on how the
knowledge of the properties of the bulk fluid on which a PP
system is based leads to considerable simplifications in the
study of the confined fluid system. Then, one might wonder
whether, conversely, information on the latter might help un-
derstanding aspects of the physics of the former. In this sec-
tion, we show that such opportunities might exist when deal-
ing with dynamics.

Operationally, any fluid-matrix system in which the po-
rous solid is represented by fixed randomly placed particles
can be described in dynamical terms as a binary mixture of
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fluid and matrix particles with, respectively, finite and infi-
nite masses when the dynamics is Newtonian or finite and
zero free-diffusion coefficients when it is Brownian. How-
ever, in the case of the PP systems, there is more than that.
Indeed, it is well known that, in classical statistical mechan-
ics, the configurational properties of a bulk binary mixture
are independent of the finite masses or free-diffusion coeffi-
cients of its two constituents. Equation (17) shows that this
remains true when one mass is sent to infinity or one free-
diffusion coefficient to zero, provided the averaging over the
configurations of the now immobile matrix particles is per-
formed as a disorder average or, equivalently, as a volume
average over a macroscopic sample. So, a PP system can
effectively be considered as an asymptotic case of a binary
mixture with strong dynamical asymmetry, obtained via a
well defined limiting procedure [47-49,52]. This is a unique
situation among the different particle-based models of disor-
dered porous media, which originates in the fact that the
solid matrix in a PP system is not prepared independently of
the adsorbed fluid but in its presence in equilibrium condi-
tions.

We might now try and transport the above limiting proce-
dure into the realm of dynamical theories. In order to do so,
our starting point will be the description of the relaxation of
the collective density fluctuations in bulk binary mixtures in
the framework of the Mori-Zwanzig formalism [56], first for
Newtonian dynamics.

So, we start with a bulk binary mixture with components
labeled f and m. Their particle numbers, number fractions,
number densities, and masses are denoted by N; and N, x;
and x,,, p; and p,,, and m; and m,,, respectively. The dynami-
cal variables of interest are the Fourier components of the
microscopic densities at wave vector q and time ¢, pg(q,?)
and p,,(q,7), from which one forms the static structure fac-
tors,

_{pi(q,0)p,(- q,0))
Si(q) = N, +ij . (37)

and density-fluctuation autocorrelation functions,

[ 5 i\ 70
Fiy ’t)=<p,(q];)izqu )>. (38)
f m

Using standard projection-operator methods [56], the latter
functions are shown to obey generalized Langevin equations
which read in matrix form

t

F(g.1) + Q%(q)F(q,1) + f d™(g,t - NF(q,7) =0,
0

(39)
with initial conditions F(g,0)=S(¢) and F(g,0)=0. M(q,?)

is the matrix of memory kernels and the frequency matrix
0?(qg) is given by

[97],(9) = ELx 57, (4). (40)

where S7!(g) is the matrix inverse of S(g).
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In the limit my,— +%, which generates a PP system,
pm(q,7) is not a dynamical variable anymore, so that
Fuilq,)[=Fin(q,1)] and F,,,(q,t) remain equal to the corre-
sponding structure factors at all times [64]. As a result, the
dynamical equation for Fy(g,7) obtained by expanding the
matrix products in Eq. (39) reduces to

Fi(q.1) + Q@) Fi(q.1) + Q% (q) Si(q)
+ f dTMff(q9t - T)Fff(q’ T) = 0’ (41)
0

which at infinite time leads to

QHfi(q) + Q@) Sl @) + me @) fie(@) — Six(9)] =0,

(42)
where
fi(g) =lim lim Fylq,1), (43)
=00 p —+00
me(g) =lim lim  Mg(q.1). (44)

100 my,—+%

Note that the order of the limits is essential.

Our goal is to compute my(g), so that it remains to evalu-
ate fy(q). If one assumes that the dynamics of the PP system
is ergodic, it is expected on general grounds that

m<pf(q,t)pf(— q.0)) _ (pr(q,1))pi(= q,0))

=1
fula) =lim =0 N+ N,
= xipih(q), (45)

while Si(q)=x{ 1+ pshs(q)]. Note that, compared to Sec. IV,
additional factors x; appear due to the use of a different nor-
malization for the structure factors. By combining Eq. (42)
with the set of OZ equations [Egs. (33)], it then results to

k
milq) =q2ﬁprfa,<q). (46)

For the Brownian dynamics with free-diffusion coefficients
DY and DY, one gets, instead of Eq. (39), the matrix equation
t

F(q.7) + Q(q)F(g,1) + f d™(q,t - NF(q,7) =0,
0

(47)

where M(q,¢) is now the matrix of irreducible memory func-
tions [65] and the damping matrix (g) is given by

Qij(f]) = qu?xi[S_l]ij(‘])~ (48)
Repeating the above steps with D?n—>0, one obtains

mglq) = qu?prb(Q)~ (49)
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Equations (46) and (49) represent bridges between the statics
of the PP systems and the dynamics of the fully annealed
mixtures with a strong dynamical asymmetry. We suggest
that they could be usefully incorporated into the develop-
ment of phenomenological expressions for the memory ker-
nel M(q,t) reflecting the separation of time scales between
the short-time relaxation due to the motion of the fast par-
ticles constrained by the nearly immobile slow ones and the
long-time relaxation associated with the ultimate decorrela-
tion of the positions of the latter. For instance, since a num-
ber of observables in dynamically asymmetric mixtures show
features reminiscent of the cage effect and two-step relax-
ation [52], one could imagine building two-step memory ker-
nels with a plateau value around the above determined
m(q).

How this should be done in practice will depend on the
details of the dynamical theory at hand [56,66] and is beyond
the scope of the present paper. At this point, however, a few
words of caution might be in order. First, the above argument
specifically deals with one possible source of dynamical
asymmetry, namely, a wide separation in the kinetic param-
eters (masses or free-diffusion coefficients) of the mixture
components [47-49,52]. Tt is not clear if and how it can be
transferred to cases where the dynamical asymmetry has an-
other origin, such as size disparity in dense systems (for
recent studies, see Refs. [67,68]). Second, it is already
known that not all theoretical frameworks are able to bridge
between annealed mixtures and fluid-matrix systems. A
prominent example is the mode-coupling theory [20-23]
whose equations for these two problems have been shown to
be generically incompatible [69]. In such a case, the connec-
tion described above does not bring any additional insight
neither into the dynamics of asymmetric bulk mixtures nor
into that of RP and PP systems, and each problem has to be
analyzed separately within the chosen theoretical framework.

Obviously and independently of the connection suggested
above, the dynamics of the RP and PP systems has an interest
of its own as a simple model of a fluid in a disordered con-
fining environment. In particular, because the computation of
static averages is made easy and well controlled in these
systems, thanks to the identities of Sec. III, they are very
appealing models to test dynamical theories which, quite
generally and as illustrated by the mode-coupling theory
[20-23], require prior knowledge of a number of static prop-
erties to deliver their predictions. We stress here that the
mode-coupling theory for fluids in random porous matrices
[20-23] does not make any assumption on the statistics of
the disordered solid (beyond statistical homogeneity) and
thus applies as it stands to RP and PP systems.

These models can also be put to good use to investigate
the configurational consequences of permanent trapping in
systems with hard-core fluid-matrix interactions. Indeed, it is
well known that, for such systems at any nonvanishing ma-
trix density, there is always a finite probability that particles
are trapped in finite domains disconnected from the rest of
the matrix void space [70,71]. This trapping phenomenon
culminates in a diffusion-localization transition which coin-
cides with the percolation transition marking the point after
which the matrix void space only consists of finite discon-
nected domains [71-77]. Thus, the exploration of the volume
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accessible to the fluid is never completely ergodic and one
expects to see at least quantitative differences in configura-
tional properties depending on whether the thermal averag-
ing is performed as an ensemble or a trajectory average,
denoted by (---) and [---], respectively. For a generic fluid-
matrix system, such an investigation is hampered by a num-
ber of technical difficulties. For instance, if double averages
of the form (A) and [A] are to be compared, the estimation of
the former requires the use of smart simulation methods
(typically, with nonlocal updates) in order to overcome the
lack of ergodicity of the system. In the case of quantities
such as (A)B) and [A][B], one has in addition to face the
issues mentioned at the end of Sec. III for the computation of
such correlation functions. Tackling the problem with a RP
or a PP system does not eliminate all difficulties, but signifi-
cant simplifications occur which should make the various
computations much more accessible. Thus, thanks to Eq.
(17), the double average (A) can be efficiently retrieved from
studies of the bulk fluid system on which the fluid-matrix
model is based, in which no trapping occurs, hence no need
for special sampling techniques. Also, rather than computing
(AXB) and [A][B], one can follow Eq. (23) and concentrate
on correlation functions involving the positions of the fluid
particles at the time of the preparation of the matrix, which
are much easier to compute and have essentially the same
physical content.

VI. CONCLUSION

In this paper, the statistical properties of the partly pinned
fluid systems, a special class of models of fluids confined in
disordered porous matrices, have been studied. These sys-
tems, which in most respects are just typical examples of
fluid-matrix models, are singled out by a peculiar comple-
mentarity between the mobile and immobile components,
which originates from the fact that the confining random
solid is prepared in the presence of and in equilibrium with
the adsorbed fluid. A special symmetry results, with major
repercussions on the configurational properties of the system.
In particular, simple identities hold, which relate different
types of configurational averages either relative to the fluid-
matrix system or to the bulk fluid from which it is prepared.

By taking advantage of these identities in computer simu-
lation studies, it seems that, with these systems, interesting
opportunities are opening up for efficient and accurate com-
putations of quantities that are usually quite difficult to esti-
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mate in generic fluid-matrix models, in particular the cru-
cially important connected and disconnected correlation
functions. In our opinion, this should make the PP fluid sys-
tems the models of choice for a number of theoretical devel-
opments in the field of fluids adsorbed in disordered porous
solids. Indeed, in many circumstances, either theories aim at
predicting structural properties, as do integral equation theo-
ries, and then it is clearly an advantage that their predictions
can be readily tested against high quality simulation data, or
they take structural data as input in order to predict other
physical properties, such as the dynamics, and then it is ex-
tremely convenient that this input can be easily and accu-
rately determined. In all cases, one can reasonably expect
that the insight gained on the PP systems will be transferable
to other types of fluid-matrix models, so that global progress
can be made in our understanding of fluids in random envi-
ronments.

There is, however, a price to pay for these conveniences.
Indeed, by construction of the model, one cannot change the
parameters describing the adsorbed fluid without a similar
and complementary modification of the matrix. This is
clearly at odds with the typical experimental situation,
where, usually, the confining conditions are given and fixed
and the fluid characteristics can be altered freely and inde-
pendently. This might lead to difficulties of interpretation
when evolutions of the properties of the system across its
parameter space are considered.

Finally, some extensions of the present work could be of
interest. One obvious direction is toward heterogeneous
partly pinned fluid systems, in which all the particles of a
bulk system located in a predefined spatial domain are
stopped, leaving a fluid confined in a pore or in contact with
a solid interface. This setup has been introduced in order to
study various aspects of glass formation [78-81] and an
identity analogous to Eq. (17) is known to hold [78]. Note,
however, that, in order to prevent the invasion of the solid by
the fluid, Scheidler et al. [78] mentioned the need to intro-
duce a hard separation at the fluid-matrix interface which
might lead to complications and approximations absent in
the homogeneous case. Another possibility would be to
translate the problem in the language of magnetism, where
the pinning process would operate on spin variables. This
would generate examples of spin systems with correlated
random field and/or dilution for which suitable adaptations
of Egs. (17) and (23) would apply.
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