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Motivated by the relation between particle shape and packing, we measure the volume fraction � occupied
by the Platonic solids which are a class of polyhedrons with congruent sides, vertices, and dihedral angles.
Tetrahedron-, cube-, octahedron-, dodecahedron-, and icosahedron-shaped plastic dice were fluidized or me-
chanically vibrated to find stable random loose packing �rlp=0.51,0.54,0.52,0.51,0.50 and densest packing
�rcp=0.64,0.67,0.64,0.63,0.59, respectively, with standard deviation of ��0.01. We find that � obtained by
all protocols peak at the cube, which is the only Platonic solid that can tessellate space, and then monotonically
decrease with number of sides. This overall trend is similar but systematically lower than the maximum �
reported for frictionless Platonic solids and below �rlp of spheres for the loose packings. Experiments with
ceramic tetrahedron were also conducted, and higher friction was observed to lead to lower �.
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I. INTRODUCTION

The packing of objects has long fascinated physicists,
mathematicians, and the curious. While the centuries old Ke-
pler’s conjecture that the maximum packing of spheres is
� /�18�0.74 has been finally proven �1�, spheres tossed ran-
domly into a jar and shaken do not reach such high packing
fractions, unless special protocols are used �2�. A random
closed packed �RCP� volume fraction �rcp=0.6366 was
found by mechanically vibrating a set of steel ball bearings
�3�. In fact, work in the last decade has shown that random
packing itself is not unique, and there is a range of packing
fractions which can be obtained for spherical particles with
random order. These values are bounded at the upper end by
�mrj =0.64 �4�, the so-called maximally random close packed
state, and more tentatively at the lower end by random loose
packing �RLP� at �rlp=0.55 �5,6�.

In contrast, much less is known for nonspherical particles.
It was only shown a few years ago that randomly packed
prolate and oblate objects pack denser than spherical par-
ticles �7�. The highest Bravais lattice packings of Platonic
solids are also considered to be the highest packings except
in case of the tetrahedrons �8,9�. In the case of tetrahedrons,
disordered wagon-wheel packings were initially found to
pack even higher. The maximum packing of tetrahedrons has
since been improved upon in rapid succession with different
approaches �10,11�, and the current highest packing for tet-
rahedrons stands at 0.856 347. . . corresponding to dimer
packings of regular tetrahedrons �12–14�. As noted for
spheres, maximum packing tends to be larger than polyhe-
dral packings which may be disordered or ordered when
brought together randomly. For example, quasicrystals were
observed with Monte Carlo simulation of tetrahedrons by
Haji-Akbari et al. �15�. Experiments on random packed tet-
rahedronal dice have been reported recently in Ref. �16�.
Volume fractions were said to be 0.76� .02 if the observed
packings were extrapolated to infinite systems, but the pro-
tocol by which the packings were prepared was not clear.

In this paper, we experimentally investigate the packings
obtained with the Platonic solids using various experimental
preparation protocols including sequential addition �un-

shaken�, sequential addition with hand shaking, mechanical
vibration, and fluidization. A question we also seek to ad-
dress is if the packing fraction for faceted particles ap-
proaches that for spheres from above or below in the limit of
large number of faces. We also test the effect of the number
of particles and the friction between them on the packing. A
further motivation for our study comes from the fact that
natural sand is often faceted with sharp edges which can
strongly influence their packing density �17�. Platonic solids
which are idealized faceted particles with congruent sides
may be a better starting point compared with smooth spheres
to understand packing of rough particles.

II. EXPERIMENTAL METHOD

A. Materials

The Platonic solids are a class of convex polyhedrons
with faces of congruent polygons and the same number of
faces meeting at each vertex. These conditions lead to con-
gruent faces, dihedral angles, and solid angles �Table I�.
There are only five shapes that belong to this category: the
four-sided tetrahedron, six-sided cube, eight-sided octahe-
dron, 12-sided icosahedron, and 20-sided dodecahedron. The
actual particles studied in our experiment are plastic dice
�density �=1.16 g /cm3� which have slightly rounded edges
with properties listed in Table I. To estimate the actual vol-
ume fractions occupied by the solids used, we measured the
volume using water displacement technique. We thus assume
that we are calculating the volume fraction of a Platonic
solid which is in between the circumscribed and inscribed
limits because of the rounded edges. To understand the effect
of the rounding further, one has to obtain the distribution of
contacts that involve vertices, edges, and the distribution of
contact angles, which is beyond the scope of our technique.
The predominance of these kinds of contacts may indicate
that we are systematically overestimating the volume frac-
tion. On the other hand predominance of face-face contacts
may lead to an underestimate. While it is possible that some
of these effects offset each other, it is difficult estimate the
net error without detailed understanding on contacts.
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Ceramic tetrahedrons ��=1.63 g /cm3� were also used to
compare number of particles and effects of friction on pack-
ing fractions. The two kinds of materials have slightly dif-
ferent coefficients of friction ��plastic=0.375 and �ceramic
=0.480�, which are measured using a tilted plane and finding
the angle at which particles begin to slide past each other.
Our system is athermal, and therefore energy has to be sup-
plied externally to rearrange the solids.

B. Packing preparation protocols

We use four different random packing protocols to pre-
pare the packing of Platonic solids in cylindrical containers
with a semihemispherical bottom boundary to minimize sur-
face area. We found that this shape is best suited to deter-
mine volume fractions accurately because even though a
spherical container has a low surface-to-volume ratio, it is
practically difficult to fill a particle under an overarching
surface.

1. Sequential addition

In the first packing protocol, the particles are added se-
quentially at a random location from a height of about a few
times the particle size. This ensured that the particles land in
a stable configuration without significantly moving the par-
ticles which were already in place in the packing.

A thin plate is placed on top after the packing is prepared
and the average height is noted. Using this height, the total
volume of the container, Vcontainer, is obtained to determine
the volume fraction occupied by the solids, �
=NVsolid /Vcontainer, where N is the number of particles added.
This packing protocol was repeated ten times for each kind
of solid to determine the mean packing fraction and standard
deviation.

2. Hand shaken

In the second method, the container is shaken by hand
after two layers of particles are added to the container, so
that particles rattle and have an opportunity to rearrange.
After all the particles are added, � is determined �as above�

from the measured height of the packing. As we will see this
protocol leads to relatively higher �.

3. Mechanically shaken

Because it is impossible to shake the particles systemati-
cally by hand, we also built an experimental system in which
the container is rigidly attached to an electromagnetic shaker
�see the schematic shown in Fig. 1�a�� similar to previous
systems used to study random close packing of spheres �3�.
The shaker is connected to a function generator allowing us
to apply a prescribed vibration frequency f and acceleration
strength �. After initially placing the particles randomly in-
side the container, and vibrating over various lengths of
times, the height of the packing is recorded after the vibra-
tion is turned off to ensure that the packing obtained is
stable. The volume fraction � is then obtained as described

TABLE I. �Color online� The properties of the Platonic solids studied. The volume for each kind of solid Vsolid were found by averaging
over ten trials with water displacement measurements.

Name Tetrahedron Cube Octahedron Dodecahedron Icosahedron Tetrahedron

Material Plastic Plastic Plastic Plastic Plastic Ceramic

Number of Faces 4 6 8 12 20 4

Dihedral Angle (radian) cos−1( 1
3
) π

2
cos−1(−1

3
) cos−1(−

√
5

5
) cos−1(−

√
5

3
) cos−1( 1

3
)

Solid Angle (steradian) cos−1( 23
27

) π
2

4 sin−1( 1
3
) π − tan−1( 2

11
) 2π − 5 sin−1( 2

3
) cos−1( 23

27
)

Vsolid (cm3) 1.56 4.0 2.4 4.0 3.5 1.7

(a) (b)

FIG. 1. �Color online� �a� A schematic of the container which is
vibrated vertically with an electromagnetic shaker to obtain the me-
chanically shaken packings. �b� A schematic of the container used
to obtain loose packings using the fluidization protocol. The liquid
is first injected from below and the packing height measured after
flow rate is turned off and the liquid is drained.
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in the unshaken case. This protocol gave rise to the highest
packing fractions that we observed.

We first performed measurement with experiments over
120 min of vibration and found that the packing fractions
increased rapidly initially by about 5% in a few minutes and
then did not vary significantly. Subsequently, we performed
and measure � after 10 min of applied vibration. While slow
evolution of volume fraction over prolonged periods of vi-
brations has been observed with spherical particles �18�, it
appears that Platonic solids, which are faceted, get frustrated
more quickly because they cannot rotate and roll as easily in
place as spherical particles. We also tested the frequency
dependence of obtained � and found that a peak was ob-
served at f �50 Hz. Because we are primarily interested in
this method to obtain the maximum possible density using
random agitations, we report here data for f �50 Hz and 5g,
where g is the acceleration due to gravity. We present the
frequency dependence of the observed packing fraction later
in Sec. IV C.

4. Fluidization

In the final protocol used to prepare the packing, we first
fill the particles inside a container with a hemispherical mesh
at the bottom through which water can be injected with rates
high enough to fully fluidize the plastic dice �see Fig. 1�b��.
A flow rate of 1.6�104 cm3 /min is applied for 3 min to
fully agitate the system, and then the flow rate is slowly
reduced to zero, so that particles slowly settle layer by layer
with low relative velocities. The water is then completely
drained from the system and the height of the packing is
measured to obtain �. These setup and method are similar to
those used to obtain the limit of random loose packing in
spheres �6�, and we also find the lowest � for the Platonic
solids among all protocols we attempted.

III. OBSERVED PACKINGS

Figure 2 shows an image corresponding to typical pack-
ings observed for each of the Platonic solids. In this case,
200 particles were added inside a container with a 9.3 cm
diameter using the sequential addition protocol, and the im-
age was taken of the top layer which is also similar to any
intermediate layer. The particles appear to be all randomly
located relative to each other. �We quantify the disorder in
the packing later in Sec. IV D using the variance of the ori-
entation of the face of the polyhedron relative to the vertical
axis.� The packings prepared using the other protocols ap-
pear similarly random.

The packing fractions for each of the Platonic solids ob-
tained using the protocols described in Sec. II B are listed in
Table II. As expected, the fluidized protocol creates the least
dense packing which we consider as �rlp, and the mechanical
shaker produces the densest packing which we consider as
�rcp. Further we note that the sequential addition �unshaken�
and hand shaken protocols produce intermediate packings. In
all cases �’s vary similarly and peak at the cube and then
decrease with increasing number of sides.

To understand the trends in the observed packings, we
have plotted the mean values for each kind of solid and pro-
tocol in Fig. 3 along with the maximum known � which
have been reported �8,14�. Interestingly, we find that the data
follow the same trend as the theoretical maximum �, but are
systematically lower because of the disordered nature of their
packing. While lower � than maximum can be anticipated, it
is somewhat unexpected that the trend for disordered pack-
ing reflects the maximum packing.

IV. SUPPLEMENTARY MEASUREMENTS

A. Effect of friction

Because the particles we use have friction, and the pres-
ence of friction reduces the minimum number of particle

(a) (b) (c) (d) (e)

FIG. 2. �Color online� Images of typical disordered packings observed for �a� tetrahedrons, �b� cubes, �c� octahedrons, �d� dodecahedron,
and �e� icosahedron. The images shown correspond to the top surface of the packing obtained after sequential addition of particles.

TABLE II. The mean packing fractions �� one standard deviation� observed for each of the Platonic
solids using the four protocols.

Shape �Sequential Addition �Hand Shaken �Mechanically Shaken �Fluidization

Tetrahedron �plastic� 0.54�0.01 0.62�0.02 0.64�0.01 0.51�0.01

Cube �plastic� 0.57�0.01 0.66�0.02 0.67�0.02 0.54�0.01

Octahedron �plastic� 0.57�0.01 0.62�0.01 0.64�0.01 0.52�0.01

Dodecahedron �plastic� 0.56�0.01 0.60�0.01 0.63�0.01 0.51�0.01

Icosahedron �plastic� 0.53�0.01 0.57�0.01 0.59�0.01 0.50�0.01

Tetrahedron �ceramic� 0.48�0.02 0.59�0.01
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contacts needed for static equilibrium from 3 to 2 in three
dimensions, it is important to consider its effect on packing.
In the case of spheres, friction is known to affect packing
fractions especially at the loose packing limit �19�. Needing
fewer neighbors implies the particles are further apart, and
therefore the packing can be less dense. It is possible for this
reason that we observe a lower dense close packing value for
tetrahedrons compared with simulations which found 0.6817
with frictionless tetrahedrons using a relaxation algorithm
�20�. To explore this further, we compare packings of the
plastic tetrahedrons with the more frictional ceramic tetrahe-
drons. We find that for both the unshaken and hand shaken
protocols �see Table II�, the larger the coefficient of friction,
the lower the packing fraction with 9% and 5% lower pack-
ing fractions for the ceramic case.

B. System size

Because the plastic dice were expensive, the cost became
prohibitive to test with a larger number of dice. However,
ceramic tetrahedrons used in grinding media were relatively
inexpensive, and we were able to test the number depen-
dence in this case. In Fig. 4, we plot the measured packing
fraction for numbers ranging from around 100 to 1200 in
proportionately larger containers. Here, we used the sequen-
tial addition and hand shaken protocols �the particle weight
was too high to use our shaker and fluidization experimental
setup in this case�. We find that after N=200, � remains
constant within experimental error, and therefore we believe
that �’s reported in Table II are representative of even larger
packings and surface effects are small.

C. Driving frequency dependence

We measured � for each of the Platonic solids as a func-
tion of frequency while keeping the driving strength � / f
constant �see Fig. 5�. A peak is observed at f =50 Hz. The
appearance of peak in frequency can be explained as follows.
At the lowest frequencies, the particles are tossed up which
appears to result in lower packing fractions, whereas at high

frequency particles do not appear to receive sufficient energy
to rearrange from initial packings formed after particles are
added.

D. Characterization of randomness of packing

In order to parametrize the randomness in the packings,
we use the images of the packing obtained from the top �as
shown in Fig. 2� and measure the projected area of the larg-
est visible face. All the projected areas found lie above a
minimum �0.333, 0.408, 0.577, 0.795, and 0.795 for the 4-,
6-, 8-, 12-, and 20-sided polyhedrons, respectively�, which is
dependent on the geometry of the polyhedron because the
projected area is normalized with the area of the face when
laying normal to the perpendicular. Because of the normal-
ization, the maximum projected area is 1. We first sample
100 projected areas for each Platonic solid and preparation
technique. Then we calculate the variance among these pro-
jected areas �see Fig. 6�. For a periodically ordered system,
all the particles would have the same orientation and there-
fore the same projected area for the top face. This implies
that the variance of these areas would be zero. As a point of
comparison, we find the variance of 100 random numbers
generated in the allowed range for each shape. This variance
represents that of a highly random system. We find the vari-
ance of the projected areas for all shapes except the mechani-
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FIG. 3. �Color online� The packing fraction for the Platonic
solids compared with the maximum known packing for that solid.
The observed random packings follow the same trend as the maxi-
mum packings. The maximum value for tetrahedron is from Ref.
�14�, and those for the remaining Platonic solids are from Ref. �8�.
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cally shaken cube to be closer to the random number vari-
ance than it is to the zero variance for an ordered orientation
�see Fig. 6�. As cubes have a strong tendency to align, the
variance of the projected areas lies slightly below 0.5 and
closer to the ordered extreme for the mechanically shaken
case. From this we conclude that in most cases we have
disordered or random packings.

V. COMPARISON WITH SPHERE PACKING

In Fig. 3, we also plot the maximum �, �rcp, and �rlp for
spheres along those for the Platonic solids. The sphere can be
considered as a limit of polyhedral-shaped particles as the
number of sides goes to infinity, and gives a context to un-
derstand the observed packing fractions. As has been noted
previously, �max’s for all the Platonic solids exceed that for
spheres, consistent with Ulam’s conjecture that convex par-

ticles pack to a greater � than spheres. Examining the known
maximum packing structure for Platonic solids �8,14� it ap-
pears that faces align near contacts to give the greater �.

However, for dense packings, �mrj for spheres lies below
only the cube and octahedron, but as the trend decreases
from the octahedron to the dodecahedron and icosahedron, it
appears that the sphere value would now be approached from
below. Finally, in considering the loose extreme, we find that
all the Platonic solids pack less dense than �rlp for spheres.
This leads us to conjecture that all convex particles in the
random loose packed configuration pack less dense than a
corresponding packing of spheres.

VI. SUMMARY

In summary, we have obtained a wide range of packing
fractions which depend on the number of faces and edges of
the packing solid. The values systematically depend on the
protocols used to create these random packings. We hypoth-
esize that the limiting values we report correspond approxi-
mately to random loose packing and random dense packing
for these shapes. Interestingly, we find the overall trend simi-
lar to that for the maximum packing fraction. In contrast with
the maximum packings fraction which always exceed that
for spheres, the random packings for Platonic solids with a
large number of sides pack looser than for spheres. In clos-
ing, we note that our packings of idealized polyhedral par-
ticles created with random protocols may give better insight
into true packings of faceted particles such as sand found in
nature.
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