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Spontaneous symmetry breaking occurs in a system when its Hamiltonian possesses a certain symmetry,
whereas the ground-state wave functions do not preserve it. This provides such a scenario that a bifurcation,
which breaks the symmetry, occurs when some control parameter crosses its critical value. It is unveiled that
the ground-state fidelity per lattice site exhibits such a bifurcation for quantum lattice systems undergoing
quantum phase transitions. The significance of this result lies in the fact that the ground-state fidelity per lattice
site is universal, in the sense that it is model independent, in contrast to (model-dependent) order parameters.
This fundamental quantity may be computed by exploiting the developed tensor network algorithms on
infinite-size lattices. We illustrate the scheme in terms of the quantum Ising model in a transverse magnetic
field and the spin-% XYX model in an external magnetic field on an infinite-size lattice in one spatial dimension.
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I. INTRODUCTION

Quantum phase transitions (QPTs) [1,2] arise from the
cooperative behaviors in quantum many-body systems, in
which long-range orders emerge. In the conventional
Landau-Ginzburg-Wilson paradigm, the most fundamental
notion is spontaneous symmetry breaking (SSB), with the
symmetry-broken phase characterized by the nonzero values
of a local order parameter. An SSB occurs in a system when
its Hamiltonian enjoys a certain symmetry, whereas the
ground-state wave functions do not preserve it [3,4]. The
implication of an SSB is twofold: first, a system has stable
and degenerate ground states, each of which breaks the sym-
metry of the system; second, the symmetry breakdown re-
sults from random perturbations. This leads to such a sce-
nario that a bifurcation, which breaks the symmetry, occurs,
when some control parameter crosses its critical value. Con-
ventionally, this is reflected in local order parameters.

The latest advances in our understanding of QPTs origi-
nate from the perspectives of both entanglement [5] and fi-
delity [6-9], which are basic notions in quantum information
science. In Refs. [7,8], it has been argued that the ground-
state fidelity per lattice site is fundamental in the sense that it
may be used to characterize QPTs, regardless of what type of
internal order is present in quantum many-body states. The
argument is solely based on the basic postulate of quantum
mechanics on quantum measurements, which implies that
two nonorthogonal quantum states are not reliably distin-
guishable [10]. In other words, the ground-state fidelity per
lattice site is able to describe QPTs arising from an SSB
and/or topological order [11]. This has been further con-
firmed in Refs. [12,13], where topologically ordered states in
the Kitaev model on the honeycomb lattice and the
Kosterlitz-Thouless phase transition are investigated from
the fidelity perspective, respectively. Moreover, even for sys-
tems with symmetry-breaking orders, it is advantageous to
adopt the ground-state fidelity per lattice site instead of using
the conventional local order parameters due to the fact that it
is model independent although one may systematically de-
rive local order parameters from tensor network (TN) repre-
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sentations of quantum many-body ground-state wave func-
tions by investigating the reduced density matrices for local
areas on an infinite-size lattice [14]. However, it remains
unclear whether or not it is possible for the ground-state
fidelity per lattice site to capture bifurcations arising from an
SSB.

In this paper, we attempt to fill in this gap. First, we
demonstrate that the developed TN algorithms on infinite-
size lattices may produce degenerate ground states arising
from an SSB, each of which results from a randomly chosen
initial state subject to an imaginary time evolution. Second, it
is unveiled that an SSB is reflected as a bifurcation in the
ground-state fidelity per lattice site for quantum lattice sys-
tems undergoing QPTs with symmetry-breaking orders [15].
The significance of this conclusion lies in the fact that, on the
one hand, this establishes the connection between the fidelity
approach to QPTs and the singularity theory; on the other
hand, it is of practical importance since it makes possible to
locate transition points without the need to compute the de-
rivatives of the ground-state fidelity per lattice site with re-
spect to the control parameter [16]. In contrast, the von Neu-
mann entropy, a bipartite entanglement measure, fails to
distinguish degenerate symmetry-breaking ground states. We
illustrate the general scheme in terms of the quantum Ising
model in a transverse magnetic field and the spin-% XYX
model in an external magnetic field. Here, it is worth empha-
sizing that, although the scheme is applicable to quantum
lattice models in any spatial dimensions, we restrict our-
selves to quantum systems on an infinite-size lattice in one
spatial dimension. This is achieved by exploiting the infinite
matrix product state (iMPS) algorithm initiated by Vidal
[17]. The extension to quantum lattice systems in two and
higher spatial dimensions, which requires to use the infinite
projected entangled-pair state (iPEPS) algorithm [18], is de-
ferred to another publication [19].

II. INFINITE MATRIX PRODUCT STATE ALGORITHM
AND SPONTANEOUS SYMMETRY BREAKING

For quantum many-body systems on an infinite-size lat-
tice in one spatial dimension, Vidal [17] developed a varia-
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tional algorithm to compute their ground-state wave func-
tions based on their MPS representations, which is a variant
of the MPS algorithm [20,21] on a finite-size lattice in one
spatial dimension. Here, we briefly recall the key ingredients
of the algorithm. Assume that the Hamiltonian is translation-
ally invariant, and consists of the nearest-neighbor interac-
tions: H=3hb*1 with Al*! being the nearest-neighbor
two-body Hamiltonian density. In the canonical MPS repre-
sentation [17], a quantum state for a quantum many-body
system on an infinite-size lattice in one spatial dimension is
parametrized in terms of a three-index tensor I}, or I'y, and
a diagonal (singular value) matrix A4 or Ag. I}, or I}, is
attached to each site, and N4 or Ay is attached to each bond,
with the subscripts A and B depending on the evenness and
oddness of the ith site and the i-th bond, respectively. Here,
s is a physical index, s=1,...,d, with d being the dimension
of the local Hilbert space, and / and r denote the bond indi-
ces, I,r=1,...,x, with x being the truncation dimension.
The ground-state wave function is projected out by perform-
ing the imaginary time evolution on an initial state |¥(0)),
which amounts to computing |V(7))=exp(—H7)|¥(0))
/lexp(=H7)|¥(0))|. For large enough 7 and a generic initial
state |¥(0)), it yields a good approximation to the ground-
state wave function, as long as there is a gap in the spectrum
of the system. Following the Suzuki-Trotter decomposition
[22], the imaginary time evolution operator is reduced to a
product of two-site evolution operators acting on sites i and
i+1:U(i,i+1)=exp(-A"*V1s7), 57<1. Notice that, acting a
two-site gate U(i,i+1) on a MPS representation produces
two issues: first, the state is no longer in the form of a MPS;
second, it breaks the translational invariance under two site
shifts. The former is remedied by performing a singular
value decomposition of a matrix contracted from one I'},,
one Iy, one N4, and two Ags, with only the x largest singu-
lar values retained. This yields the new tensors I'},, I'y,,, and
A4, which are used to update the tensors for all the sites, thus
restoring the translational invariance under two site shifts.
Repeating this procedure until the ground-state energy con-
verges, one may generate the system’s ground-state wave
functions in the MPS representations.

Remarkably, for a system with symmetry-breaking orders,
the iMPS algorithm automatically produces degenerate
ground states arising from an SSB in the symmetry-broken
phase, each of which breaks the symmetry of the system.
Moreover, the symmetry breakdown results from the fact that
an initial state has been chosen randomly. It is worth men-
tioning that, for quantum lattice systems in one spatial di-
mension, continuous symmetries cannot be spontaneously
broken [23] due to strong quantum fluctuations [24]. There-
fore, we shall restrict ourselves to the discussion of quantum
lattice systems with a discrete symmetry group Z, [25].

III. BIFURCATIONS IN THE GROUND-STATE FIDELITY
PER LATTICE SITE

Now consider a quantum many-body system, with a dis-
crete symmetry group Z,, on an infinite-size lattice in one
spatial dimension. Assume that the system undergoes a con-
tinuous QPT with Z, symmetry spontaneously broken when
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a control parameter N varies. According to the definition
[7,8], the ground-state fidelity per lattice site, d(\,\,), is the
scaling parameter, which characterizes how fast the fidelity
FO\{ ) =|(P(\,)|P(\)))| between two ground states
[W(\,)) and |¥(\,)) goes to zero when the thermodynamic
limit is approached. In fact, the ground-state fidelity
F(\y,\,) asymptotically scales as F(\;,\,)~d(\;,\,)E,
with L as the number of sites in a finite-size lattice. Remark-
ably, the ground-state fidelity per lattice site is well defined
in the thermodynamic limit and satisfies the properties inher-
ited from the fidelity F(\;,\,): (i) normalization d(\,\)=1;
(ii) symmetry d(N;,N\,)=d(\,,\;); and (iii) range O
=d\,\)=1.

In the Z, symmetric phase, the ground state is nondegen-
erate, whereas in the Z, symmetry-broken phase, two degen-
erate ground states arise. Now let us see what this implies for
the ground-state fidelity per lattice site, d(\;,\,). If we
choose W(\,) as a reference state, with \, in the Z, symmet-
ric phase, then the ground-state fidelity per lattice site,
d(N\1,\,), cannot distinguish two degenerate ground states
[W..(\)) in the Z, symmetry-broken phase. Here, |¥,(\;))
=P|W_(\,)), with P being the operation generating the sym-
metry group Z,. This follows from the fact that
<‘I’()\2)|q’+(7\1)>=<‘P(7\2)|P|q’+()\1)>=<‘1’(7\2)|\P-(>\1)> for
any large but finite size L. However, if we choose W(\,) as a
reference state, with \, in the Z, symmetry-broken phase,
then d(\,\,) is able to distinguish two degenerate ground
states. Therefore, for a given truncation dimension Y, a
pseudo phase transition point N\ manifests itself as a bifur-
cation point [15]. An extrapolation to y=c determines the
critical point A.. Therefore, the pinch point, first introduced
in Refs. [7,8] as an intersection of two singular lines to char-
acterize phase transition points, is identified as a bifurcation
point.

In contrast, the von Neumann entropy, a bipartite en-
tanglement measure, fails to distinguish degenerate
symmetry-breaking ground states. This is due to the fact that
the von Neumann entropy is fully determined by the singular
value matrices A4, and Ap, whereas all the information con-
cerning an SSB is encoded in the tensors I}, and I'y,,.

IV. MODELS

As an illustration, let us consider two quantum systems
with the symmetry group Z,. The first is the quantum Ising
model in a transverse magnetic field on an infinite-size lattice
in one spatial dimension. It is described by the Hamiltonian

©

H=- 2, (Stsli+1l 1 \slil) (1)

j=—00

where SE] (a=x,z) are the Pauli spin operators of the ith
spin-% and A is the transverse magnetic field. The model is
invariant with respect to the operation: S)[C[]H —S)[f] for all the
sites simultaneously, thus it enjoys the Z, symmetry. As is
well known, it undergoes a QPT, with a critical point at .
=1 [26].

The second is the spin—% XYX model in an external mag-
netic field, with the Hamiltonian
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FIG. 1. (Color online) The probability mass function Pr(K=k)
= ];pk(l— p)"* for the quantum Ising model in a transverse mag-
netic field in the Z, symmetry-broken phase, with A=1/2. Here, n is
the total number of the trials to be observed simultaneously, and
k(=0,1,2,...,n) is the number of getting positive values of the
order parameter (S[’]) and Ck—n V/[k!(n—k)!] is the binomial co-
efficient. By a trial we mean that the order parameter (S[ ]> for a
ground-state wave function arising from a random chosen initial
state is measured.

H= 2, (S8t A slisttl g stidglivl sty (2)
where S[oi] (a=x,y,z) are the Pauli spin operators of the ith
spin-;, A, denotes the anisotropy in the internal spin space,
and 4 is an external magnetic field. The model possesses az
symmetry, generated by the operation: S[’]—> S 1 and S i

—=S, [ Note that A,<1 and A,>1 correspond to easy-
plane and easy-axis behav1or respectlvely The ordered
phase in the easy-plane (easy-axis) case arises from an SSB
along the x(y) direction, with a nonzero order parameter, i.e.,
the magnetization (S[‘]) ((S[’])) below the critical field A,.
Here we shall choose A = 0.25, for which it is critical at &
=h,, with h.~3.210(6) from the quantum Monte Carlo
simulation [27].

V. SIMULATION RESULTS

In Fig. 1, we present the probability mass function for the
quantum Ising model in a transverse magnetic field in the Z,
symmetry-broken phase (A=1/2). Suppose a random vari-
able K follows the binomial distribution with parameters n
and p, then the probability of getting exactly k successes in n
trials is given by the probability mass function: Pr(K=k)
=C*pk(1-p)"*, for k=0,1,2,...,n, where Ct=n!/
[k!(n—k)!] is the binomial coefﬁcrent Here, by a success we
mean that the order parameter <S } is positive. Our data are
presented for both n=20 and n=40, with the truncation di-
mension y to be 8. This confirms that the probability for
getting the ground state with the positive order parameter
(SE”) each simulation run is p=1/2, as anticipated for the
binomial distribution. Therefore, our results demonstrate that
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FIG. 2. (Color online) Main: the ground-state fidelity per lattice
site, d(\;,\,), as a function of the transverse magnetic field
strength A\, with a fixed \,, for the quantum Ising model in a
transverse field. We have chosen here N\,=0.9. Inset: the critical
point is determined from an extrapolation of the pseudo phase tran-
sition point N, for the truncation dimension y. The fitting function
is )\X=X0+a)(‘b, where \.=1.000 15, with ¢=0.31612 and b
=1.985 65. This indicates that we are able to locate the transition
point accurately, with moderate computational cost. The accuracy
may be further improved if the truncation dimension y is increased.

an SSB occurs in classical simulations of quantum systems
on an infinite-size lattice in the context of the iMPS algo-
rithm. This is in sharp contrast to algorithms that simulate
finite-size lattice systems, which are forbidden to produce
degenerate symmetry-breaking ground states, since an SSB
only occurs in the infinite-size (thermodynamic) limit.

In Fig. 2 we plot the ground-state fidelity per lattice site,
d(\,\,), for the quantum Ising model in a transverse field.
Here, the transverse magnetic field strength \ is the control
parameter. If we choose W(\,) as a reference state, with \,
in the Z, symmetry-broken phase (as shown here, A,=0.9),
then d(\,\,) is able to distinguish two degenerate ground
states, with a pseudo phase transition point A, as a bifurca-
tion point [28]. The critical value A,=1.000 15 is determined
from an extrapolation of the pseudo phase transition point A,
for the truncation dimension y (see the inset in Fig. 2), which
is quite close to the exact value 1. Therefore, the iMPS al-
gorithm enables us to locate the transition point accurately
from the computation of d(\;,\,), with moderate computa-
tional cost. We stress that such a scaling for finite values of
the truncation dimension y has been discussed for the von
Neumann entropy [29].

We have also presented d(h,,h,) for the spm- XYX
model in an external magnetic field on an infinite-size lattice
in Fig. 3. Here, the external magnetic field % is the control
parameter. If we choose W(h,) as a reference state, with /1, in
the Z, symmetry-broken phase (as shown here, h,=3.2), then
d(h,,h,) is able to distinguish two degenerate ground states,
with a pseudo phase transition point &, as a bifurcation point.
The critical point h.=3.204 71 is determined from an ex-
trapolation of the pseudo phase transition point &, for the
truncation dimension y, as seen from the inset in Fig. 3.
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FIG. 3. (Color online) Main: the ground-state fidelity per lattice
site, d(h;,h,), as a function of the magnetic field strength ki, with a
fixed h, (h,=3.2), for the spin—% XYX model in an external mag-
netic field. Inset: the critical point /.. is determined from an extrapo-
lation of the pseudo phase transition point 4, for the truncation
dimension y. The fitting function is h,=h.+a x>, where h,
=3.204 71, with a=0.026 53 and b=0.860 03.

VI. SUMMARY

We have demonstrated that the iMPS algorithm may pro-
duce degenerate symmetry-breaking ground states arising
from an SSB, each of which results from a randomly chosen
initial state. It is shown that an SSB is reflected as a bifur-
cation in the ground-state fidelity per lattice site for quantum
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lattice systems undergoing QPTs with symmetry-breaking
orders. Conceptually, this establishes the connection between
the fidelity approach to QPTs and the singularity theory.
Practically, it is also important since it makes possible to
locate transition points without the need to compute the de-
rivatives of the ground-state fidelity per lattice site with re-
spect to the control parameter, which is usually a formidable
task. We illustrated the general scheme in terms of the quan-
tum Ising model in a transverse magnetic field and the spin-%
XYX model in an external magnetic field on an infinite-size
lattice. However, it is applicable to any translationally invari-
ant quantum lattice many-body systems in one spatial dimen-
sion.

Finally, it would be interesting to extend our investigation
to quantum lattice systems in two and higher spatial dimen-
sions, with the iMPS algorithm replaced by the iPEPS algo-
rithm [18]. Given that the ground-state fidelity per lattice site
may be computed in the context of the iPEPS algorithm [8],
it is promising to carry the idea further to quantum lattice
systems in two spatial dimensions. This is currently under
active investigation [19].
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