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Fluidization of wet granulates under shear
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Small amounts of a wetting liquid render sand a stiff and moldable material. The cohesive forces between
the sand grains are caused by capillary bridges at the points of contact. Due to the finite strength of these
bridges wet sand undergoes a transition from an arrested (i.e., solidified) to a fluidized state under an externally
applied shear force. The transition between these two dynamic states is studied in a MD-type simulation of a
two-dimensional assembly of bidisperse frictionless disks under the action of a cosine force profile. In addition
to soft core repulsion the disks interact through a hysteretic and short ranged attractive force modeling the
effect of the capillary bridges. In this model the transition between the fluidized and the arrested state is
discontinuous and hysteretic. The parameter dependence of the critical force for solidification is modeled by
combining theoretical arguments with a detailed numerical exploration of the transition. We address a range of
densities from slightly below close packing until slightly above densities where the system approaches a
shear-banded state. Differences and similarities of the transition in wet granulates to the jamming transition are

also addressed.
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I. INTRODUCTION

Dry sand behaves very much like a fluid, as it tends to
make a horizontal interface to the space above, or runs easily
through the orifice of an hourglass [1-6]. This changes dras-
tically when the sand becomes wet, as can be judged from
the pasty material from which sand castles are sculpted at the
beach [7]. This is due to liquid capillary bridges extending
between neighboring grains at their mutual points of contact,
which exert an attractive force by virtue of the surface ten-
sion of the liquid [7-9]. A wet granulate thus exhibits both
cohesion and stiffness, and is able to withstand a certain
shear stress without yielding. As a critical value of applied
stress is reached, however, the material starts to flow plasti-
cally [10]. This transition and its corresponding yield stress
is of great importance for phenomena as diverse as land
slides in unsaturated soils or agglomeration and kneading
processes in food and pharmaceutical industry. Similar to the
jamming transition of dry granular packings [11-16], the
shear-induced fluidization of wet granulates exhibits many
features analogous to a phase transition, although dominated
microscopically by dissipative processes [17]. This suggests
wet granular matter as another model system for the study of
phase transitions far from thermal equilibrium [18-20].

In the present paper, we present numerical simulation and
theoretical arguments addressing the transition from a fluid-
ized to an arrested state [41] in a model wet granulate under
applied shear forces. The setting is chosen similar to a pre-
vious study [17], in which a three-dimensional (3D) packing
of spheres was subject to a body force field varying harmoni-
cally in space. In search for the simplest possible model cap-
turing the influence of a wetting liquid, the capillary bridges
between adjacent spheres are modeled by a hysteretic,
piecewise-constant attractive force (minimal capillary
model). The overall liquid content of the granular pile mani-
fests itself in this model in the rupture separation of a capil-
lary bridge, i.e., in its maximal extension, which is a monoto-
nously growing function of the liquid volume.
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It was found [17,21,22] that the so defined wet granular
pile resisted the applied shear field up to a certain threshold,
above which a large-scale particle flow set in. Thus, the ex-
istence of a finite yield stress was successfully captured. Re-
markably [17], the average power of the fluctuations di-
verged algebraically as the threshold was approached, and
above the threshold, both the diffusivity and the average drift
velocity increased with increasing force according to a
simple power law. This was rationalized by simple consider-
ations of the network of capillary bridges and their rupture
frequency [8]. Behavior very much reminiscent to critical
phenomena has also been reported for the arrest of flow in
granular packings with purely repulsive interactions [12—-16].
In the latter context the arrested state is called a jammed
state, and it was asserted that the transition solely depends on
two control parameters: density and external shear. More-
over, the comparison of thermal energies to the strength of
particle interactions constitutes a third control parameter
[11,12,23-26].

In the present work we discuss extensive numerical simu-
lations with a particular focus on a systematic variation of
model parameters. In this way, we are able to distinguish
universal and nonuniversal aspects of the fluidization transi-
tion of wet granulates under shear, and we map out the phase
diagram spanned by liquid content, external forcing, and
packing density. Theoretical arguments disclose the depen-
dence of the force for fluidization and arrest of the system on
these parameters.

For the sake of numerical efficiency the present study
only addresses the two-dimensional (2D) case. A systematic
comparison of systems with different dimensionality is left to
forthcoming studies.

The paper is organized as follows: in Sec. II we recapitu-
late some basic features about capillary forces, introduce the
model for the wet granulate, its numerical implementation,
and details of the protocols used to generate dense assem-
blies of disks. In Sec. III we show the results of simulations
of two-dimensional sheared assemblies of frictionless wet
disks. The shearing motion is induced through coupling the
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disks to a spatially heterogeneous external force. In the simu-
lations the overall density of disks is fixed unlike simulations
of granular piles on an inclined plane or in a rotating drum
where the particles have sufficient space to adopt a preferred
packing density. The simulations provide us with a dynamic
phase diagram for the parameter dependence of the critical
forces where the assembly of disks fluidizes and solidifies.
The main trends of the solidification can be understood based
on theoretical considerations. Finally, we conclude in Sec. IV
At that point we also address similarities and differences to
the corresponding transitions of dry granulates and of par-
ticles with attractive interactions.

II. MODEL

The main features of wet granular matter can be traced
down to the cohesive forces exerted by liquid capillary
bridges [7-9,27-29], which appear as toroidal structures lo-
cated at the mechanical contacts of neighboring grains. The
most important aspect of this attractive interaction is its hys-
teretic nature [8,9]. This corresponds to the fact that the for-
mation of a capillary bridge needs two grains to come into
contact, while the bridge can persist up to a certain separa-
tion of the grain surfaces. This observation inspires the use
of hysteretic two-body interactions to account for cohesive
capillary forces, at least in the range of low liquid saturations
[8,18-20] on which we will focus here.

The phase diagram of wet granular matter under vertical
vibration has been recently shown to be remarkably resistant
to variations of the interaction force characteristics [30]. To a
very good approximation the collective behavior of the
grains is described in that case by only two dimensionless
parameters: the shaking amplitude measured in units of the
particle diameter, and the shaking frequency measured in
units of particle mass, particle size, and the total energy lost
upon the formation and rupture of a capillary bridge [19,30].
This can be taken as a justification to disregard details of the
(experimentally known) force-distance characteristics of wet
grain contacts, for the sake of both simulation efficiency and
focus of physical insight.

In the present study of wet granular matter, we thus em-
ploy the minimal capillary model as before [8,17,30]. Owing
to its simplicity, this model is well suited to perform numeri-
cal simulations of dense systems, involving a large number
of particles [18,19,30]. An essential feature of capillary
forces which is faithfully captured in this model is the role of
the history of inter-particle separation. In order to be able to
perform computations with large systems and to perform
finite-size-scaling studies, we restrict our investigations here
to the two-dimensional case. The system under consideration
consists of a two-dimensional packing of circular disks sub-
ject to an external in-plane force field and binary interactions
accounting for hard-core repulsion and capillary interactions.

A. Interactions

Capillary interactions are modeled as a force which arises
instantaneously once two particles touch each other, and
which acts as long as the separation, s, between their sur-
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faces does not exceed a critical length s,.. In other words, the
capillary bridge ruptures exactly at that moment when the
particle separation s first exceeds the value of s,. For the sake
of simplicity, the attractive capillary bridge force, F, is as-
sumed to be independent of disk separation s, and identical
for all pairs of disks.

In contrast to restitution models used to study the dynam-
ics of dry granulates [6], a fixed amount of energy

sEf F.ds=F,_s, (1)
0

is dissipated at each collision. For capillary bridges between
spherical particles the rupture distance s, of the a capillary
bridge can be linked to the volume of the liquid bridges, e.g.,
by the formula given by Willet in Ref. [27]. In the remainder
of this paper, the capillary force F. will be used as a force
scale. According to Eq. (1) the rupture energy ¢ is then the
only free parameter determining the effect of capillary
bridges.

We use a 1:1 mixture of large and small disks of respec-
tive radii R; and R, with a ratio R;/R;=1.4. This choice pre-
vents the assembly to build up a long-range crystalline order
[12]. Assuming a constant mass per area, p, the individual
mass of disk 7 is m,:ﬂ'pRiz. Mutual repulsion between the
disks is modeled by a soft-core nonlinear spring giving rise
to a repulsive force

Fry) = {Cij (Ri+R; - rij)”z for r; =R;+R;

, (2
0 else, (22)

where r;; is the Euclidean distance between the center of disk
i and j. In the spirit of Hertz’s contact law [6] we set

RR. 1/2
R;+R;

in order to account for different disk radii. The global param-
eter C controls the hardness of the disks.

The disks are exposed to a spatially heterogeneous exter-
nal force field of the form (cf. Fig. 1, top)

27X

F.(r)=eF, cos(T), (3)

where r=(x,y) is the position, e, the unit vector pointing
into y direction, F, the amplitude of the external force, and \
the wavelength of the spatial modulation. The external field
pulls the disks upward close to x=0 and x=L, and it pushes
them downward close to x=L/2. There is no net force on a
spatially uniform system such that the center of mass of all
disks remains fixed in space except for a small noise due to

deviations of the particle distribution from a uniform state.
Altogether, Newton’s equation of motion for disk i reads
dr,
mi? =F,(r) - ‘ E . eijfij(rij)’ (4)

JeNG)

where m; and r; are the mass and the position of disk i,
respectively, A(i) is the set of neighbors j interacting with i,
the unit vector e;; points from the center of disk i to the
center of disk j, and f;; is the force exerted by disk i on disk
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FIG. 1. (Color online) Sketch of the applied external force pro-
file (top) together with a snapshot of an solidified arrangement of
disks at time #=1500 when applying an external force of amplitude
F,=4.5%1073. Simulations are performed in a square box with
periodic boundary conditions. The area fraction of the disks is
¢=0.7, the rupture energy £=0.01, and the box size is L=\=18.

J. The latter force comprises the soft-core repulsion Eq. (2),
and, whenever applicable, also the attractive force F,. mod-
eling capillary bridges.

Throughout the remainder of this paper, we employ di-
mensionless rescaled quantities based on the capillary force
F., the area mass density of the disks p, and the average disk
diameter D. Time ¢ and mass m is hence measured in units
7=\pD3/F,, and u= pD?, respectively. Using these normal-
ized quantities it is straightforward to normalize all physical
quantities derived from mass, length, and time, such as the
local averages of disk velocities and the shear rate.

B. Boundary conditions and numerical implementation

In the simulations the wavelength N of the force profile
agrees with the lateral dimensions L of the square simulation
box ranging between 18D and 120D. Periodic boundary con-
ditions are applied in both directions. The area fraction of
disks, ¢p=A,/L?, where A, is the total area of the disks, var-
ies between 0.52 and 0.85. The rescaled hardness parameter
of the particles is set to C=10? throughout the simulations.

Dense assemblies of disks are obtained by a method simi-
lar to the algorithm proposed by Lubachevsky and Stillinger
in Ref. [31]. However, instead of thermostating the system to
a constant total kinetic energy, a viscous drag force

Fdrag =-bv; (5)

acting on each disk i with velocity v; dissipates the work that
the system receives while inflating the disks.

Newton’s equations of motion are integrated by means of
a fifth order predictor-corrector scheme (also known as
Gear’s algorithm, see, e.g., [6]). The computation of forces
between neighboring particles is speeded up by keeping local
lists of disks residing in bins of a square array of cells. These
bins are also used to compute and store local averages of the
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velocity and the number densities of small and large disks. In
addition to the local averages taken over all disks in a bin,
we time averaged these quantities over a certain period Az. A
further average over all bins in a column into y direction can
be taken in a stationary flow field where the averaged veloc-
ity does not depend on the y coordinate.

C. Sample preparation

We use two different protocols to prepare initial disk con-
figurations. Both protocols start with the inflation of initially
very small particles. During this period energy is removed
from the system by a viscous drag force. The external force
and the capillary force are still set to zero.

In protocol (I) both the external force and the capillary
forces are switched on simultaneously when having reached
the desired packing fraction.

In protocol (II) the inflation of particles is followed by a
tempering during a period Ar=200 where the capillary inter-
action is switched on while the drag force is still acting.
Subsequently, during the actual simulation period the drag
force is switched off and the external driving force Eq. (3) is
switched on.

III. RESULTS

We performed extensive simulations for different area
fractions ¢ and rupture energy . During a simulation run the
amplitude of the external force F,, was either fixed, or
slowly ramped up and down to explore the history depen-
dence of the dynamic states.

A. Velocity and shear profiles

For ¢p>0.52 the flow field always approaches a stationary
state, where to a very good approximation the density re-
mains spatially uniform. An example is shown in Fig. 1.

For small external forces the systems approach an arrested
state, while for sufficiently large external forces the system
attains a velocity profile v,(x) along the external field with
some superimposed velocity fluctuations. For sake of sup-
pressing fluctuations and attaining a reasonable statistics the
profiles will always be calculated by averaging along the
columns where the external force takes constant values. The
cosine-like functions in Fig. 2 (left axis) show the resulting
velocity profiles for F,=1.32% 1072 and F,=6.6 X 1073, re-
spectively.

Velocity profiles tend to be flatter than the cosine close to
the extrema of F,.(x), and steeper in between, as can clearly
be seen from the profiles of the shear rate y=d,v,(x), which
is also displayed in Fig. 2 (right axis).

This trend, which is more enhanced when approaching the
solidification transition, may be attributed to the fact that the
fluidization is mainly due to the shear gradients close to the
zeros of the force profile, while the disks tend to arrest close
to force extrema.

In line with this the velocity profile takes its extreme val-
ues at x=L/4 and x=3L/4 where the shear stresses are
maximal. The difference

061305-3



RAHBARI et al.

0.6 0.15

o M
0.3 F -'X
45( 4 0.05

%
% =]
¥ 0.00 &

1 -0.05

.4 010

03t ¥
+ + 1 -0.10

-0.6 L L -0.15

FIG. 2. (Color online) Profiles for the velocity component v,
parallel to the applied external field (curves indicated by arrows
pointing to the left scale) and the shear rate y=d,v, (curves indi-
cated by arrows pointing to right scale) in the steady state of sys-
tems with F,=1.32X1072 (red +) and F,=6.6 X107 (green X),
respectively. The area fraction of the disks is ¢=0.7, the rupture
energy £€=0.01, and L=40.

Av, = %[vy(x=0) -vy(x=L/2)] (6)

of these extreme values takes on a zero or small value when
the entire assembly of disks behaves like a rigid object, i.e.,
for arrested particle configurations. On the other hand, a non-
zero value of Av, implies that the assembly is in a fluidized
state.

The transition from the solidified to the fluidized state
(and vice versa) can hence conveniently be monitored by
adopting the difference Eq. (6) as an order parameter.

B. Approach toward a steady state

In Fig. 3 we show the time evolution of the order param-
eter after switching on the external force in protocol (I). The
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FIG. 3. (Color online) Order parameter Av, of the fluidization
transition as function of time ¢ for different amplitudes of the
external force F,=4.5X1073, 8X 1073, 8.5X1073, 9x1073,
1.3X 1072, 1.8X 1072 from bottom to top, respectively. After a
certain relaxation time the system reaches a stationary state. For the
three smallest values of the force the disk assembly reaches a so-
lidified state where Av,=0, and for larger forces the system ap-
proaches a fluidized state where Av, takes positive values that in-
crease upon increasing F,. The area fraction of the disks is ¢=0.7,
the rupture energy £=0.01, and L=18. The disk assembly shown in
Fig. 1 amounts to the final configuration of the smallest force shown
here.
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FIG. 4. (Color online) The red (+<<5000) and blue (z>5000)
curve shows the order parameter Av, as function of time during a
stepwise change of the amplitude of the external force F, (thin
green line). The total area fraction of the disks is ¢=0.7, the rupture
energy £=0.01, and the system size L=18. The zero line of the
order parameter is indicated by a dotted line.

assembly of disks approaches a solidified state if the ampli-
tude of the external driving F, is smaller than F,=8.7
X 1073, In the solidified state the relative position of the
disks in the assembly remains fixed.

Naturally, there are small fluctuations of the relative po-
sition of the disks, and the center-of-mass velocity in y di-
rection might increase linearly due to a nonzero net force
acting on the center of mass of a spatially inhomogeneous
disk assembly.

For F,=F, the assembly of disks behaves like a fluid
phase. On average, the disks follow the direction of the ap-
plied field while their local coordination shell of neighboring
disks changes all the time.

The occurrence of these different types of asymptotic be-
havior can be explained by the nature of the initial state in
the ensemble method (I). Due to the preparation the system
is found in a fluidized state at the beginning of the simula-
tion. Depending on the magnitude of the driving force, the
system may stay permanently fluidized (for F=F,) or the
fluidized state may only be a transient state (for F<F,).

C. Fluidization and solidification transitions

The solidification and fluidization of a sheared granular
system is explored by following the evolution while slowly
changing the strength of the forcing in small steps (solid line
in Fig. 4).

The simulation is started at a high driving strength F,
> F; such that the disks are initially in a fluidized state. Sub-
sequently, the external force F, is decreased. The red curve
in Fig. 4 shows the corresponding values of the order param-
eter Av,. Its sharp drop at t=4500 clearly marks the solidi-
fication of the assembly of disks.

Comparison to Fig. 3 reveals that this transition occurs at
exactly that value of the external force F, which also sepa-
rates initial conditions approaching a fluidized state from
those decaying to an arrested state for initial conditions pre-
pared according to protocol (I). Solidification is encountered
at the force F'; which does not dependent on the initial prepa-
ration protocol. It is determined only by the system size L,
the packing fraction ¢ and the rupture energy .
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FIG. 5. (Color online) The red crosses (+) and blue stars (%)
show the average values of the order parameter Av, evaluated over
the time intervals of constant forcing in a simulation as shown in
Fig. 4. The crosses refer to the values obtained while decreasing the
external force from a fluidized state (F,=0.02) to a point where the
system is far in the region of solidified states. The stars show the
values of the order parameter while F, is increased until the system
returns to the fluidized state. The dotted green line is a fit with a
third order polynomial in the order parameter.

After solidification, the assembly shows thermal motion
in a frozen network of capillary bridges (5000 =<7=<13 000 in
Fig. 3). This motion persists since energy is preserved as
long as no capillary bridges rupture.

When slowly increasing the external force stress is built
up in the solidified state. Eventually it leads to a transition
toward a fluidized state, when the applied external force ex-
ceeds a critical force Fy.

The force required for fluidization depends on the thermal
energy remaining in the system when it is frozen. To avoid
this dependence on the sample history one can remove the
thermal motion by applying a viscous drag force [Eq. (5)]
before increasing the external shear force. However, even in
that case different solidified states require noticeably differ-
ent critical forces F for fluidization: the critical force Fy
required to fluidize the solidified state depends on details of
the frozen network of capillary bridges. In contrast to F the
force F is not a function of merely the system size L, the
packing fraction ¢ and the rupture energy .

According to Fig. 4 the transition between the fluidized
and solidified state is subjected to substantial hysteresis. The
nature of this transition becomes clear when plotting the or-
der parameter in its dependence on the external forcing F,
(cf. Fig. 5). For the particular parameters of the system there
is a discontinuous jump in the order parameter as the control
parameter is decreased across F;=0.0087, where the system
freezes into a solidified state. Similarly, a discontinuous jump
in the order parameter from zero to a finite value occurs
during an increase of the external force beyond F;=0.013
where the system returns to the fluidized state. The hysteresis
in the curve and the shape of the order parameter in the
fluidized state indicate that the fluidized state arises by a
saddle-node bifurcation, and the arrested state looses stabil-
ity in a subcritical bifurcation.

D. System-size dependence of critical forces

To gain insight into the solidification transition, we con-
sider a very slow creeping flow v,(x) at the edge of arrest.
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The input power that is injected by means of the external
force acting on the disks is given by

L
(Prorcing) = f dx vy(x) Fex(x) n(x), (7)
0

where F.(x) is local y component of the external force and
n(x) the number of particles per unit length dx (i.e., the num-
ber of particles in a rectangle of size L X dx aligned parallel
to the external field). As pointed out in Sec. III A the density
may be regarded as uniform in the simulation box such that
n(x) takes the constant value N/L where N denotes the num-
ber of disks.

Assuming that the velocity profile is faithfully ap-
proximated by its first even harmonic, i.e., vy(x)
=Av, cos(2mx/L), we obtain the estimate

Av, F,

: ®)

<Pforcing> =N
for the injected power. On the other hand, the velocity pro-
files found in our simulations (cf. Fig. 2) show noticeable
deviations from the fundamental harmonic. Especially when
the external force is close to the solidification point there is a
tendency to be flattened around the extrema. However, this
deviation has no strong influence on the estimate Eq. (8), as
one verifies by considering the extreme case of a plug flow,
vy(x) = Av, sign(F(x)), of two bands with arrested particle
configuration separated by a thin shear band. This velocity
profile yields the estimate
<Pf0rcing> =N M» (9)
T
which differs only by a factor 7/4 from Eq. (8).

In order to calculate the power dissipated by rupturing of
capillary bridges, we observe that for each disk the creeping
flow enforces a change of neighbors (in the direction of the
flow) with a rate y=dv,/dx. If v denotes the average number
of capillary bridges which break on a disk until y=1, such a
displacement goes along with an energy dissipation ve. The
total dissipated power is thus given by

ve. (10)

dv,
dx

L
<Pdiss>:f dx n(x)
0

For every function v,(x) with period L this integral yields

4dveAv,
<Pdm>zN%, (11)

where again we used that the particle density is spatially
uniform, n(x)=N/L.

In a steady state, the input power {Pyqcin,) is balanced by
the dissipated power (Pg;), so that we obtain the following
estimate for the minimum forcing required to maintain the
flow

8ve

Fy=——, 12
= (12)

provided that the velocity profile is close to the fundamental
harmonic. For the rather extreme opposite case of a plug
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flow, the estimate Eq. (12) for F, is multiplied by a factor of
/4.

To also gain some insight into the fluidization transition
we note that the system is subjected to a body force acting in
upward and downward direction in the regions [0,L/2] and
[L/2,L], respectively. Due to the propagation of forces in the
wet granular packing [21] these forces give rise to a stress of
the order of o=NF,/L at the inflection point of the force
profile. This stress has to be counterbalanced by vNR/L cap-
illary bridges in that region such that oL~ vNR/L. Relating
the stress, NF /L, at the fluidization threshold, where the
system yields, with the maximum force carried by the capil-
lary bridges in that region, F.vNR/L, and measuring forces
and length scales in units of F.. and R, respectively, one again
finds

Fp~<. (13)

Equation (12) expresses an inverse linear scaling of F;
with the lateral extension L of the system. This can be inter-
preted as follows: in the fluidized state the shear rate takes a
fairly sharp maximum in the region where the external force
has its turning point (cf. Fig. 2) such that an energy input in
the bulk is counterbalanced by dissipation in a localized re-
gion. The system is arrested when the capillary bridges lo-
cated close to the turning points of the force profile are suf-
ficiently strong to suppress the relative motion of the parts of
the system which are pushed upward and downward, respec-
tively. Similarly, the analogous scaling in Eq. (13) arises
from the fact that the strain introduced in the system by a
body force has to be counteracted by capillary bridges in a
region close to the inflection point of the external force. In
both cases the scaling hence comes down to stating that the
respective critical force is related to a shear stress which is
independent of system size.

To test the predictions Egs. (12) and (13) we compile in
Fig. 6 the critical forces F; and F of systems with different
dimensions of the simulation box L at fixed rupture energy
£=0.01 and area fractions ¢=0.7 and 0.82, respectively. The
data supports that the point of solidification F indeed de-
creases as L™': the quantity F,L/8e does not only take a
constant value irrespective of system size (crosses in Fig. 6),
but the numbers close to 2 and 5 for ¢=0.7 and 0.82, respec-
tively, are also plausible estimates for the average number of
capillary bridges that will be ruptured upon displacing a disk
by one diameter with respect to its right and left neighbors.

In contrast to F|, the threshold for fluidization F in-
creases stronger than linearly with L™! (stars in Fig. 6). In-
terestingly, however, our data indicate that the gap between
Fyand F; closes as the system size increases. In line with the
predictions of [8] for sheared assemblies of wet frictionless
spheres, the system might then approach a critical state
where different members of an ensemble of systems show
vastly different behavior. Unfortunately, the determination of
the fluidization line takes much more computational efforts
than solidification. The preparation of the arrested state re-
quires a slow decrease of the external driving force, and the
subsequent fluidization, or yielding, of the solidified disks a
sufficiently slow increase of the external driving force.
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FIG. 6. (Color online) Amplitude of the external forces at so-
lidification, F; L/8e (+), and at fluidization, F;L/8¢ (%), as func-
tion of the reciprocal system size L~' for area fractions ¢=0.7
(lower lines) and ¢=0.82 (upper lines), respectively. The data for
F; are roughly constant, such that the values on the abscissa may be
interpreted as the number of capillary bridges broken when displac-
ing a disk by one diameter with respect to its neighbors to the left
and right. The dashed line give the respective quadratic fits
LF;/8e=19+60/L and LF;/8e=5.3+90/L for fluidization. The
rupture energy is €=0.01.

Hence, each of these data points takes more than one month
of computational time. In addition, even the present data
suffer from limited statistics due to strong history depen-
dence of F,. As a consequence, the calculation of accurate
ensemble averages for the fluidization transition lies pres-
ently beyond reach of direct numerical integration.

E. Density dependence of critical forces

According to Fig. 6 the force required to keep the system
in a fluidized state increases noticeably with the packing
fraction of the disks. Indeed one would expect that the force
diverges when approaching random close packing,

uw(d)rcg_(ﬁ)_a (14)
8¢ o) ’

where « is a positive exponent. In this expression the factor
1/(¢ep—¢) can be interpreted as the smallest area where
there is enough free volume for two disks to pass, and hence
the ratio ¢/(¢,—¢) amounts to the minimum number of
disks that must be displaced in order to let two disks pass.

In order to explore this dependence we probe the critical
forces for a range of packing fractions ¢. For ¢=0.84 fluc-
tuations in the drift velocity become so large that one cannot
measure v, within reasonable error. This is not unexpected,
however, since for the bidisperse system under consideration,
¢rp=0.84 is the close-packing density reported in the litera-
ture, cf. [32,33].

For total area fractions ¢=<0.5, initially randomly distrib-
uted disks frequently condense into bands with arrested par-
ticle configurations that move in opposite directions. In this
case the evolution of the system may follow entirely differ-
ent scenarios: either the bands eventually collide and heat up.
In this case, the system is attracted again to a stationary
fluidized state. Alternatively, the bands may not touch. In that
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FIG. 7. (Color online) Amplitude of the external forces at so-
lidification, F, L/8& (+), and at fluidization, FyL/8¢ (%), as func-
tion of the packing fraction ¢, where the two curves for the solidi-
fication refer to rupture energy €=0.01 (top) and £=0.05 (bottom),
respectively. As expected the forces diverge when approaching ran-
dom close packing, and a smaller number of capillary bridges rup-
ture when rearranging a system with a larger . The green dashed
lines indicate that the forces diverge like a reverse square root of
the nondimensionalized packing fraction (¢~ )/ ¢. To underline
this assertion the inset shows that F, L [(¢h,— )/ ¢p]"*/8e takes
roughly constant values. The system size is L=18.

case, the system stays cool and the two bands persist. Con-
sequently, in the present study we focus on area fractions
0.52=¢=0.82 where the system approaches a unique
steady state irrespective of sample preparation.

In Fig. 7 we compile data for the critical forces as a func-
tion of ¢. As anticipated, the force diverges when the close-
packing density ¢,,,=0.84 is approached. The exponent is
found to be a==1/2, as shown in the inset. This may be
interpreted as stating that the passing of a pair of disks leads
to collective displacements in a region containing N2
—qS/(qSGC ¢) disks, and that the displacement goes along
with a “micro-crack” where the capillary bridges between N
out of these N> o disks rupture.

F. Master plot for the critical force

The estimate Eq. (14) involves a prefactor which is a
function of the rupture energy e. Varying the rupture separa-
tion at fixed system size L and packing fraction ¢ suggests
(cf. Fig. 8) that this prefactor might scale as —In\2¢. Forth-
coming work will have to address the question whether this
might be attributed to an exponential screening of stresses in
the system. In addition, a full explanation of this dependence
will then also have to take into account that the energy con-
tent of the solidified state increases upon increasing the rup-
ture separation.

Irrespective of the physical origin of the dependence the
scaling of F; L/8¢ with & allows us to write the critical force
at the solidification transition as

12
L) , (] 5)
¢

Tcp

8e
Fo=-B— ln\’Ts<

with a numerical prefactor B=(0.45=*0.05). That this ex-
pression fully covers the parameter dependence of F is dem-
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FIG. 8. (Color online) Amplitude of the external forces at so-
lidification, F; L/8e (+) as function of the rupture energy & of cap-
illary bridges. The dashed green line shows a logarithmic fit to the
data: FL/8&=~-In\2e. The quality of the fit is again underlined by
an inset demonstrating that —F L/ (8¢ In \f‘%) =1. The area fraction
of the disks is ¢=0.7, and L=18.

onstrated by a data collapse shown in Fig. 9 which contains
all data shown so far.

IV. CONCLUSION AND OUTLOOK

In this paper, we studied the transition between a solidi-
fied and a fluidized state of a frictionless 2D wet granulate
subjected to a shear force. To gain insight into the nature of
this transition, we compared molecular-dynamics simulations
of soft disks to theoretical estimates on the parameter depen-
dence of the transition. In doing so, we concentrated on den-
sities ¢=0.52 where the system remains spatially uniform
and is free of persistent cracks and shear bands on the scale
of the system size. In contrast to the majority of published
works on sheared granulates, where Lees Edwards boundary
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FIG. 9. (Color online) The plot compiles all data of the critical
force at solidification, F, that are also shown in Figs. 6—8. The data
collapse demonstrates that the force F is faithfully described by
Eq. (15) with a proportionality constant of the order of 0.45. The
parameters of the system are specified in the legend of the plot
which also indicates whether the top or bottom axis is used as
mantissa. Moreover, for better visibility the ¢ values of the last data
set, where ¢ is varied, have slightly been displaced.
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conditions are employed [15,34,35], the shear stress in the
assembly is generated by means of a spatially varying body
force acting on each disk. The stress induced by the body
forcing is accumulated in a region close to the inflection
point of the velocity profile, and the balance between dissi-
pation due to rupture of capillary bridges on the one hand,
and the acceleration by the external field on the other hand
admits to derive analytical estimates for the smallest forcing
still admitting a fluidized state.

The transition from the fluidized to the solidified state and
back shows strong hysteresis. The critical force Fy required
to fluidize a frozen state depends strongly on the history of
the sample, as becomes apparent from a comparison of the
force F; obtained for packings prepared by different prepa-
ration protocols. In view of the prohibitively high require-
ments on computation time needed to determine the en-
semble average which provides a precise yield point, so far
only preliminary results could be reached on the parameter
dependence of this point. However, these data indicate that
there are two interesting limits where the hysteresis might
disappear: (i) very large system size as shown in Fig. 6, and
(ii) when approaching the close-packing limit shown in
Fig. 7.

These findings are in marked contrast to the results re-
ported on the 3D system [8,17], where no hysteresis was
observed. That transition appeared instead to be continuous,
and accompanied by strong (algebraically diverging) fluctua-
tions. This calls for a renewed effort on the 3D system, in-
cluding similar parameter variations and finite-size scaling as
in the present work. This will be particularly interesting in
view of a recent study [36] of a 3D granular system of purely
repulsive soft-core particles with a fixed restitution coeffi-
cient. In that case the transition between the fluidized and
solidified state shows hysteresis for all finite shear stresses,
and inertia of the flow was identified as its origin.

In order to compare our results with findings on kinetic
arrest of systems with conservative forces and/or collisions
with a finite restitution coefficient, it is tempting to interpret
the ratio 7,/ & of the granular temperature 7, over the energy
&, which characterizes the strength of capillary interactions,
as a temperature-like variable in the spirit of [23]. This con-
nects the transition investigated in the present paper to the
gelation transition in colloidal systems [23,37], the glass
transitions in systems with soft-core repulsive interactions
[25,26], and to aggregation and jamming in dry fine powders
[24]. The analogy appears to be valid to the extend that—just
as in gels and coagulating powders—the capillary interaction
in wet granulates leads to the formation of clusters of par-
ticles with a frozen contact network and stress propagation
through the network. On the other hand, the reduced tem-
perature T,/ is not a temperature-like variable in the spirit
[26,37,38] of mode-coupling theory. The flow at the fluidi-
zation threshold of wet granulates results solely from the
applied shear force, and due to the hysteretic nature of the
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capillary forces motion immediately arrests in the absence of
the external forcing. In this respect the solidification of wet
granulates is more reminiscent to jamming of dry granular
matter at zero temperature [36]. We hold that the energy
dissipated upon rupture of capillary bridges is an indepen-
dent thermodynamic variable which is distinct from the three
variables (density, shear stress, and temperature) suggested
to govern the jamming phase diagram [11,23,25,38]. Forth-
coming work will have to explore features of arrest in the
resulting four-dimensional parameter space. One possibility
might be to consider the arrest of motion of a wet granulate
with soft-core repulsive interaction that sets an energy scale
for the temperature. The data collapse established in the
present study will be of pivotal importance to explore this
multidimensional parameter space.

In the fluidized state the system appears to be ergodic.
Irrespective of sample preparation, we observe the same
steady state. Moreover, in terms of the control parameter FL
and order parameter Av,, the system shows the same subcriti-
cal solidification transition.

In appropriate dimensionless units the normalized critical
force F, at the solidification point is inversely proportional to
the lateral dimension of the system L and the square root of
the reduced number density (¢,,— @)/ @ of the assembly of
disks. In addition, there also is a weak (logarithmic) depen-
dence on the rupture energy e of the capillary bridges. We
provide an explicit formula, Eq. (15), for these dependences,
and underpin it with a data collapse Fig. 9.

The linear dependence of F; on the reciprocal lateral di-
mension L~! is ascribed to a balance of power input from the
external field and dissipation due to rupture of capillary
bridges. For its dependence on packing fraction we offer an
explanation in terms of free volume in the system and the
length of micro-cracks required to rearrange disks in the fluid
state.

The uncovering of universal properties of the solidifica-
tion transition is the most important finding of this commu-
nication. Together with the observed ergodicity in the fluid-
ized state this strongly suggests the feasibility of a
continuum theory of sheared assemblies of wet disks, similar
to the hydrodynamic description of dense inelastic hard disks
under shear as presented by Jenkins [39] and Khain [40]. Tt
will be also interesting to discuss the appearance and stabil-
ity of spatially-heterogeneous flow profiles in dense assem-
blies of wet disks which are driven by a cosine forcing [22]
or Lees Edwards boundary conditions [34,40]. Forthcoming
work will take up the challenge to build such a theory, and
discuss its prospects and limitations for the description of
phase transitions in granular systems.
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