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Nonlinear response of dense colloidal suspensions under oscillatory shear:
Mode-coupling theory and Fourier transform rheology experiments
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Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense
colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calcu-
lated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under
externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by
significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass
transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic
yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important
role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly
supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on
suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations
performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the
exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are
in good agreement with both simulation and experiment. A consistent set of parameters in the presented
schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscil-

latory spectroscopy.
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I. INTRODUCTION

A standard method to probe the viscoelastic character of a
material is to measure the time-dependent stress response to
an externally applied oscillatory shear field [1]. The simplic-
ity of oscillatory shearing experiments presents distinct prac-
tical advantages when compared to other flow protocols and
thus makes desirable a systematic method for the rheological
characterization of a material on the basis of the periodic
stress response alone. For small strain amplitudes the shear
stress is a simple harmonic function, oscillating with the fun-
damental frequency dictated by the applied strain field. The
details of the microscopic interactions underlying the macro-
scopic stress response are encoded in the familiar storage
(G') and loss (G") moduli of linear response. General as-
pects of the viscoelastic character of the material can thus be
inferred from the magnitudes of the moduli as a function of
frequency.

While, for many systems of interest, the linear-response
regime is well understood, for practical applications, such as
the production and processing of materials in industry [2], it
is necessary to consider deformations of finite, often large,
amplitude. In the nonlinear regime, the stress response to a
sinusoidal excitation contains higher harmonic contributions,
which arise from the nonlinearity of the underlying constitu-
tive relation expressing the stress as a function of the strain
[3-5]. For many complex materials, consideration of the fun-
damental frequency alone proves insufficient for describing
the physical mechanisms at work for finite strain amplitude.
Analysis based purely on the linear complex modulus as a
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function of frequency can thus be expected to give only a
partial mechanical characterization of the system under study
(see, e.g., [6-8]). This failing is found to be particularly pro-
nounced for yield stress materials such as aqueous foams [9]
and, as we will argue in the present work, colloidal suspen-
sions close to or beyond the point of dynamical arrest. Al-
though such systems are predominately elastic in character,
they exhibit a complex transient response to oscillatory shear
in which the viscous dissipation mechanism present at small
strain amplitudes crosses over to a plastic flow as the ampli-
tude is increased. The nonlinear stress response reflecting the
onset of plastic flow gives rise to a strong increase in the
amplitudes of the higher harmonics.

The emerging discipline of Fourier transform (FT) rheol-
ogy, originating in the work of Wilhelm and co-workers (see,
e.g., [4,5,10,11]), aims to quantify the nonlinear response of
complex fluids by analyzing the harmonic structure of the
stress signal measured in large amplitude oscillatory shear
(LAOS) experiments (for recent developments see [12]). De-
spite considerable progress on the experimental side, the the-
oretical description of the nonlinear regime remains unsatis-
factory. Theoretical treatments capable of capturing higher
harmonic contributions have been largely restricted to phe-
nomenological models based on the ideas of continuum rhe-
ology [3,8,10,13-15]. A more refined description of the non-
linear response is provided by mesoscopic models in which
the time evolution of explicit coarse-grained degrees of free-
dom is governed by specified dynamical rules [16-18].
While such approaches are capable of capturing generic fea-
tures of the response, they are not material specific and make
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no explicit reference to the underlying particle interactions.

Recently, progress in making the connection between mi-
croscopic and macroscopic levels of description has been
made for the case of dense colloidal suspensions subject to
time-dependent flow [19,20]. The developments in classical
nonequilibrium statistical mechanics presented in [19,20] ex-
tend earlier work focused on the simpler, but fundamental,
case of steady shear flow [21,22]. The mode-coupling-type
approximations employed in [19-22] capture the slow struc-
tural relaxation leading to dynamical arrest in strongly
coupled systems (i.e., dispersions at high volume fraction or
with a strongly attractive potential interaction), with the con-
sequence that the macroscopic flow curves o(7) attain a fi-
nite value in the limit of vanishing rate, for states which
would be glasses or gels in the absence of flow. The finite
value of the stress in the slow flow limit identifies the dy-
namic yield stress. The relationship between the dynamic
yield stress and its more familiar static counterpart is analo-
gous to that between stick and slip friction in engineering
applications. A prediction of particular importance made by
the mode-coupling theory (MCT)-based approaches in
[19-22] is that the dynamic yield stress appears discontinu-
ously as a function of coupling strength, in clear contrast to
mesoscopic models [16,17] which predict a continuous
power-law dependence. The notion of yield stress was con-
sidered in a more general and abstract sense in [23], in which
a dynamic yield stress surface, describing yielding under
more general nonshear deformations, was calculated (see
also [24]).

Although the closed microscopic constitutive equation
presented in [20] is of considerable generality, the combined
difficulties of a large time-scale separation between micro-
scopic and structural relaxation times, spatial anisotropy, and
lack of time-translational invariance presented by many
problems of interest make direct numerical solution of the
equations impossible at the present time. In order to both
facilitate numerical calculations and expose more transpar-
ently the essential physics captured by the fully microscopic
theory in [20] a simplified “schematic”” model has been pro-
posed [23]. Schematic models have proved invaluable in the
analysis and assessment of microscopic mode-coupling ap-
proaches, both for quiescent systems [25] and under steady
shear flow [26], in each case providing a simpler set of equa-
tions which aim to retain the essential mathematical structure
of the fully microscopic theory. While the schematic model
reduction performed in [23] leads to loss of the “first-
principles” character of the approach, the mathematical con-
nections between full and schematic theories nevertheless
serve to elevate the schematic model above purely phenom-
enological approaches.

In the present work we will consider application of the
schematic model derived in [23] to the problem of large am-
plitude oscillatory shear. Although the tensorial schematic
model in [23] is closely related to the earlier F}, model de-
rived in [26], application of the tensorial model to a simple
shear flow geometry does not exactly reproduce the F 1’2
model. The study of time-dependent flows, not considered in
earlier work, revealed that corrections to the original F7,
model were necessary to capture correctly the response to
rapidly varying flows. The modifications thus introduced

PHYSICAL REVIEW E 82, 061401 (2010)

lead to small differences in the steady-state rheological pre-
dictions. Nevertheless, the present schematic models de-
scribe the same phenomenology as the previous model [27]
when applied to steady shear.

Comparison of theoretical predictions with experimental
data for thermosensitive core-shell particles, dispersed in wa-
ter, has been performed using the F7, model [26]. These
particles have the very convenient feature that the volume
fraction of the system may be varied continuously over a
considerable range, simply by tuning the temperature of the
system. Moreover, the finite polydispersity in particle size
effectively suppresses crystallization, such that studies of
dense fluid and glassy states are not complicated by an inter-
vening fluid-crystal transition. In a series of works, theory
and experiment have been compared for the flow curves un-
der steady shear [28,29] and, more recently, for both flow
curves and linear-response moduli [30,31]. A particular
strength of the F}, model (inherited by the more recent
model of [23]) is that both flow curves and linear viscoelastic
moduli can be simultaneously and accurately fitted over
many decades of shear rate and frequency, respectively, us-
ing a consistent and physically meaningful set of fit param-
eters. In [31] a combination of experimental techniques was
employed, which enabled measurement of the flow curves
and linear-response moduli over eight and nine orders of
magnitude in shear rate and frequency, respectively [31]. Al-
though certain discrepancies between experiment and theory
at low frequencies remain to be fully understood, the general
level of agreement is impressive. Reassuringly for the sche-
matic models, the complete microscopic MCT calculations
possible for the linear-response moduli agree with the data
from the monodisperse samples on the 40% error level [29].

The nonlinear rheology of thermosensitive microgel par-
ticles (similar to those considered in the present work) was
addressed in a recent experimental study, focusing on the
stress response to steady and large amplitude oscillatory flow
[32]. In addition to the study of the stress overshoot follow-
ing the onset of shear flow (see also [33]), both the strain
dependence of the storage and loss moduli and the higher
harmonic contributions were analyzed. Despite employing
the same kind of thermosensitive particles and LAOS flow
protocol, the study [32] should be regarded as complemen-
tary to the present work. In [32] volume fractions well above
random close packing were investigated (¢>0.64), suggest-
ing considerable deformation of the particles themselves,
whereas we focus here on packing fractions around the glass
transition. Moreover, emphasis in the present work is placed
on assessing the MCT-based schematic theory presented in
[23] for a nontrivial flow history, namely, large amplitude
oscillatory shear, and comparison of the theoretical predic-
tions with experiment. This comparison provides the first
truly time-dependent test of this recently developed sche-
matic model beyond the simple case of step strain already
considered in [23].

The paper will be organized as follows. In Sec. II we
summarize the microscopic starting points underlying our
theoretical approach before proceeding to give a compact
overview of the linear and nonlinear responses of viscoelas-
tic systems, relevant for the subsequent analysis. In Sec. III
we introduce the schematic MCT model and discuss its rela-
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tion to previous work. In Sec. IV we discuss the Brownian
dynamics simulation algorithm used to generate results
supplementary to those of theory and experiment. Section V
contains the experimental details. In Sec. VI we first present
purely theoretical results in order to establish the phenom-
enology predicted by the schematic model. We then consider
the results of our two-dimensional simulations before pro-
ceeding to analyze and fit the experimental data. Finally, in
Sec. VII we discuss the significance of the present work and
provide an outlook for future studies.

II. FUNDAMENTALS
A. Microscopic starting points

The shear stress resulting from a general time-dependent
shear strain of rate (¢) is given by a generalized Green-
Kubo relation [19,20]

o(r)= f dt' y(t")G(1,t"). (1)

Equation (1) is nonlinear in the shear rate due to the nonlin-
ear functional dependence of the shear modulus G(z,¢’) on
v(t). Within the microscopic framework developed in [19,20]
the modulus is identified as the correlation function of fluc-
tuating stresses,

G(t,t') =

t
TV Gy exp_( ft ’ dsQWs))é'Xy , (2)

where G,,=-3; Fy; is a fluctuating stress tensor element,
formed by a weighted sum of the forces acting on the par-
ticles for a given configuration, 7 is the temperature, V is the
system volume, and (-) indicates an equilibrium average.
The particle dynamics to be considered in the present work

are generated by the adjoint Smoluchowski operator [34]
. . 1%
') = E Do[d;+ BF ] - d;+ Do?’(f)yia, 3)

where B=1/kzT and D, is the short-time diffusion coeffi-
cient at infinite dilution. The time-ordered exponential func-
tion in Eq. (2) arises because Q7(r) does not commute with
itself for different times [35].

An important approximation underlying Eq. (3) [and thus
Eq. (2)] is that solvent induced hydrodynamic interactions
(HIs) between the colloidal particles are neglected. The dif-
fusion coefficient entering Eq. (3) is thus a scalar quantity
and the external flow may be included using a prescribed (as
opposed to self-consistently calculated) shear field (r).
While the omission of HI may be inappropriate at high shear
rates, for which hydrodynamically induced shear thickening
can occur in certain systems, it is expected to represent a
reasonable approximation for slowly sheared states close to
the glass transition. Nevertheless, when attempting to fit ex-
perimental data using theoretical models based on Eq. (3) it
proves necessary to include an empirical hydrodynamic cor-
rection accounting for the high-frequency viscosity. In addi-
tion to the neglect of HI we make two, potentially more
dangerous, assumptions: (i) () is taken to be spatially trans-
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lationally invariant, which may become questionable when
considering the flow response of dynamically arrested states.
(ii) The shear field acts instantaneously. While this should be
acceptable for certain flow histories the general status of this
approximation is not clear.

B. Linear response

Following standard convention, we consider an externally
applied shear strain of the form

1) =y sin(wr). (4)

The time-translational invariance of shear field (4) gives rise
to an explicit dependence of modulus (2) upon two-time ar-
guments.

For small deformation amplitudes (y,<<1) the strain de-
pendence of the shear modulus may be neglected, such that
Eq. (1) provides a linear relationship between ¥(¢) and o(r).
This leads to the approximation

G(t,1") = Gey(t = 1), (5)

where G4(7) denotes the time-translationally invariant equi-
librium shear modulus. Substituting Egs. (4) and (5) into Eq.
(1) and employing trigonometric addition formulas lead di-
rectly to the familiar linear-response result,

o(t) = yoG' (w)sin(wt) + y,G"(w)cos(wi), (6)

where G'(w) and G"(w) are the storage and loss moduli,
respectively, defined by

G'(w)= wfx dt" sin(wt")Ge(t'), (7)
0

G'(w) = wJ dt’ cos(wt")Gey(t'). (8)
0

Furthermore, Eq. (6) can be rewritten as
o (1) = v G(w)[sin[wr + Hw)], )

where the complex modulus is given by G=G’+iG” and the
phase shift by d=arctan(G"/G"). If G"(w)=0 the response is
purely elastic, in phase with y(z) (6=0). In the case G'(w)
=0 dissipation dominates and the response is in phase with
1) (6=90°).

C. Nonlinear response

It should be clear at this stage that the familiar linear-
response form (6) is a direct consequence of the convolution
integral which results from inserting the time-translationally
invariant equilibrium function (5) into Eq. (2). For finite
strain amplitudes, the dependence of the modulus upon two-
time arguments prevents the simple trigonometric manipula-
tions leading to Eq. (6). Nevertheless, the nonsinusoidal
stress response, o(f), is periodic with period 27/ w and may
therefore be expressed as a Fourier series,
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o0 0

o) = 1>, Gl (w)sin(nwt) + v, G(w)cos(nwr),

n=1 n=0

(10)

where G, and G are frequency dependent Fourier coeffi-
cients given by [36]

o

Gl(w) == f dio(t)sin(na), (11)
TJ _mlw
w W

Gh(w)= —f dto(t)cos(nwt). (12)
-1/ @

In the limit y,— 0 the coefficients G| and G/ reduce to the
familiar linear-response moduli. It should be noted that we
retain the n=0 term in the second sum of Eq. (10) in order to
leave open the possibility of a stress offset.

Employing manipulations analogous to those leading
from Eq. (6) to Eq. (9) Fourier series (10) may be expressed
in the following form:

o) =y L(w)sin[nwr + 8,(w)], (13)

n=1

where the amplitude is given by I,=|G/+iG"| and the phase
shifts by §,(w)=arctan(G)/G,). In analyzing our theoretical,
experimental, and simulation results we will focus on the
behavior of both the generalized moduli G, and G), and the
amplitude and phase shift, I, and &,, of the fundamental (n
=1) and higher harmonics (n>1) as a function of the control
parameters.

Following a period of transient response after initiation of
the strain field (switching on the rheometer) the system en-
ters a stationary state, demonstrating a periodic stress re-
sponse. Although, to some extent, an issue of semantics, it is
important that the “stationary” state presently under consid-
eration be distinguished from ‘“steady” states, of the kind
achievable by application of a time-independent shear flow.
The stationary state is simply a well-characterized and peri-
odic transient and is thus influenced by additional physical
mechanisms (e.g., thixotropy) which are irrelevant for steady
states. In a physical system the stationary response must be
independent of the direction of shear, leading to a stress o(z)
symmetric in (7). The mirror symmetry of the constitutive
equation has the consequence that only odd terms contribute
to Fourier series (13). The appearance of even harmonics in
the analysis of experimental data is often an indication of
boundary effects, such as wall slip, or other inhomogeneities
of the flow [10].

Important physical interpretation may be given to the co-
efficient G| by considering the energy dissipated per unit
volume of material per oscillation cycle,

7l w
E, = f dro(t) y(1). (14)
-7/ w

Substitution of strain field (4) and Fourier series (10) into Eq.
(14) leads to
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E;= 7G| (w) (15)

(see also [37]). Thus, for a sinusoidal strain of form (4),
energy is dissipated only at the input frequency. The coeffi-
cient G therefore has the same interpretation in the nonlin-
ear regime as in the linear regime: it determines the dissipa-
tion of energy over an oscillation cycle. The remaining
coefficients in the series, G, and G- |, thus collectively de-
scribe the reversible storage and recovery of elastic energy.

D. Lissajous plots

A standard way to graphically represent the relationship
between y(f) and o(z) is via the Lissajous representation, in
which trajectories are shown in the v*, ¢ plane, where
=Y/ Ymax a0d 0=/ 0y are the strain and stress, normal-
ized by their maximum values [38]. In this representation, a
general linear viscoelastic response is characterized by an
ellipse symmetric about the line y*=¢", point symmetric
with respect to the origin plus two mirror planes. The two
limiting cases of a purely elastic and a purely dissipative
response are thus characterized by a line and a circle, respec-
tively. In the nonlinear regime considerable deviations from
ellipticity are observed. The specific character of these de-
viations can indicate whether a material is, for example,
strain hardening or strain softening (an increase or decrease
of G' with strain amplitude) and thus provides a useful, al-
beit qualitative, “rheological fingerprint” of a given material
[6,8]. For a general nonlinear response, the area enclosed
within the closed-loop trajectory of a Lissajous figure is di-
rectly related to the dissipated energy via the integral in Eq.
(14). This lends an appealing physical interpretation to the
Lissajous representation and provides a direct visual impres-
sion of the dissipative character of the response.

III. THEORETICAL APPROACH
A. Schematic model

As noted in Sec. I, the approximate microscopic constitu-
tive theory developed in [19,20] enables first-principles pre-
diction of the rheological behavior of dense colloidal disper-
sions. However, the simultaneous occurrence of spatial
anisotropy and non-time-translational invariance hinders nu-
merical solution of the equations when addressing concrete
problems. The schematic model presented in [23] provides a
simplified set of equations which, it is hoped, capture the
essential physics contained within the full equations while
remaining tractable for numerical implementation.

Within the schematic reduction, the modulus is expressed
in terms of a single-mode transient density correlator

G(t,t") =v,P(1,1'), (16)

where v, is a parameter measuring the strength of stress
fluctuations. The approximation underlying Eq. (16) is that
stress fluctuations relax as a result of relaxations in the den-
sity (viz., structural relaxation). The assumption that v, is
independent of strain is a simplifying assumption which
could be relaxed if necessary. The microscopic theory in [20]
predicts both the temporal and wave-vector dependences of
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the transient density correlator under applied flow. The sche-
matic, single-mode, density correlator [normalized to
®(z,1)=1] represents, in some nonspecific sense, a “typical”
correlator of the microscopic theory. It is obtained from so-
lution of a nonlinear integrodifferential equation,

1

<b(t,t')+F(<D(t,t')+f dsm(t,s,t’)@(s,t’)):O. (17)

The single decay rate I' sets the time scale and would, within
a microscopically based theory, depend on both structural
and hydrodynamic correlations. The overdots in Eq. (17) im-
ply differentiation with respect to the first time argument.
The memory function m(z,s,t") appears in Eq. (17) as a gen-
eralized friction kernel, which can be formally identified as
the correlation function of certain stress fluctuations. Making
the assumption that these stress fluctuations may be ex-
pressed in terms of density fluctuations (both become slow
close to the glass transition) leads to a tractable expression
for m(t,s,t") as a quadratic functional of the transient density
correlator and, thus, a closed theory. A somewhat surprising
consequence of the formal calculations presented in [19,20]
is that the memory function possesses three time arguments.
The presence of a third time argument, which would have
been difficult to anticipate on the basis of quiescent MCT
intuition, has important consequences for rapidly varying
flows (e.g., step strain [19]). Within the schematic model the
memory function is given by

m(t,s,t") = h(t,t")h(t,s)[v,D(1,5) + 1,P*(1,5)].  (18)

Following conventional MCT practice the parameters v; and
v, represent, in an unspecified way, the role of the static
structure factor in the microscopic theory and are chosen as
v,=2 and v;=2(v2-1)+€/(y2-1). The separation param-
eter € is a crucial parameter within our approach and encodes
the thermodynamic state point of the system by measuring
the distance from the glass transition. Negative values of €
correspond to fluid states and positive values to glass states.
Setting & equal to unity in Eq. (18) recovers the well-known
F|, model, originally introduced by Gotze [25,39,40]. The
linear term in ® which appears in Eq. (18) is absent from the
microscopic mode-coupling expression but turns out to be
necessary for a faithful reproduction of its asymptotic prop-
erties within a single-mode theory. Under simple shear flow,
the & functions in the memory kernel (18) serve to accelerate
the loss of memory caused by the affine advection of density
fluctuations. The assumption that the same function # may be
used to incorporate both the strain accumulated between ¢
and ¢’ as well as that between ¢ and s is an approximation,
made to keep the theory as simple as possible. Taking ac-
count of the required invariance with respect to flow direc-
tion suggests the simple ansatz,

.
=

where y= y(t,1')=[],ds¥(s) and the parameter 7, sets the
scale of strain.

Equations (1) and (16)—(19) provide a closed constitutive
theory which depends upon three adjustable parameters

h(t,t') =

(19)
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(vg»I', 7,.) and two control parameters (e, y) representing the
coupling strength and applied shear rate. As the schematic
model under discussion is implicitly based on the Smolu-
chowski dynamics described by Eq. (3), the influence of HI
is neglected. While this is not important for capturing cor-
rectly the qualitative features of the rheological response,
quantitative comparison requires a simple hydrodynamic cor-
rection at high frequencies. The simplest approximation,
which we will employ in the present work, is to empirically
add an extra term to the shear modulus,

G(t,t')— Gt,t") + 5.0t —1"). (20)

The high-frequency viscosity, 7., is thus introduced into the
model, describing the viscous processes which occur on time
scales much shorter than the structural relaxation time. Cor-
rection (20) has the consequence that the stress acquires an
extra term, linear in 7y, and the Fourier coefficient G'l' is
shifted by a term linear in w.

B. Strain-rate frequency superposition

An alternative mode-coupling-type approach, describing
the collective density fluctuations of dense colloidal fluids
under shear, is provided by the work of Miyazaki et al
[41-43]. By considering time-dependent fluctuations about
the steady state a closed (scalar) constitutive equation has
been derived and applied to colloidal dispersions in two di-
mensions under steady shear [41,42] and in three dimensions
(subject to additional isotropic approximations) under large
amplitude oscillatory shear [43]. Given the very different
nature of the approximations underlying the present MCT-
based theory [19-22] and that in [41-43] (fluctuating hydro-
dynamics vs projection operator methods) it is interesting
that the final expressions (e.g., the memory function vertices
entering the equation of motion for the transient correlator)
are rather similar, at least for the special case of steady shear.
For the case of large amplitude oscillatory shear, however,
the theory presented in [43] differs clearly and fundamentally
from the microscopic approaches to time-dependent shear
developed in [19,20] and, consequently, from the schematic
model in [23] to be employed in the present work. The the-
oretical developments of Miyazaki er al. [43] motivated the
authors to propose the principle of “strain-rate frequency su-
perposition” as a probe of structural relaxation in soft mate-
rials [44].

The essence of the approach of Miyazaki et al. can be
captured by a simple schematic model, which we will elabo-
rate upon below. In [43] Miyazaki et al. took the theory
which they had developed for steady shear flow [41,42] and
replaced the steady shear rate y appearing in the equation of
motion for the correlator by the time-dependent shear rate
Y1) =y cos(wt), describing oscillatory flow. This rather ad
hoc treatment gives rise to equations with a mathematical
structure appropriate for steady flows and ignores the more
realistic, although more complicated, history dependence of
theories developed to treat nonsteady flows specifically
[19,20]. On the basis of the results obtained for the strain
amplitude dependence of the storage and loss moduli (no-
tated as G|, G in the present work) it was argued that the

061401-5



BRADER et al.

time dependence of the strain-rate field ¥(¢) = yyw cos(wr) is
not essential for understanding the viscoelastic response and
that it is sufficient to consider the strain-rate amplitude yyw
alone. The relevant time scale is thus identified as (yyw)™'
rather than ~'. Within the context of schematic mode-
coupling equations, this assumption may be expressed by the
following memory function:

[P0 + 1, %(1)]
T L+ (p0n)?

m(1) ; 1)

which, together with the equation of motion

@(t)+I‘(CI)(t)+ftdt’m(t—t’)cb(t’)> =0, (22

0
the shear modulus
G(t,")=v,P(1-1"), (23)

and Eq. (1) provides a closed theory for o(z). In fact, Egs.
(21)~(23) are identical to the F}, model [25,26], with a
steady shear rate y=1y,w. An important consequence of as-
suming the dominance of the time scale (y,w)~! is that all
states, even those which would be glasses in the absence of
flow, become fluidized by an applied oscillatory shear field,
regardless of the amplitude y,. Whether or not a vanishingly
small value of 7, is really sufficient to restore ergodicity to
dynamically arrested states is unclear and presents a funda-
mental question, with important implications for the exis-
tence of a linear-response regime.

Despite capturing approximately the amplitude depen-
dence of G{, G'l’, describing the response at the fundamental
frequency, higher harmonics are ignored in the approach in
[43]. The absence of higher harmonic contributions within
the theory of Miyazaki ef al. can be traced back to the as-
sumption that the time dependence of (r) is irrelevant and
that this can be represented by the constant yyw. Within the
present context this has the consequence that memory func-
tion (21) and correlator, given by solution of Eq. (22), are
constrained to be time-translationally invariant (viz., depend
on a single correlation time only). While this assumption is
clearly at odds with the underlying variations in the strain
field (for which a dependence on the “waiting time” is to be
expected), it nevertheless serves to capture first-order correc-
tions to linear-response theory while remaining relatively
easy to implement numerically.

The theory developed in [43] is quasilinear in the sense
that o(¢r) remains a simple sinusoid but with an amplitude
and phase shift which depend nonlinearly on 7,. Attempts to
justify the neglect of higher harmonics have been based on
the fact that the ratio of the third harmonic amplitude to that
of the fundamental remains smaller than approximately 20%
for a wide range of systems [43,44]. However, in order to
draw a fair conclusion, it is important to consider the sum
2,1 I(w)/1, rather than I;/I, alone when assessing the
physical relevance of higher harmonic contributions. Various
experimental studies on colloidal dispersions (see, e.g., [32])
show clearly that the higher harmonics can collectively ac-
count for up to half of the total signal, which is not a small
effect. This observation serves to emphasize the importance
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of truly nonlinear theories, which confront directly the non-
time-translational invariance of the correlation functions,
thus going beyond the convolution approximation to Eq. (1).

IV. COMPUTER SIMULATION

To provide a point of reference for our theoretical calcu-
lations we have performed two-dimensional simulations on a
system hard disks undergoing Brownian motion in an exter-
nal shear field. The simulations are designed to solve ap-
proximately the many-body problem of a system of interact-
ing Brownian particles under shear flow. The same
Smoluchowski dynamics [34] underlies the microscopic
mode-coupling theories in [19,20] which form the basis of
the schematic model employed in the present work [23]. We
choose to simulate a two-dimensional system for two rea-
sons: (i) The computational resources required are signifi-
cantly reduced with respect to simulation of three-
dimensional systems and thus enable improved statistics to
be obtained. (ii) Recent microscopic studies of the quiescent
mode-coupling theory in two dimensions have revealed be-
havior broadly similar to that found in three-dimensional cal-
culations [45]. We thus expect the reduced dimensionality of
our simulation system to be of little consequence for quali-
tative comparison with the present theory and experimental
data.

The basic concept of the algorithm has been described in
detail in three dimensions in [46] and its adaptation to two
dimensions can be found in [47]. We consider a binary mix-
ture of hard disks with the diameters of D;=1.0 and D,
=1.4 with equal particle number concentrations and a total
amount of N=N,+N,=1000 hard disks in a two-dimensional
simulation box of volume V with periodic Lees Edwards
boundary conditions. The total two-dimensional volume
fraction is then given by (btng—:,T(DfﬁDf). We employ this
system in order to suppress crystallization effects. The mass
m of the particles and kT are set equal to unity. We choose
our coordinate axes such that flow is in the x direction and
the shear gradient is in the y direction. The Brownian time
step was chosen to be 8:=0.01 as in [47]. This results in a
short-time diffusion constant of Dy=0.05. To implement a
time-dependent oscillatory shear rate, at each Brownian time
step the shear rate is set to its new value,

Hp) = Yow cos(wTp), (24)

and all particle velocities are freshly drawn from the Gauss-
ian distribution with (v*)=2 and (v)=j(75)y(75). Between
two Brownian time steps the shear rate is kept constant. The
strain y(¢) can, therefore, be obtained using

W)= X Hpdr, (25)

Tpe[0,1]

which leads to y(¢)=[{dt¥(r) in the limit of & — 0. At every
Brownian time step the part y(753)y(75) guarantees a linear
velocity profile as a linear shear flow is imposed on every
particle, depending on its y position. For all simulations the
frequency was set to w=0.001 which leads to Pe,
= wD?/4Dy=0.05.
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The average quantity of interest in the present work is the
time-dependent potential part of the shear stress oy (t)
=%,(2[F (0);;1r(1);;],), with the relative force components of
particle i and j [F();], and the particles relative distance
component [r(t),-j]y for a given time ¢. As we consider hard
particles the forces must be calculated from the collision
events. By observing the collisions within a certain time win-
dow A7.=[t;,t1,+A7.] for a given time 7, forces may be
extracted using the change of momentum which occurs dur-
ing the observation time. This leads to the evaluation algo-
rithm for the stress at time #;,

o(zk>=<§ )

toeltn+AT,] s

[Av(tc)ij]x[r(tc)ij]y> B

where summation is over all collisions after time ¢, within
the time window Ar. The procedure effectively sums the
momentum changes (Awv;;), in x direction multiplied by the
relative distance of the particles (r;;), in y direction. The
brackets (---), denote the different simulation runs.

At a total volume fraction of ¢,,;=0.81 which is slightly
above the glass transition for this system (estimated to be at
¢=0.79 on the basis of simulated flow curves [47]) we pre-
pared 4000 independent sets for each amplitude 1,
€{0.001, 0.003, 0.009, 0.01,..., 0.09, 0.1, 0.2, 1.0,10.0,
100.0}. As the system starts from a nonstationary state it is
necessary to wait for the system to reach its long-time as-
ymptote (which we found to be the case after undergoing two
full oscillations) before meaningful averages can be taken.

V. EXPERIMENT
A. Characterization of the latex particles

The polydisperse latex particles consist of a solid core of
poly(styrene) onto which a thermosensitive network of cross-
linked poly(N-isopropylacrylamide) is affixed [31]. The de-
gree of cross-linking of the shell due to the cross-linker
N,N’-methylenebisacrylamide is 2.5 mol %. Exactly the
same particles were used for this work as in [31]. They have
a temperature dependent size (hydrodynamic radius in nano-
meter, Ry=-0.7796T+102.4096, with T as the temperature
in °C below 25 °C) and a polydispersity of 17% [31]. All
experiments were done in an aqueous solution of 0.05M KCl
to screen residual charges which emerge from the synthesis
of the particles. The solid content of the suspension was
determined by comparing the weight before and after drying
and was found to be 8.35 wt %. Neither the MCR 301 mea-
surements nor the FT-rheology measurements at 15.1 °C
lead to a significant change of the solid content
(+0.02 wt %). However, the solid content after the FT-
rheology measurements at the remaining two temperatures
(18.4 and 20.9 °C) had a slightly higher value (9.02 wt %)
due to the physical relocation of the rheometer to another
laboratory and some additional solvent evaporation. The ef-
fective volume fraction ¢ . was calculated by using the cor-
relation of mass concentration ¢, hydrodynamic radius, and
effective volume fraction found in the inset of Fig. 6 in [31],
which is given by c-Rz=9.67 X107 7g- oy for different
temperatures. For the temperature of 15.0 °C a volume frac-
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tion ¢g of 0.65, for 18.0 °C a ¢ g of 0.60, and for 20.0 °C
a ¢ of 0.57 were found. In previous work [31] the glass
transition for this system was found to be at ¢.;=0.64.
Given a polydispersity of 17% the theory of Schértl and
Sillescu [48] predicts random close packing at ¢h.;=0.68.

B. Rheological experiments
1. Measurements with the MCR 301

The rheological experiments measured with the stress-
controlled MCR 301 from Anton Paar with a Cone Plate
geometry (diameter of 50 mm and cone angle of 0.017 rad)
cover the range from the linear to the strongly nonlinear
regime. This machine was used to measure the frequency
dependent linear moduli, the shear-rate dependent flow
curves, and the strain amplitude dependent nonlinear moduli.
A thin paraffin layer was used to prevent the solution to
evaporate. Measurements controlled by the Peltier heating
were performed at 15.0, 18.0, and 20.0 °C with a preshear
protocol of =100 s~! lasting 200 s and a waiting time of 10
s before each experiment. The flow curves shown in Fig. 13
were measured with the MCR 301. Flow curves were mea-
sured from low to high shear rates (107*~1000 s~!) and a
waiting time of 10 s with a logarithmic time ramp of 20-
2500 s. For the flow curve at 15.0 °C a larger measurement
range was chosen: y=10"*-10° with a logarithmic ramp of
20-10* s. The frequency tests were performed at a deforma-
tion of 1% starting from 10 to 0.001 Hz with a time ramp of
20 to 1000 s. The oscillatory deformation tests at 1, 0.1, and
0.01 Hz were performed with a measurement time of 100 s
for each point. In all cases this assured that transients had
decayed.

2. FT-rheological measurements with the ARES rheometer

For the FT-rheological measurements an ARES rheometer
(Rheometrics Scientific) with a cone plate geometry (diam-
eter of 50 mm and cone angle of 0.04 rad) was used. The
ARES rheometer is a strain-controlled rheometer equipped
with a dual range force rebalance transducer (which can
measure a maximum torque of 0.01 Nm), capable of measur-
ing torques ranging from 0.004 to 10 mN m, specified by
the manufacturer. It has a high-resolution motor, applying
frequencies from 107 to 500 rad s' and deformation am-
plitudes ranging from 0.005 to 500 mrad. A water bath ad-
justs the temperature. The FT-rheological setup consists of
the ARES and a computer which either controls the rheom-
eter via a serial cable as well as it detects the strain and
torque outputs via BNC cables. The analog raw data of the
measurements are digitized with a 16-bit analog-to-digital
converter (ADC). This ADC card has a maximum sampling
rate of 50 kHz per channel. Due to the high sampling rate the
time between consecutive data points is very small compared
to the time scale of rheological experiments. The loss of
information by sampling the torque transducer data is negli-
gible [52]. To achieve best results with respect to the signal-
to-noise ratio, oversampling is applied. The ADC card ac-
quires the time data at the highest possible sampling rate and
then preaverages them on the fly to reduce random noise.
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With this method the noise is reduced by a factor of 3-5
which could only be achieved by averaging multiple mea-
surements [53]. Within the setup a 16-bit ADC card is imple-
mented, which is able to discriminate steps. The quantifica-
tion resolution of the ADC card limits the ratio. It determines
the minimum detectable intensity of weak signals by its abil-
ity to discriminate the intensity of the signal. The higher the
bit number, the smaller the detectable intensity variation
[54]. After acquisition and digitization of the time data, they
are handled with MATLAB software [50,51].

A solvent trap, equipped with a sponge drawn with water
and an additional thin paraffin layer, is used to prevent
evaporation. Frequency tests were used to compare the rheo-
logical results of the MCR 301 and the ARES rheometer. The
temperature of the ARES was then adjusted to fit the results
of the frequency tests of the MCR 301. Therefore, the FT-
rheological measurements were performed at 15.1, 18.4, and
20.9 °C with the ARES rheometer (the high-temperature dif-
ference results from a change of location of the ARES after
the measurements at 15.1 °C leading to a higher evapora-
tion). After a preshear of =100 s~! lasting 200 s and a
waiting time of 10 s, oscillatory time sweep measurements
were started. The FT signal was always recorded after some
oscillations, so that the suspension reached the oscillatory
stationary state. Measurements were performed at frequen-
cies of 1, 0.1, and 0.01 Hz at different deformation ampli-
tudes. Typically for the nonlinear FT-rheology measurements
with the time sweep tests 40 oscillations for 1 Hz excitation
were applied, whereas 10 oscillations for 0.1 Hz and 9 oscil-
lations for 0.01 Hz. To obtain a FT spectrum from the raw
time data we performed a discrete, complex, half-sided fast
Fourier transformation [5,11,49]. For further information of
the setup, the measuring principal and FT analysis, we would
like to refer to [50,51].

VI. RESULTS
A. Theoretical predictions
1. Flow curves

For given values of the parameters (v, y.,I", €) the sche-
matic theory defined by Egs. (1) and (16)—(19) enables pre-
diction of the flow curve expressing the steady shear stress o
as a function of shear rate y. Figure 1 shows a set of typical
flow curves generated by the schematic MCT model for three
fluid states (e<<0), the critical state (e=0), and three states in
the glass (€>0). The parameters employed for the theoreti-
cal calculations presented in Fig. 1 (as well as for Figs. 2-7)
are v,=100, y,=0.15, ['=100, and e=107>. Experience with
fitting the experimental data, to be considered in Sec. VI C,
shows that these choices represent sensible physical values
for the model parameters. In the fluid, there exists a linear
(Newtonian) regime for small shear rates (Pey=y/['<1),
for which the standard F';, model result for the shear viscos-
ity holds, o=/ gdtq)zq(t) = y7. Increasing the separation pa-
rameter to less negative values (corresponding to, e.g., an
increase in the volume fraction) gives rise to an increase in
7, reflecting the slowing of the structural relaxation time 7,
which dominates all transport properties within our MCT

PHYSICAL REVIEW E 82, 061401 (2010)

Flow Curves
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FIG. 1. (Color online) (Theory) The flow curves for fluid states
e=—1073, —5X10™*, —107* (green, dashed lines) at the critical
point €=0 (red, dotted line) and for glassy states e=107%, 5
X 107*, 1073 (blue, full lines). In the glass (e>0) there exists a
finite stress in the limit of vanishing shear rate, identified with the
dynamical yield stress (limj_y=0). The cross indicates the yield
stress value used in Figs. 3 and 4. Inset (a) shows the discontinuous
emergence of a dynamical yield stress as a function of e. Inset (b)
shows the viscosity n=0/7y. Calculations were performed with
7=0.

approach. For y7>1 the effect of shear starts to dominate
the structural relaxation and the stress increases sublinearly
as a function of shear rate, corresponding to shear thinning of
the viscosity 7(y)=0(y)/y. At high shear rates y7>1 the
present model yields o=7/I" and needs to be supplemented
by corrections which account for the high shear limiting vis-
cosity (and which, in the absence of HI, are determined by
the solvent contribution 7.,).

Linear response

FIG. 2. (Color online) (Theory) The linear-response moduli G|
(lines with circles) and G/ (lines with squares) as a function of Pe,,
for two state points in the fluid e=-0.001 (red, full line), —0.0005
(green, broken line), and two in the glass €=0.0005 (blue, dotted-
dashed line) and 0.001 (black, dotted line). For fluid states the finite
value of the structural relaxation-time scale is reflected in the maxi-
mum in G” and the consequent crossing of G’ and G” at low fre-
quency. The results presented here omit solvent hydrodynamics
which may become relevant at Pe,=~1 (calculations were per-
formed with 7,,=0). These will be included in a simple approxi-
mate fashion when fitting the experimental data. The two arrows
indicate the values Pe,=0.001 and 0.025 used to generate Figs. 3
and 4, respectively.
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FIG. 3. (Color online) (Theory) The stress response of a glassy
state to oscillatory strain calculated from our MCT-based theory for
strain amplitudes from y,=0.01, 0.03, 0.05, 0.07, 0.10, 0.15, and
0.20. The associated Lissajous figures illustrate the nonlinear char-
acter of the response. The increase in dissipation with increasing 7,
is reflected by the increasing area enclosed by the Lissajous curves.
All calculations were performed at Pe,=0.025 and €=0.001. The
red horizontal broken lines indicate the dynamic yield stress ob-
tained from the flow curve in Fig. 1 for €=0.001 (0,=0.2763). The
response becomes clearly nonlinear when the maximum of o(z)
approaches the dynamical yield stress. The blue horizontal dotted
lines provide an upper bound for the maximum of the time-
dependent stress and are taken from the corresponding flow curve in
Fig. 1.

As €— 07 the regime of linear response shifts to increas-
ingly lower values of the shear rate and disappears entirely at
the (ideal) glass transition, e=0. For states in the glass there
exists a finite stress in the limit of vanishing shear rate, iden-
tified as the dynamical yield stress [lim, , o(y)=0,].
Within idealized MCT-based treatments the dynamical yield
stress emerges discontinuously as € is varied across the glass
transition (shown in the inset of Fig. 1). It should be men-
tioned that the flow curves shown in Fig. 1 differ quantita-
tively from those of the extensively studied F7, model [26]
due to the inclusion of an additional prefactor A(z,t') in the
expression for memory function (18). Nevertheless, the
qualitative predictions of the theory for the flow curves are in
full agreement with those of the F}, model.

2. Linear response moduli

The linear storage and loss moduli, given by Egs. (7) and
(8), respectively, are shown in Fig. 2 as a function of

10.2
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4-0.2
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10.2
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4-0.2
1-0.4

%=0-15 104
10.2
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FIG. 4. (Color online) (Theory) As in Fig. 2 (¢=0.001) but for a
lower frequency Pe,=0.001. At this value of Pe, the system is
almost perfectly elastic in the linear regime (G’ > G” for y,<<1; see
Fig. 4). As the time-dependent stress exceeds the dynamical yield
stress the signal becomes clipped. At this frequency o, lies very
close to oy and has thus been omitted for clarity.

Pe,=w/I" for two fluid states (e<<0) and two glassy states
(e>0). In the fluid, the finite value of the structural
relaxation-time scale 7 is reflected in the maximum of G”
and the crossing of G’ and G” at low frequency. The fact that

2
£ Nonlinear Response
r Pe =0.025
— Pe _=0.001
NP ®
U
oo | ﬂ/e"
o S— Seenl
L ~ .
.
-1 .,
£ Ll | | N

0g;4 7

FIG. 5. (Color online) (Theory) The theoretical G| and G/ as a
function of strain for €=0.001 at frequencies Pe,=0.025 and Pe,
=0.001. Points are the numerically calculated data points; lines are
guide for the eyes. For large values of the strain the numerical data
are well fitted by the power laws G”~ ;" and G’ ~ )/62" with v
=0.65 (indicated by dotted lines).

061401-9



BRADER et al.
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FIG. 6. (Color online) (Theory) The theoretical intensities of the
third, fifth, seventh, and ninth harmonics which contribute to the
nonlinear stress response shown in Fig. 2. At strains approaching
unity the collective contribution of the higher harmonics accounts
for approximately 50% of the total o(f) signal (e=1073 and Pe,
=0.025).

G’ remains notably larger than G” at high frequencies is
simply a result of neglecting the high-frequency limiting vis-
cosity 7., in presenting our theoretical predictions. Setting
7.=0 in presenting the theory highlights the contribution of
structural processes to the viscoelasticity. In the glass, G”
goes to zero at low frequencies (G”~w) and G’ attains a
finite low-frequency value, identifying the transverse elastic
constant G,.. Within our MCT approach, the elastic constant
appears discontinuously upon crossing the glass transition
li.e., lim, .y G'(w) jumps from zero for e—0~ to a finite
value for e—0*] thus demonstrating that the MCT indeed
describes a transition to an amorphous solid.

3. Nonlinear stress response

By numerical solution of the equation of motion [Eq.
(17)] we obtain the non-time-translational invariant density
correlator ®(z,¢') and, via Egs. (1) and (16), the nonlinear
stress response. The numerical algorithm requires the equa-
tion of motion to be discretized over the entire two-

1L Higher Harmonics (phase shifts)
= 5n/2

3n/2

< -
o 0F
g A
—1? Pe =0.025
[ e=0.001
{1 L !
2 0

-1
Iog10’Y0

FIG. 7. (Color online) (Theory) The theoretical values for the
first, third, and fifth phase shifts which contribute to the nonlinear
stress response shown in Fig. 2. It should be noted that the phases
are only physically meaningful, i.e., contribute significantly to the
total o(¢) signal when the corresponding intensities shown in Fig. 6
are non-negligible (=103 and Pe,=0.025).
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dimensional (z,¢') plane. While considerations of both cau-
sality (r>1') and the periodicity of the correlator with
respect to a translation in time [P(r+1,,1" +1,)=D(z,1’),
where t,=7/w] enable certain simplifications to be made,
calculation of the correlator over many decades in time re-
mains a computationally demanding task.

Typical examples of the response o(z) for a glassy state
(€=0.001) are shown in Fig. 3 for various values of the strain
amplitude v, at a fixed frequency. Alongside each of the time
series we show the corresponding Lissajous curves indicat-
ing the extent of the dissipation [via the area enclosed, see
Eq. (14)] and the deviations from nonlinearity (discernible
from the nonellipticity of the loop). The value of € employed
to generate this figure generates a dynamic yield stress o,
=0.2763, which is indicated in each panel of Fig. 3 by a
broken red line. This can also be read-off from the appropri-
ate flow curve in Fig. 1.

For small amplitudes y,=0.01 the system is almost linear
and responds in a predominately elastic fashion at the con-
sidered frequency. As 7, is increased, clear deviations from a
sinusoidal response are apparent and higher harmonics start
to contribute to the signal. In this nonlinear regime the stress
response exhibits a characteristically flattened peak, with an
asymmetry which increases as a function of y,. It is clear
from the figure that the higher harmonics first become sig-
nificant when the maximum value of the stress of(f) ap-
proaches the dynamic yield stress. An idealized yield stress
material, subject to large amplitude oscillatory shear of van-
ishing frequency, would be expected to show a steady in-
crease of the stress up to the yield point, beyond which the
system begins to flow, maintaining o(r)= o, until the reversal
of strain enables relaxation back to zero. If this was the case,
then o(¢) would be represented by a “clipped” signal, sym-
metric during loading and unloading of the sample.

The results presented in Fig. 3, however, have been gen-
erated for a low, but not vanishingly small, frequency. At
finite frequency the maximum stress attainable in a system
under steady shear is given by o, = o(yyw), where a(y) is
the stress on the steady shear flow curve. This maximal stress
under flow, 0y, 1s indicated by a blue dotted line in Fig. 3
for the four largest strain amplitudes considered. In each
case, once the stress exceeds the yield point the curve flat-
tens, exhibiting a maximum which remains bounded from
above by oy, In the low-frequency limit the lower and
upper bounds to the peak value of o(r) become equal, 0y,
=0,, such that the signal becomes clipped at the yield point.
In order to test this hypothesis further, we show in Fig. 4
stress responses generated using the same parameter set as
employed in Fig. 3, but for a frequency one order of magni-
tude lower. At this reduced frequency, the clipping of o(r) at
yield is quite clear, although the peak stress still slightly
exceeds o, due to the fact that the values of the strain-rate
amplitude are not sufficiently small that o,,,, has saturated to
ag,.

’ Two additional comments are in order regarding the
results shown in Figs. 3 and 4. First, for low frequencies
(e.g., the data shown in Fig. 4) the full time-dependent stress
signal can be rather faithfully reproduced by a simple
approximate expression. Defining o(f) = y[G|(w)sin(wt)
+G(w)cos(wr)] the stress is well approximated by
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1), =0,
o) = {01( ), o1=o0, (26)
oy, O > oy,

where G| and G are the lowest-order coefficients in Fourier
series (10). In order to describe correctly the subyield re-
sponse, o(t) = a,, it is necessary to incorporate the y, depen-
dence of the lowest-order coefficients. It is also noteworthy
that it is the dynamic, yield stress, which plays the crucial
role in determining the time-dependent o(z). While the im-
portance of dynamic yield in determining the oscillatory re-
sponse is clear within the present approach, it remains to be
seen whether this is a constraint introduced by employing a
prescribed strain or, more significantly, an indication that the
dynamic and static yield stresses are identical within our ap-
proximate theory. Simple approximation (26) contains higher
harmonic contributions as a result of the yield stress clipping
criterion.

4. Fourier analysis

In order to provide a more systematic analysis of the time
signal o(t), we now consider its decomposition into the Fou-
rier modes and investigate the behavior of the coefficients
entering series (10) and (13) as a function of y,. We address
first the strain amplitude dependence of G| and G, thus
mimicking the ubiquitous “strain sweep” experiments gener-
ally used to assess the nonlinear response of a given material.
In Fig. 5 we show typical results for the lowest-order coef-
ficients as a function of strain for two different values of the
excitation frequency.

For small values of v, linear response is recovered and
the values of G| and G| may be read-off from the data shown
in Fig. 2. The linear-response regime persists up to around
%=0.01, beyond which G begins to increase gradually,
reaching a maximum value at around y,=0.1. As noted in
Sec. I C, the coefficient G} is proportional to the amount of
energy dissipated per oscillation cycle. The increase in dissi-
pation observed over the range y,=0.01—0.1 is probably
connected to the increasing disruption of the microscopic
“cage” structure of dense glassy systems, induced by the
externally applied strain field. However, such microscopic
interpretations remain purely speculative within the present
context of schematic model calculations, for which there is
no explicit spatial resolution of correlated density fluctua-
tions.

Deeper insight into the microscopic mechanisms underly-
ing the observed macroscopic response would be provided
by solution of the full equations presented in [20]. The in-
crease in G is associated with a decrease in G| as a function
of 9. In contrast to G, there exists no simple physical in-
terpretation of the coefficient G| in the nonlinear regime. For
strain amplitudes exceeding y,=0.01 the recoverable elastic
energy becomes distributed over G| and the higher harmon-
ics, such that G| loses its special status as a “storage modu-
lus.”

For y,>0.1 the dissipation G| becomes larger than G|,
indicating a crossover from predominately elastic to pre-
dominately viscous response, and both functions exhibit a
monotonic decay. For values of the strain amplitude larger
than unity a regime of asymptotic decay is entered, charac-
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terized by a well-defined power-law dependence. We find
that the numerically generated data are well fitted by power
laws G"~ ;" and G|~ 95", with v=0.65 (+0.02) and v’
=2v. Moreover, calculations performed at various frequen-
cies show that the exponent values are independent of w and
thus seem to represent a universal aspect of the asymptotic
decay within the schematic model. While the numerical find-
ings are suggestive of a universal exponent v, analytical cal-
culation of its precise value has so far proved elusive. The
primary difficulty in extracting v from the theory is that,
even in the asymptotic regime, the correlator ®(z,¢') retains
a residual dependence on the waiting time ¢ which does not
yield readily to analytic treatment. The integral for stress (1)
thus consists of a complicated superposition of correlators
for different values of ¢'.

An important numerical prediction of the schematic
model is that the exponents dictating the decay of G’ and G”
are related, to within numerical accuracy, by a factor of 2.
The relation v’ =2v has been observed in experimental stud-
ies of a variety of soft materials (see Sec. VI C for more
details on this point) and it would therefore be of consider-
able interest to investigate this apparent prediction of our
model in more depth. The relationship v'=2v is found also
in the simple nonlinear Maxwell models [26,43] and is thus
not particularly surprising. Such models inevitably predict
the trivial exponents v=1 and v’ =2. The numerical data ob-
tained by Miyazaki et al. [43] from solving their microscopic
MCT theory are consistent with the exponent relation v’
=2v but predict a value of v=0.9 (obtained by fitting the
numerical data), which differs somewhat from the experi-
mental value »=0.7 for polymethyl methacrylate (PMMA)
colloids presented in the same work. Whether the value v
=0.9 from the MCT calculations in [43] is influenced by the
additional isotropic approximations employed remains un-
clear.

The coefficients G| and G| discussed above describe the
response at the fundamental frequency. We now consider the
contribution of the higher harmonic terms to the stress sig-
nal. Due to the y(r)=—7(r) symmetry of o(t), even coeffi-
cients in Fourier series (13) are identically zero within the
schematic theory (a condition which provides a useful check
for our numerical algorithms). In Fig. 6 we show the inten-
sities of the odd harmonics (normalized by I;) up to n=9 for
a glassy state, obtained by applying a discrete Fourier trans-
form to the time series o(z). For very small amplitudes 7,
<0.01 the numerical solution of the equation of motion for
®(r,1") becomes unreliable as the structural relaxation time
exceeds the range of the numerical grid upon which the os-
cillating function d(¢,1") can be resolved. Data are thus pre-
sented for y,>0.01 where accurate converged solutions can
be obtained. At strain amplitude y,=0.01, only /5 contributes
significantly to the signal (around 3%). As the v, is increased
beyond 0.01, the increasing influence of /5 is accompanied
by the appearance of terms Is, I; (beyond ,=0.03), and I,
(beyond y,=0.07). Although intuitive, it is not clear a priori
that the higher harmonics must necessarily appear in se-
quence n=3,5,7,... upon increasing the amplitude. All of
the 7,~ 3 exhibit a maximum in the range 0.3<vy,<1 and by
¥y=1 contribute approximately half of the total signal,
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FIG. 8. (Color online) (Simulation) The stress response mea-
sured in the Brownian dynamics simulations of a binary hard-disk
mixture under oscillatory flow. A size ratio of 1:1.4 was used to
suppress crystallization. The considered strain amplitudes range
from y,=0.01 to y,=10. The left column of figures shows the as-
sociated Lissajous curves illustrating the nonlinear character of the
response. The simulations are performed at ¢, =0.81 (slightly be-
yond the glass transition according to our simulation estimates).
The Peclet number is Pe,=0.05).

2,>1 1,/1;~0.5. The maximum and subsequent decay of the
higher harmonics has also been observed in [55].

Complementary to the higher harmonic intensities are the
phase shifts &, shown in Fig. 7. It should be noted that the
phases are only physically meaningful for amplitudes at
which the corresponding intensity is significant. As 7, is in-
creased toward unity the phases saturate to the asymptotic
values &,=m/2, &=3m/2, and 85=57/2. The higher har-
monic contributions 7, and ¢J,, which contribute for v,
>0.01, describe the distortion of () close to the yield stress
(cf. Figs. 3 and 4).

B. Simulation results

In Fig. 8 we show the stress response measured in our
Brownian dynamics simulations of a binary hard-disk mix-
ture. As the strain amplitude is increased the simulated stress
evolves from a linear to a nonlinear response for y,>0.03.
Consistent with the theoretical results shown in Fig. 3, the
time-dependent signal becomes distorted away from a pure
sinusoid when the peak of o() encounters the dynamic yield
stress. Although the Peclet number Pe,=0.05 is close to that
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FIG. 9. (Color online) (Simulation) The simulation G| and G}
as a function of strain for two-dimensional volume fraction of 0.81
and Peclet number Pe,=0.05. For large values of 7, the moduli
obey the power laws G|~ ;"% and G| ~ v, .

employed in the theoretical calculations used to generate Fig.
3, the onset of the yield stress clipping effect, already mani-
fest in Fig. 3, is not clear in the form of o(¢) shown in Fig. 8.
It would therefore seem likely that considerably smaller val-
ues of the Peclet number are required to observe this effect in
our two-dimensional simulations. Nevertheless, the general
form of the nonlinear stress is very similar on a qualitative
level to that predicted by the schematic model in Fig. 3. Both
simulation and theory exhibit a flattened and asymmetric
peak which is skewed to the left.

In order to analyze more closely the stress signal we show
in Figs. 9—11 the fundamental coefficients, higher harmonic
intensities, and phase shifts, respectively. The dependence of
G, and G/, on 7, is strongly reminiscent of that predicted by
the schematic model (Fig. 5). Within the range 0.01 <1y,
<0.06 the system begins to deform plastically leading to a
reduction in G| and an increase in G| (and cross at 7,
=0.05), reflecting the increasing importance of dissipative
processes. The height of the peak in G is rather less pro-
nounced than that predicted by the schematic model. Beyond
v9=0.06 both G| and G/ decrease monotonically, exhibiting
an asymptotic power-law decay which is well described by
the power laws G|~ ;" and G|~ 7;"*°. Although these

| Higher harmonics (amplitudes)

n
T T T T

FIG. 10. (Color online) (Simulation) The normalized intensities
of the third and fifth harmonics contributing to the nonlinear stress
response shown in Fig. 8.
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FIG. 11. (Color online) (Simulation) The phase shifts of the first
and third harmonics contributing to the nonlinear stress response
shown in Fig. 8.

values do not satisfy perfectly the empirical relation v’ =2,
the deviation of the simulation exponent ratio v'/v=2.13
may well be attributable to numerical error. Despite this dis-
crepancy, the absolute values of the exponents v=0.68 and
v'=1.45 compare well with those emerging from the sche-
matic model (v=0.65 and v'=1.3). The schematic model
considered in the present work would thus seem to be more
realistic than either a simple Maxwell model (v=1 and »'
=2) or the microscopic MCT approach of Miyazaki er al.
(»=0.9 and v'=1.8) at least on the basis of our simulation
results.

In Fig. 10 we show the intensities of the third and fifth
harmonics as a function of 7, Higher order terms were
found to be highly susceptible to the effects of statistical
noise in the simulation data and have thus been omitted.
Upon increasing the strain amplitude beyond 7,=0.03 the
system leaves the linear-response regime and the contribu-
tion of the third harmonic grows. For strains exceeding
around 0.1 the fifth harmonic also begins to play a significant
role in determining the stress response. In keeping with the
schematic model predictions, both I3/, and I5/I,; exhibit a
maximum, albeit more sharply peaked and shifted to slightly
larger strain values approaching unity. The corresponding
phase shifts also share the general features of the schematic
model predictions, in particular, for large values of y, we
find that &, &, and J5 saturate to w/2, 37/2, and 57/2,
respectively. These results suggest that series (13) reduces to

©

o) = %> Lya(o)(=1)"cos[2n+ Der]  (27)

n=1

for large values of y,.

C. Experimental results
1. Flow curves and linear-response moduli

In Fig. 12 we show the experimentally measured flow
curves and in Fig. 13 the linear-response moduli for three
different temperatures (corresponding to three different vol-
ume fractions). Reduced units are employed for both the
control parameters,
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FIG. 12. (Color online) (Experiment) Symbols: the experimen-
tally measured flow curves for three different temperatures, T
=20.0 °C (¢e;=0.57), T=18.0 °C (¢pr=0.60), and T=15.0 °C
(per=0.65). Lines: theoretical fits to the data using the parameters
in Table I.
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(where D, is obtained from the solvent viscosity using
Stokes’ law), as well as for the shear stress and the moduli,
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For small Peclet numbers the flow curve measured at 20 °C
(corresponding to ¢.4=0.57) shows a first Newtonian pla-
teau. As Pe is increased we observe a decrease in viscosity,
followed by a second Newtonian plateau, both of which are
typical for a shear thinning fluid. The viscoelastic character
of the sample at 20 °C is demonstrated by the linear-
response moduli shown in Fig. 13. For intermediate frequen-
cies G’ and G” cross, indicating the presence of a structural
a-relaxation process.

The flow curve measured at the lower temperature 18 °C
(er=0.60) displays a more pronounced plateau region.
However, for the lowest shear rates investigated a slight de-
crease from the plateau is evident, suggesting the existence
of an « relaxation time which has shifted out of the experi-
mental frequency window. The corresponding linear moduli
shown in Fig. 13 show a plateau in G’ characteristic of an
arrested state (see, e.g., [56]). The plateau at intermediate
values of Pe,, is followed by a decrease for small Pe,, values,
consistent with the existence of a crossover point and, there-
fore, a fluid relaxation. This is especially apparent in G”(w)
which continues to rise as the frequency is decreased. Ex-
trapolation of the measured data to lower frequencies sug-
gests Pel %~ 107°-1077, where G’ and G” cross. For the
lowest temperature investigated, 15 °C (¢.;=0.65), the flow
curve exhibits a constant plateau down to the lowest values
of Pe and the storage moduli remains constant at low Pe,,.
The sample at 15 °C may thus be considered as a glass for
which additional “hopping” processes lead to an increase in
G" at low frequencies.
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FIG. 13. (Color online) (Experiment) Symbols: the experimen-
tally measured linear-response moduli for three different tempera-
tures, 7=20.0 °C (¢hor=0.57), T=18.0 °C (¢4=0.60), and T
=15.0 °C (¢hey=0.65). Lines: theoretical fits to the data using the
parameters in Table I.

The procedure by which experimental data may be fit us-
ing the schematic F}, model in [26] is already well docu-
mented [31]. Fitting the experimental data for the flow curve
and linear moduli using the present schematic model pro-
ceeds analogously. For a given volume fraction, a fixed set of
model parameters may be found which fit both the flow
curve and the linear moduli. It is thus possible to determine
the separation parameter €, the vertex v, and the decay rate
I'. The parameter vy, is obtained as an additional parameter
for the description of the flow curve. The high-frequency
viscosity 75 is only important for the frequency spectrum
(and is connected with the high shear viscosity 77 via 77
=7%+v,/(2I') [30]). Fixing the parameters by these two ex-
periments in the linear viscoelastic and the steady state de-
termines all information needed to calculate the nonlinear
oscillatory behavior (parameters are summarized in Table I).
Therefore, the experimental data sets of the deformation
sweeps (Figs. 14-16) and the oscillatory time tests (Figs. 17
and 18) are solely described by the theory of Sec. IIT and the
fixed parameter sets obtained by fitting Figs. 12 and 13 with-
out further modification. In this sense, the theoretical results
to be presented for large amplitude oscillatory shear are pre-
dictions, as no further fitting is required.

2. Nonlinear response

The nonlinear regime has been tested using two different
experiments: deformation sweeps at 1, 0.1, and 0.01 Hz (see
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FIG. 14. (Color online) (Experiment) Strain sweeps at three dif-
ferent frequencies for the temperature 15.0 °C. Circles: experimen-
tal data. Lines: theoretical fits using the parameter set
(€,v4,I",y,,%) obtained by simultaneously fitting the flow curves
(Fig. 12) and linear-response moduli (Fig. 13).

Figs. 14-16) and oscillatory time series measured at 1, 0.1,
and 0.01 Hz for various deformation amplitudes ranging
from the linear to the nonlinear regime (see Figs. 17 and 18).
The complete set of nonlinear oscillatory data is solely de-
scribed by the schematic MCT employing the parameter sets
determined by the fitting procedure described above.

In Fig. 14 we show the results of strain sweep experi-
ments at 15 °C (¢.=0.65) for three different values of Pe,,
For strains up to around 1% the system shows linear-
response behavior, beyond which dissipation starts to in-
crease, leading to a growth of G” up to a maximum in the
range of 10—20 % strain. The growing dissipation and even-
tual crossing of G’ and G” as a function of 7, indicate the
breaking of microscopic particle cages.

For higher deformations G’ and G” display a power-law
decay. The exponents v and v’ obtained at different tempera-
tures and frequencies are given in Table II.

TABLE I. Schematic model parameters obtained by fitting experimental data for the flow curves (Fig. 12)
and linear-response moduli (Fig. 13). These parameters are then used to make theoretical prediction for large

strain amplitude oscillatory experiments.

T
(OC) ¢eff € Vo r Ye /es
20.0 0.57 -2.45%x1073 59 100 0.18 42
18.0 0.60 -22x10™* 85 100 0.19 36
15.0 0.65 5%107° 115 105 0.28 24
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FIG. 15. (Color online) (Experiment) Strain sweeps at three dif-
ferent frequencies for the temperature 18.0 °C. Circles: experimen-
tal data. Lines: theoretical predictions.

The theoretical predictions shown in Fig. 14 are in good
agreement with the experimental data and capture both the
height and location of the maximum in G’ rather well, al-
though the departure from linear response appears to be less
abrupt than in experiment, indicating a more gradual break-
ing of cages with increasing 7y,. We note that the discrepancy
between theory and experiment in the linear-response regime
for the lowest frequency considered has its origins in the
linear moduli fits presented in Fig. 13. For glassy states there
occur additional physical relaxation processes at low fre-
quency which are manifest in an upturn of the linear re-
sponse G"(w) at low frequencies and which are not captured
by mode-coupling based theoretical approaches. Particularly

Nonlinear Response 20°C
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FIG. 16. (Color online) (Experiment) Strain sweeps at a fixed
frequency Pe,=0.019 17 for the temperature 20 °C. Circles: ex-
perimental data. Lines: theoretical predictions.
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FIG. 17. (Color online) (Experiment) The stress response mea-
sured in LAOS experiments for strain amplitudes from y,=0.03 to
Yo=5 (black line) and the associated Lissajous figures illustrating
the nonlinear character of the response. The experiments are per-
formed at 7=15.1 °C a glassy state and at a frequency of 1 Hz
(corresponding to Pe,=0.025 33). At y,=0.03 the response is al-
most entirely elastic, emphasizing the proximity of the quiescent
state to the glass transition. At yy=5 the system is almost purely
viscous. The increase in dissipation with increasing 7, is reflected
in the increasing area enclosed by the closed Lissajous curves. The
yield stress is indicated by the broken red lines. Theoretical results
are given by broken blue lines.

significant is the agreement between theory and experiment
in the large strain regime for which the cage structure has
been broken up by the applied flow. The power-law decay of
the experimental data is well described by the theoretical
exponents v=0.65 and »'=1.3.

Both the numerically obtained theoretical results and ex-
perimental data shown here demonstrate the exponent rela-
tion ¥’ =2 (as in the theory in [43]). It is interesting to note
that although this relation does not appear to be truly univer-
sal, broadly similar behavior has been found for a variety of
different materials, all of which show the deformation behav-
ior classified by Hyun er al. [57] as type III (weak strain
overshoot). A few examples are, e.g., a Xanthan gum solu-
tion [7] with v'=—-1.53, v=0.64, and a ratio v'/v=2.4, an-
chor spreadable butter and promise spread which yield expo-
nents —2.1<p'<-2.0 with »=-0.9 and a ratio of v'/v
=2.3 or the hard-sphere solution of Miyazaki et al. [43]
(PMMA spheres of 197 nm in a mixture of decaline and
cycloheptylebromide) which show v=0.7 and v'=1.4.
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FIG. 18. (Color online) (Experiment) As in Fig. 17 but at a
frequency of 0.1 Hz (corresponding to Pe,=0.002 533). Full black
lines: experimental data. Broken blue lines: theoretical results. The
yield stress is indicated by the broken red lines.

In Figs. 15 and 16 we show further strain sweep measure-
ments for temperatures 18 °C (¢e;=0.60) and 20 °C (g
=0.57). The strain sweep measured at 20 °C is particularly
well described by the theory and, taken together with the
results shown in Figs. 12 and 13, demonstrates the accuracy
with which the present schematic model may be used to
describe the flow curve, linear moduli, and strain sweep data
of a dense colloidal fluid using a single fixed set of model
parameters.

For the oscillatory time series the schematic model calcu-
lations and the simulation are in good agreement with the
experimental data. The direct comparison of theory and ex-
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periment for two frequencies (1 and 0.01 Hz), respectively,
and the Peclet numbers (Pe,=0.025 and 0.0025) is given in
Figs. 17 and 18. For small deformations, a linear viscoelastic
behavior is indicated by the nearly perfect sinusoidal output
signal but becomes distorted as the strain amplitude is in-
creased. For Pe,=0.025 the stress signal displays flattened
asymmetric peaks at intermediate values of 7,, consistent
with a regime of cage breaking around y,=1,. In contrast to
the MCT predictions, the data show a pronounced dip at the
top of the asymmetric peak. For high deformations, the peak
shape approaches a semispherical shape with a vanishing but
still visible dip or overshoot at the beginning edge of the
peak. The stress wave form at intermediate amplitudes re-
sembles qualitatively that observed in both wormlike micel-
lar solutions [58] and entangled polymer solutions [59] when
subject to large amplitude oscillation.

For the smaller frequency at Pe,=0.0025 indications of
the effect of the merging o,,,,, and the yield stress are found.
The peaks show in the intermediate and high deformation
range a more cutoff shape, although the dip still remains, in
contradiction to the MCT. The peak shape for middle v,
drops faster in the experiment as for the more boxlike shape
of the MCT time signals. However, this shape is found in the
experiment for high v, as well. The fact that the stress mea-
sured at the lowest frequency (Fig. 18) appears to show a
clipping above the dynamic yield stress may provide a sig-
nature of a static yield stress in the system. All together the
experiments and the theory fit well for all compared Peclet
numbers and amplitudes, although some small deviations of
the shape exist. The predictive character of the schematic
MCT model for the oscillatory time series is remarkable due
to the fact that the shapes are not fitted but calculated with
the parameter set defined from the flow curves and the fre-
quency test in the linear viscoelastic regime.

3. Fourier analysis

In order to provide a more detailed analysis of the time
series shown in Figs. 17 and 18 we have calculated the in-
tensities and phase shifts [see Eq. (13)]. The phase shifts are
calculated from the real and imaginary parts of the Fourier-
transformed signal. Representative fast Fourier transform
(FFT) spectra are shown in Fig. 19 for the measurements
made at 15.1 °C, 1 Hz, and for amplitudes y,=0.03 and 1.
The spectrum demonstrates that at this low strain amplitude

TABLE II. Experimentally measured values of the exponents v and v dictating the decay of G’ and G”

as a function of v, for large values of 7.

T S
(°C) Dot (Hz) v v v /v
15.0 0.65 1 -0.63 -1.26 1.99
15.0 0.65 0.1 -0.74 -1.40 1.89
15.0 0.65 0.01 -0.79 -1.56 1.97
18.0 0.60 1 -0.63 -1.30 2.06
18.0 0.60 0.1 -0.71 -1.42 2.00
18.0 0.60 0.01 -0.82 -1.63 1.98
20.0 0.57 1 -0.63 -1.25 1.98
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FIG. 19. (Experiment and theory) FFT spectra of the oscillatory
time test signals. The experiment was performed at 15.1° and 1 Hz.
(a) (experiment) and (b) (theory) are the FFT spectra at y,=0.03
and (c) (experiment) and (d) (theory) at an amplitude of y,=1.

the higher harmonics do not contribute significantly and have
an intensity only around 0.1% of the basic harmonic ;. Al-
though peaks for even and odd harmonics are visible, their
low intensities are not far away from the noise level. We
therefore consider this measurement to be within the linear
viscoelastic range.

At the same conditions the MCT calculations show a
rather different picture [see Fig. 19(b)]. Although the time
signals for this 7y, do not deviate strongly from the experi-
mental equivalent (see Fig. 17), the effect in the Fourier
spectrum is noticeable (see Fig. 19). Up to the 11th harmonic
all odd harmonics can be clearly separated from the baseline,
with I5/1; around 10%. Furthermore, in the theoretical FFT
spectrum an exponential decay of the intensities is apparent,
a feature which first becomes evident in the experimental
data for 9y =0.158. At the larger strain amplitude, y,=1, the
MCT calculations and the experimental FFT spectra are very
similar [see Figs. 19(c) and 19(d)]. The present theory thus
provides a qualitative description of the higher harmonics
which becomes quantitative as the strain amplitude becomes
significant (y,~ 1). The theory provides a sensible interpo-
lation between linear-response and large amplitude regimes,
both of which are captured accurately.

PHYSICAL REVIEW E 82, 061401 (2010)

Some insight into the origin of the discrepancies at small
excitation amplitude may be obtained by considering the the-
oretical predictions for the buildup of stress following the
onset of steady shear flow (see also [33]). Within the elastic
regime (i.e., well below the “stress overshoot” identifying
the yield strain) the system should display the Hookian be-
havior with a clearly defined elastic constant. However, sche-
matic model calculations of the stress for this protocol (either
using the present model or the F7, model in [26]) exhibit
deviations from the Hookian behavior at small strains. This
feature of the schematic models is related to the slowness of
the B decay of the transient density correlator onto the pla-
teau. We can thus speculate that the discrepancy between the
Fourier spectra of theory and experiment at low values of v,
may be due to the excessively slow decay of the correlator to
its plateau value, which is an inherent feature of any model
based on the original schematic F, model [25,39,40].

In Fig. 20(a) the amplitude dependence of the experimen-
tally measured third harmonic is shown for three different
frequencies in the glass (15.1 °C). It can be seen that as the
frequency is reduced, the onset of the nonlinear regime, in-
dicated by increase of the normalized third harmonic inten-
sity, moves to lower values of 7,. In Fig. 20(b) we show the
same quantity at a fixed frequency of 1 Hz for three different
temperatures. Surprisingly no strong influence of a change in
the volume fraction is found, apart from a small deviation in
the onset of the nonlinear regime in the glassy state, which is
shifted to higher deformations. The only significant deviation
for the volume fractions considered occurs at intermediate
deformations, as the starting and end values coincide.

The phase shifts are given for the measurement at 1 Hz
(Pe,=0.025) and 15 °C in Fig. 20(c). In the case of the
fundamental &; the phase shift is found as expected to start at
0° for small amplitudes and to end at 90° for high deforma-
tions, which corresponds to a cosine. The curve progression
of the experimental data and the MCT calculation fits per-
fectly for ;. The theory deviates for the phase shifts of the
higher harmonics due to the excessive contribution of non-
linearities at lower v,. However, the limiting values for high
deformations are found to coincide (5 for &, 37” for &5, and
3T for &).

We have also included the data from our two-dimensional
simulations into Figs. 20(c) and 20(d). In order to obtain a
reasonable comparison we found it necessary to empirically
multiply the strain employed in the simulations be a factor of
3, 70=3y5i’”. That such an empirical rescaling is necessary is
not surprising given that only qualitative comparison is to be
expected when comparing three-dimensional experimental
results with those of two-dimensional simulations. It is there-
fore gratifying that the phases of the rescaled ;™ are found
to describe the experimental data very well, not only for &,
but also for &; and Js.

The experimentally measured /5//; at 15.1 °C and 1 Hz is
found to indicate the onset of the transition from linear to
nonlinear regime at around y,=0.04—0.05. This can be seen
by comparing with the strain sweep data. It shows the maxi-
mum of G” at y,~0.16, which is connected with the break-
ing of the cages. This value could be correlated with the
raising of I5/I; above the “noise” level of 0.1%-1,/1;. The
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FIG. 20. (Color online) (Experiment, simulation, and theory) (a)
I5/1; at 15.1 °C for different frequencies (red circle: 1 Hz; black
square: 0.1 Hz; and blue triangles up: 0.01 Hz). (b) Temperature
dependence of I5/1; at 1 Hz: 15.1 °C (blue squares), 18.4 °C (red
circles), and 20.9 °C (green triangles down). (c) Experimental
phase shifts (symbols) for 15.1 °C at 1 Hz. The simulation data are
plotted versus y,=3%," as thin lines. The MCT calculations are
given in thick lines. The phase shifts are &, (red triangles up and
dotted lines), &; (blue circles and dashed lines), and &5 (black
squares and solid lines). (d) Normalized intensities at 15.1 °C and 1
Hz; symbols mark the experimental data, thick lines the FFT of the
MCT time signals, and thin lines the shifted simulation results: /,/1;
(green triangles down and solid line), I3/1; (red triangles up and
dotted lines), Is/I; (blue circles and dashed lines), and I;/1; (black
squares and solid line).

description of I3/1; is possible with the formula obtained by
Wilhelm (Z5,()=A{1-[1+(By,)]™'}) [5]. For all experi-
mental data the exponent ¢ or the slope of the increase is
found to be in the range of 2.2-2.7. The rescaled simulation
results for the harmonics describe the experiment rather
closely, whereas the MCT calculations are found to show a
different behavior. All odd harmonics start at low 7, at
higher values, whereas for high deformations the intensities
coincide with the experimental results. Thus, also the slope
of I3/I; in this diagram changed to c=1.7 instead of the
experimental ¢=2.7. These discrepancies between experi-
ment and theory may well be attributable to the slow decay
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of the correlator to the plateau, as discussed above.

Whereas the mode-coupling calculations show a very
early transition from the linear to the nonlinear regime at y
~0.01 (see Figs. 14-16), for reasons discussed above, the
experiments for the frequencies and temperatures investi-
gated show a deviation from linear behavior at 7y
~(.04-0.05. For the rescaled simulation results of Fig. 9,
the deviation starts at y=0.03. The onset of the yielding
process is correlated with the onset of higher harmonics,
starting with the third harmonic [see Fig. 20(d)]. Although
the difference of the onset and intensity of the higher har-
monics between theory and experiment is significant, the
time signals are only slightly influenced (Figs. 17 and 18).
The FFT is a very sensitive method to analyze the time sig-
nals, so very small deviations in the time signal can cause a
remarkable difference in the spectra. Increasing the strain
amplitude results in more asymmetric time signals with
maxima and minima shifted to the left.

It was found in experimental, theoretical, and simulation
strain sweeps that the maximum of G lies very close to the
crossing point of Gj(7y,) and G'(y,). For the glassy sample
(¢=0.65) this point was located at y=0.15. Beyond this
value, the fifth harmonic begins to increase, which can be
seen in Fig. 20(d) for the experimental and rescaled simula-
tion data. The theoretical time signals do not show such a
sharp transition from the linear to the nonlinear regime. Fur-
thermore, the simulation data start at higher intensity ratios
as the experiment, an effect even more pronounced for the
theoretical data. The schematic model thus predicts a more
gradual transition between solid and fluid. The onset of the
fifth harmonic was also found for micrometer sized particles
[60] to be correlated with the crossing point of G| and G.
The view that the yield strain is indicated by the onset of the
fifth harmonic is supported by the results of Le Grand and
Petekidis [61]. For larger deformations, the time signals
show a strain softening behavior, which is typical for shear
thinning fluids. The phase shifts of experiment, simulation,
and theory approach the limiting values of n-7/2, where n is
the index of the harmonic. In addition, the harmonics for
theory and experiment show the same limiting values at large
v, for each harmonic (21% for I5/1,, 10% for Is/1,, 6% for
I;/1;, and 4% for Iy/I,). Furthermore, the theoretical har-
monics exhibit a slight decrease at the highest calculated
strains, which is not observed in the experimental data per-
haps due the choice of a too small measurement range. In the
simulation the decrease of the intensities is much more pro-
nounced for high deformations, as the intensities do not
show a plateau but only a maximum (at 18% for I5/1, and at
8% for I5/1)).

VII. CONCLUSION AND OUTLOOK

We have used a combination of theory, experiment, and
simulation to investigate the nonlinear stress response of
dense colloidal dispersions under large amplitude oscillatory
shear flow. The theory employed is a recent extension [23] of
the well-studied F7, model [26]. A key physical mechanism
captured by the theory is the yielding of local particle cages
and the subsequent onset of nonlinearity. In contrast to a
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related approach presented by Miyazaki et al. [41,43], the
theory employed here makes predictions for the higher har-
monic contributions to the stress signal and thus enables the
extent of the linear-response regime to be addressed. In order
to make contact with experiment, the theory requires only
the simultaneously determined parameters from the steady-
state flow curve and the frequency dependence of the linear
moduli to make predictions for the nonlinear viscoelastic re-
sponse. We have thus compared the theory with rheological
experiments performed on concentrated suspensions of ther-
mosensitive core-shell particles.

The first nonlinear experiment considered was a strain
sweep, performed at three different volume fractions and fre-
quencies. Here we found very good agreement between ex-
periment and theory, although there are small deviations con-
cerning the onset of the nonlinear viscoelastic regime. The
values of G| and G in the linear regime, the crossing point
of G| and G}, maximum of G/, and asymptotic large strain
behavior of G| and G are all well described by the theory.
The Brownian simulation of a two-dimensional system of
hard disks enables only a qualitative comparison but shows
behavior broadly consistent with our experimental data, in-
dicating that the yielding process is not strongly dependent
on either the material details or dimensionality of the sample.
Moreover, the simulations do not contain hydrodynamic in-
teractions, suggesting that these are not of great importance
for yielding. The ratio of the slopes of G| and G for large v,
in the shear molten state yields the exponent ratio v'/v
=2.0%0.1 in theory simulation and experiment. The fact that
various other materials (of type III in [57]) display similar
asymptotic behavior may suggest a universal mechanism un-
derlying the oscillatory response of shear molten viscoelastic
fluids.

The second type of experiment considered was oscillatory
time sweeps. In this case the cage yielding is expressed by
the deviation of the signal from a sinusoidal form, showing a
characteristic asymmetric peak in the yielding regime, which
is followed in the shear molten state by a typical strain soft-
ening semicircular peak shape. The agreement of the time
signals obtained from theory, simulation, and experiments is
good. However, small deviations in the time series obtained
using the three methods lead to stronger deviations in the
parameters of the Fourier-transformed time signals. This
serves to emphasize the fact that FT rheology is a very sen-
sitive method, sensitive on the logarithmic scale, capable of
detecting, e.g., the fifth harmonic, to an accuracy of less than
1 promille. This analysis has shown that the onset of the third
harmonic heralds the start of the nonlinear regime and that
the maximum in G/, which here approximately coincides
with both crossing points of G| and G/, and the yield strain
are correlated with the onset of the fifth harmonic. Moreover,

PHYSICAL REVIEW E 82, 061401 (2010)

the plateau values of the phase shifts at high deformations
are found to follow n-7/2, with n being the index of each
harmonic.

Despite the good overall level of agreement between
theory and experiment there remain aspects which could be
improved. First, the extent (in 7,) of the linear-response re-
gime is apparently too small within the present theory, with
consequences for the variation of the higher harmonic inten-
sities with amplitude. As noted, this failing has its origins in
the quiescent transient density correlators predicted by the
F1, model, upon which our more recent schematic model is
based. It would thus be desirable to improve this fundamen-
tal aspect of the theory. Second, the stress response measured
in experiment displays a more asymmetric wave form than
that predicted by the schematic model. This aspect can po-
tentially be connected to the fact that our model, when ap-
plied to calculate the buildup of stress upon the onset of
shear, does not generate a stress overshoot. While a stress
overshoot does occur in approximate solutions of the fully
microscopic mode-coupling expressions [33], this aspect is
lost in making ansatz (16) for the shear modulus as the strain
dependent vertex functions appearing in the microscopic
theory are replaced by a constant v,.. Empirically, reincorpo-
rating a strain dependence into the theory via the replace-
ment v,— v,(7Y,), such that the overshoot is recovered, may
also lead to an increased wave-form asymmetry in the stress
response and, thus, better agreement with experiment. How-
ever, when modifying the schematic model in this fashion,
care must be taken not to destroy its existing positive fea-
tures.

To summarize, it can be concluded that the schematic
mode-coupling model [23] can make accurate predictions in
the nonlinear viscoelastic regime based purely on parameters
fixed by the steady-state stress and linear viscoelastic behav-
ior. This constitutes the first truly time-dependent test (other
than step strain) of the schematic model proposed in [23].
The Fourier transform analysis of time series obtained for
various strain amplitudes and frequencies provides a wealth
of experimental information regarding the mechanical re-
sponse of a material. As our present experimental setup en-
ables the investigation of transient flows, we anticipate that
the study of such flow protocols, in combination with the
present results, should enable a complete rheological charac-
terization of our colloidal system.
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