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Ensembles of excitable two-state units with delayed feedback
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A two-state unit is considered as an abstract modification for an excitable system. Each state is characterized
by a different waiting time distribution. This non-Markovian approach allows for a renewal process description
of the system dynamics. Exact formulas for the interspike interval distribution and power spectral density are
found. In the limit of an infinity ensemble of globally coupled units the mean-field equations for the popula-
tions of both states are derived. Depending on the coupling strength and on the noise intensity the ensemble
undergoes saddle-node bifurcations and demonstrates bistability, while a pitchfork bifurcation emerges on a
cusp point. The ensemble undergoes Hopf bifurcations and bulk oscillations emerge, in the onset of coherent

activation events, only when the feedback affects individual units with a certain time delay.
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I. INTRODUCTION

The transition to oscillatory behavior from excitable or
bistable dynamics is one of the fundamental bifurcations in
complex systems. It is a well studied mechanism for single
excitable units and for neuronal ensembles [1-3]. There is a
various number of neuron models with two or three compo-
nents including activator and inhibitor dynamics. They de-
scribe the voltage and the gating dynamics determining the
rest, activation, and refractory states of a neuron. In such
continuous models bifurcations emerge by tuning the appro-
priate control parameters which qualitatively changes the dy-
namical regimes. The residence times within the steady
states corresponding to these dynamical regimes are defined
by the interplay of several time scales of the particular
model. An additional time scale, that may lead to significant
change of common dynamical behaviors in ensembles of
coupled neurons, arises due to synaptic and dendritic propa-
gation delays [4-9]. Originally delayed feedback has been
proposed to control the dynamics of systems exhibiting de-
terministic chaos [10]. However it has been also used to
control noise-induced dynamics in excitable systems close to
a Hopf bifurcation [11-13].

A different approach is the introduction of discrete-states
systems where the transitions between the states are modeled
by waiting time distributions. This is a successful method
applied to study complex stochastic processes [14—17]. In
such models where the waiting times are given explicitly,
bifurcations can be studied by comparing the time scales in a
direct way. Discrete models subjected to delayed feedback
exhibit a great variety of dynamical features and a tractable
way to control synchrony in neuronal or chemical or other
individual based systems [18-23]. A well-known model that
consists of two states, can be met in several variations from
studies of coherence and stochastic resonance until bifurca-
tion analysis in networks of excitable or bistable units that
exhibit oscillatory behavior [17-20].
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In this paper a discrete two-state system consisting of a
state for a resting phase, and a state corresponding to an
excited phase is presented. The novelty of this model lies to
its renewal process description. Using appropriate waiting
time distributions we investigate the statistical properties of
an individual unit and the steady states of a globally coupled
ensemble analytically and by numerical simulations. A
bistable regime can be found appearing due to saddle-node
bifurcations if the coupling includes a feedback that supports
activity. When the feedback is delayed an oscillatory regime
emerges via a Hopf bifurcation, in the onset of coherent ac-
tivation and synchronization of coupled units.

II. INDIVIDUAL UNIT
A. Model definition

The system under consideration, depicted in Fig. 1, con-
stitutes a semi-Markovian process for a single unit that
changes between two states according to a discrete time Mar-
kov chain. However, it spends in each state a random amount
of time, distributed by the density functions w,(z) and w,(z),
respectively.

We construct a renewal process with two discrete states.
Although the process is not Markovian, the waiting time in a
certain state is independent of the time spent in the preceding
state. This single unit aims to mimic a single stochastic ex-
citable system when specific distributions are used. Hence,
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FIG. 1. A two-state excitable unit. State 1 assigns as the resting
state, followed by the excited state 2. The waiting times are distrib-
uted by an exponential distribution (w) in state 1 and by an Erlang
distribution (w,) in state 2.
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FIG. 2. Left: the interspike in-
terval distribution of a single unit
with an exponential (w;) and an
Erlang (w,) waiting time distribu-
tion. Right: the corresponding
power spectral density. Parameters
a,=100, #,=3. The solid lines
show an oscillatory unit, while the
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the transition 1 — 2 holds for the activation events while the
transition 2 — 1 models the return to the rest state. The wait-
ing times in this latter state are distributed by the density
function w,(r) and in the excited state by w,(r). It is evident
that the whole dynamics of such a renewal process is fully
specified by the statistical properties of the waiting times
between subsequent events. In our system the process is still
renewal, however, the distributions of the waiting times will
be chosen as different. Thus the waiting times in the resting
state obey different statistics than the waiting times in the
excited state. The transition 1 —2 is modeled as a rate pro-
cess,

wi(t) = yexp(= ), (1)

where both mean and variance equals 1/ 7. This is the escape
time needed, for an excitable system, to leave the rest state,
under the influence of noise. The transition 2— 1 is modeled
by an Erlang distribution,

ay ( a2l>a2_l ( azl)
— ] exp|-—], (2)
L)\ 1 P 15)

where «, is integer. The mean value equals #, and the vari-
ance 3/ a,. This distribution describes the waiting time in the
excited state corresponding to the quasideterministic spike
production when the impact of fluctuations is negligible.
Therefore the width of w, has to be narrow, realized by
choosing large values of a, where the Erlang distribution is
close to a JS-distribution. The choice of w; and w, results
from the basic features of excitable systems, which have a
stable fixed point. By noise, they can escape from that fixed
point with a certain randomly distributed time, modeled by
w;. The following excursion in phase space is less affected
by noise, however, the time can also vary with a small dis-
persion. This motivates us to the assumption for our model
that the resting state corresponds to the fixed point and the
excited state to the excursion in the phase space.

wy(t) =

B. Interspike interval distribution and power spectral density

The renewal process describes the system above gives rise
to a stochastic pulse sequence defined as s()=0 in the rest-
ing state and s(f)=1 in the excited. Analyzing its statistical
properties, characteristic features of excitable systems can be
extracted.

The interspike interval (ISI) is the sequence of excitation
time followed by the activation time. Employing the renewal
theory, the ISI distribution can be expressed as the convolu-

dashed lines display excitability.

tion of their waiting time density functions [see Fig. 2 (left)],

a) %
wisi(f) = v exp(- W)(a 7 )
2= Vh

v [1 : [(ay, (ay/t = 7’)1)]
['(ay)

The corresponding power spectral density (PSD) of the pulse

sequence s(¢) is shown in Fig. 2 (right). It can be expressed

in terms of the corresponding waiting time densities [14,24]
and is given by the formula

4 U)[(l - i(l)tz/az)az - 1]
= c .
0t + 1Y) (w+iy)(1 —ioty/a))—iy

3)

S(w) 4)
When 1/y>1, (dashed lines in Fig. 2) the unit spends more
time in the resting state and the ISI distribution is broad.
Otherwise, if 1/y<t, (solid lines in Fig. 2) the unit behaves
like an oscillator between the two states with a spectral maxi-
mum at finite nonzero frequencies. The corresponding ISI
are narrow distributed around the mean period of one cycle
(T=1/vy+1,). Both PSD and ISI give evidence to coherence
resonance, as there are some preferable frequencies that in-
crease the pulse regularity [25-28].

C. Generalized master equations

The balance of probability flows serves to determine the
occupation probabilities P;(z), i=1,2 of separate states i. The
generalized master equations [29] that hold for these prob-
abilities read

d

ZP1(5)=—J1—>2(1)+J2—>1(I), (5a)
4 = 5b
dtpz(l)——J2—>1(f)+-]1—>2(f), (5b)

where J,_,,(r) and J,_,,(¢) denote the probability flow from
state 1 to 2 at time ¢ and vice versa. Since the transition
1—2 is a rate process, its probability flow is given by
J,_,(t)=7yP (). The second probability flow is given by the
product of J,_,, at t—¢'" with the probability density w,(z") to
wait in state 2 the time #’, integrated for all possible #',
namely J,_, ()= [ yP(t—t")w,(¢")dt'. Then Eq. (5b) reads

%Pz(t)wPl(t)— f YP (1= 1")w,(t")dt". (6)
0

The Eq. (6) supplemented by the normalization condition
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FIG. 3. Ensemble of globally coupled units by their global out-
put f(z).

Pi(1)=1-Py(1), (7

can be given in the closed form

d%Pz(t) =A1-Py0)]- f AL =Pyt =1")Jwy(t)dt'.
0
(8)

This integrodifferential Eq. (8) has to be supplemented by
initial conditions obeying normalization and contains all the
dynamical features of a single unit.

III. ENSEMBLES OF COUPLED UNITS
A. Global coupling

The collective behavior of a large population of intercon-
nected two-state units, illustrated in Fig. 3, results from the
interplay of individual participants. In order to investigate its
dynamics, an ensemble of N units coupled by their global
output f(7), is considered. By this coupling the information
transmitted to each unit is the fraction of excited units of the
ensemble. Although the characteristics of the waiting time
densities do not change due to coupling, the activation rate y
depends on f(z). This mechanism can be expressed by the
sum of output of all units

1Y 15 (1)
_ _ 2\
flo= N,-=21 s(t) = N 9)

where n,(2) is the fraction of units in the excited state at time
t. Obviously, f(7) equals the relative occupation number of
the excited state. Assuming Py(n,,7) to be the probability to
find n, units in state 2 at time ¢ and considering the con-
tinuum limit of infinitely many coupled units N—oo, f(¢)
converges to P, [30],

lim f(z) = P,(1). (10)
N—x

We thus consider the activation rate as a function of P,(z),

y=AP,(1)], (11)

and the same for all the units. The equation that governs the
collective dynamics of the ensemble is uniquely determined
by the Eq. (8) for occupation probabilities of individual
units. To that end, by taking Eq. (11) into account, the mean-
field (MF) equation reads,
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<o) =LA = Po0)]

- f NP, (t—1")][1 = Pyt —1") Jw,(t")dt’".
0

(12)

In general, Eq. (11) induces an implicit form of steady
state solution, which can be expressed as

* tZ

P V(P +1, (13)
The complementary steady state comes from the normaliza-
tion condition Pj=1-P5. Adding small perturbations
P{(t)=P;+a; exp(\7) into the linearized MF-equation, the
linear stability of its steady state can be acquired. Therefore
the characteristic equation for the eigenvalues is formulated
as

dy(P})

N+ | yPY) -
04 2) dP;

(1=Py) |[1-W,(M]=0, (14)
where W,(\) is the Laplace transform of w,(7). It can be
shown that the eigenvalues A can never be purely imaginary.
That means no Hopf bifurcation exists. However, an appro-
priate choice for the dependence of y on P,(f) can introduce
strong nonlinearities into the Eq. (12).

In the following an Arrhenius law is assumed for the ac-
tivation rate. Instabilities come into the system by the adop-
tion of excitatory coupling, namely, y has to be an increasing
function of P,,

A
AP (D)]=r, exp{— %[1 —Upz(f)]} (15)

where AU, is an activation constant, D is the noise intensity
and o is the coupling strength. This adoption fulfills the con-
ditions for Kramer’s time (1/7) when D is sufficiently low. It
has been used in studies of coherent and stochastic resonance
[26,28] and in globally coupled networks of bistable ele-
ments [14,19,31].

This excitatory feedback is not able to destabilize the
units from the resting state when the coupling o is suffi-
ciently small, as shown in Fig. 4 (left). This steady state is
linear stable, the activation time is very long and the majority
of units lies to the resting state. Following this stable branch
for intermediate o a bistable regime appears. The system
comes into this regime through a saddle-node bifurcation
when the slopes of both sides of Eq. (13) become equal. In
other words reaching for the first time the curve, given by

AUyoP; —D)
I"()th ’

AU,

D (16)

(oPy—-1)= log(
one of the real eigenvalues vanishes and two new fixed
points appear, an unstable and a stable one. Increasing o
further, the first stable point merges with the unstable and
collapse onto a second saddle-node bifurcation. Eventually,
the system leaves bistability and only the upper branch sur-
vives, where the majority of units are excited. The whole
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scenario is illustrated in the bifurcation diagram Fig. 4 (left)
and by the insets of Fig. 5. It is important to note here that
although this upper branch is stable, a unit can leave this
steady state after its individual excitation time. Nevertheless,
it reaches the branch again after a vanishing short activation
time.

The system alternates dynamical regimes also due to
noise intensity. At low noise level it exhibits bistability [Fig.
4 (right)]. However, for larger values of D it ends up to
single steady state, where the units are equally distributed
between both states. If additionally the second derivative of
Eq. (13) vanishes at P,=P5 both stable branches merge in a
cusp point,

cusp

AU,

cusp _ AUO
2+ log(r()tz) ’

gCusP =

(17)
where a supercritical pitchfork bifurcation takes place. Under
this symmetry breaking, two stable fixed points disappear,
while the middle one gains its stability. The dynamical re-
gimes and the cusp point are shown on D— o parameter plane
in Fig. 5. Both folds that define saddle-node bifurcations
merge in this cusp point and the bistability vanishes. A geo-
metric sketch of the left and the right hand side of Eq. (13)
are shown as insets in the same figure in order to identify the
different dynamical regimes. Note, that the single elements
still change between resting and excited state following their
individual waiting time distributions. However the ensemble
reaches one of two states, determined by the system param-
eters and the initial configuration of units distributed in both
states.

Let us note that neglecting the refractory state in the
three-state model [14,30] it converges to our two-state model
without delayed coupling. However, the bifurcation analysis
presented above reveals all the details that describe the dif-
ferent behavior observed in the two stable branches, which
results from the internal clock of units. Similar behavior
should be observed in the cited three-states system.

B. Global delayed coupling

Up to this point the global output feds back immediately
to the rate y. However, due to finite propagating velocity of
information in networks of individual participants (like neu-
ronal networks), we assume a feedback that needs a certain
but fixed delay time 7 to act on individual elements. This
coupling mechanism induces significant variations in the
coupled two-state units. It can improve the coherence prop-
erties and change drastically the underlying dynamics.

In the same manner like before, the rate vy is assumed as
an increasing function of P,(r—7), meaning that the activa-
tion time strongly depends on the fraction of units that were
excited at a fixed time delay 7. The MF-equation now reads

<ot = ot~ 1 - o]

—f NPt =1 = D1 = Pyt —1")]wy(¢')dt' .
0
(18)

A prefactor exp(—\7) comes into the characteristic equation
for the eigenvalues,

dy(Py)

P, (1= Pexp(=\7) [[1-W,(N\)]=0

N+ [y(PZ) -
(19)

and has crucial influence on the system linear stability [32].
For a given set of parameters the delayed feedback gives rise
to Hopf bifurcations, since Eq. (19) has complex solutions
that pass simultaneously the imaginary axis.

In the following, fluctuations in the excited state are com-
pletely neglected. Therefore, by setting a, — % the transition
2—1 has a fixed time #,, namely, w,(1)=8(r—1,). Hence, its

7

0.4

D

FIG. 5. Stability diagram on D—o plane. The monostable re-
gime is shown in dark gray, while light gray corresponds to the
bistable regime. On the borders of two regimes saddle-node bifur-
cations take place, while a pitchfork bifurcation emerges in the cusp
point (black color). The insets in the corresponding regimes, show
geometrically the stationary states P from Eq. (13). The remaining
parameters are the same as in Fig. 4.
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Laplace transform is w,(\)=exp(\f,). By taking this into
account it finally gives the classical form of a characteristic
equation with two delays:

dy(P3)

N+ | YP) -
ou 2) dP;

(1= P5)exp(— )\T)] [1—exp(-=At)]=0.
(20)
Setting A=1w and separating Eq. (20) into real and imaginary

part the Hopf bifurcations in the plane D— o are given by the
parametric curve

2AU0
DH = i
) wt
2 log) —[cot(w7) +cot(wt,/2)] ¢ -
21, sin(w7)
(21a)
t,D
o= (21b)
2AU,P;5 sin(w7)

where w stands for the frequencies of critical oscillations on
the bifurcation curve [see Fig. 6 (inset)]. The location of this
curve depends on time delay and divides the D—o plane in
two dynamical regimes, the oscillating and the nonoscillating
domains, as illustrated in Fig. 6. Inside the oscillating regime
all units undergo the transitions 1 —2—1 in a coherent way
leading to an oscillatory global output. Out of this area, al-
though all units change between both states following their
individual waiting time distributions, the ensemble ends up
to a stationary state and exhibits no rhythmic phenomena.

There is a minimum delay below which no Hopf bifurca-
tion emerges. An analytical approximation of this critical de-
lay is calculated geometrically close to the solution of Eq.
(21b), when it has only one solution with respect to w. This
estimation gives,

3:

2 no oscillations
L

03 0.6
D

FIG. 6. The curves show parameters where a Hopf bifurcation
takes place in the parametric plane D— o for different delays. The
corresponding frequencies on bifurcation points are shown in the
inset. The parameters are fixed at t,=1, ry=0.8, and AU,=1.
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FIG. 7. Reappearance of primary branch (k=0) of Hopf bifur-
cations for larger delays. Some parts are squeezed and some parts
are stretched, depending on their frequency w. The remaining pa-
rameters are the same as in Fig. 6.

3 tzD

Tcritical ~ - (22)
This critical value defines the position of the primary branch
in Fig. 7.

From the parametric Eqs. (21) for the Hopf bifurcation
points, additional solutions can be easily derived, given by,

k
T =T+ —77, (23)
w

where k=0,1,2.... Equation (23) indicates reappearance of
Hopf bifurcations and periodic solutions for larger delays.
The primary branch of these solutions appears at finite delays
for k=0 as shown in Fig. 7. The reappearance of this primary
branch for larger delays (k=2,4,...) is also shown in the
same figure. These branches have the same frequency depen-
dence, since they consist of the same periodic solutions (for
even values of k), however with some stretchings and
squeezings. Let us assume two solutions with different fre-
quencies for delays 7; and 7, with 7, <7, on the primary
branch. The projection of their distance on 7 axis is defined
as

6 =T)— T1. (24)

The distance of the same solutions on the kth branch is given
by using Eq. (23) as

€'=T§—7’{=€+kﬂ'w1_w2. (25)

w1 W)

From Eq. (25) it is clear that €' >{ when w; > w, and thus
the corresponding parts of kth branch will be stretched, oth-
erwise they will be squeezed. This seems to be a general
behavior of delayed system with periodic solutions [33]. Fi-
nally, from Eq. (23) follows that sin(w7)=-sin(w7’) for odd
values of k, which is a solution of Eq. (21a) when oy is
negative. Therefore, the system undergo a Hopf bifurcation
for inhibitory coupling (o<<0) with 7/, however, for differ-
ent values of noise intensity.
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FIG. 8. Top: record of the activity of 2500 units with delayed
global coupling. Black dots stand for the moments where transition
1—2 starts. Bottom: the output of an arbitrary chosen unit (thin
dashed line) and the oscillatory global output (thick solid line). The
parameters in this simulation are chosen as 7=0.78,D0=0.49,0
=2.5.

IV. NUMERICAL SIMULATIONS

The dynamics of a global coupled chain constituted of a
large number of two-state units is simulated in order to verify
the theory presented above. We consider a large ensemble of
such coupled units, which comes closer to the mean-field
dynamics the larger the ensemble is. Each individual unit has
its own internal clock defined by the distributions w; and w,.
The time resolution (time step) is chosen to be dr=10"" and
the simulation runs for 200X 107 time steps. Each time an
individual unit starts the transition 1 — 2, a random amount
of time is chosen to be exponentially distributed by w; for
the activation time of that unit. In the first case, the rate y of
w is affected by the current global output f() of the whole
ensemble, while the excitation times follows the Erlang dis-
tribution w,. In the case of delayed feedback, vy is affected by
the global output f(z—7) of the ensemble in a previous time
t— 7, while the excitation time is constant (z,).

In the absence of delayed feedback and with an Erlang
distribution for the waiting times in the excited state,
monostable or bistable behavior is observed. In the bistable
case one of the stationary states can be selected by choosing
appropriate initial configurations. Note, that the individual
units behave in a different way along the two stable
branches, as already mentioned for the infinity system at the
MF level. For occupation probabilities within the lower
stable branch the activation time can be very long. Therefore
the majority of units are staying longer in the resting state.
The behavior is different in the upper branch. Although it is

PHYSICAL REVIEW E 82, 061124 (2010)

stable, each unit transit to the resting state after a finite ex-
citation time. Nevertheless, it becomes excited again after a
vanishing short activation time. This complex behavior arises
because the single elements always change between two
states following their individual internal clocks.

By applying the delayed feedback and assuming a con-
stant excitation time, an additional time scale is introduced
that can result to bulk oscillations, presented in Fig. 8. As
predicted in the theory the oscillating regime occurs for pa-
rameters D and o beyond the Hopf line given by the Egs.
(21). In the upper panel of Fig. 8 the activity of 2500 units
coupled by delayed feedback is recorded, where the black
dots mark the transition events to the excited state. The ac-
tivity of an arbitrary chosen individual unit (dashed line) and
the global output (solid line) are depicted in the lower panel.
The majority of units subjected to transitions between states
within the same time interval, manifesting synchronization
of the units and therefore coherent activation of the coupled
chain. A parameter scan along the D and o axis in Fig. 6
crossing the Hopf line is shown in Figs. 9 and 10 for two
measures of coherent global oscillations. Let us mention here
that we use these measurements only to figure out the bifur-
cation point in simulations and to characterize the coherence
properties very close to the Hopf line. They give correct
results only for small values of o and D where the Arrhenius
law is satisfied.

The very presence of oscillations as illustrated in Fig. 8
can be captured by the quantification of an amplitude in the
global output using its variance (f(¢)—{f(¢)))>. This quantity
takes nonzero values as soon as the Hopf-line is exceeded by
a smooth increase over D and rises abruptly over o. The
degree of coherence close to the Hopf bifurcation can be
characterized by the synchronization index (SI). Following
the analytic signal approach [34] of a measured signal z(z),
which is the global output in our case, one can define

() =z(0) +iZ(1) = A()e' ", (26)

where the imaginary part Z(¢) is the Hilbert transform of z(z).
The instantaneous phase ¢(z) of the signal is uniquely de-
fined by Eq. (26). Assuming two arbitrary chosen suben-
sembles, each consisting of 50 units, the phase difference
between them is defined as, A¢=¢,(t)— ¢,(¢). Therefore the
SI can be estimated, given by

S.I. ={(cos(A¢))* + (sin(A¢))?, (27)

which relates in Gaussian approximation to the variance of
A¢ distribution. When phases are narrow distributed around
a constant value SI goes to unity, otherwise for broad distrib-
uted phases it goes to zero. In Figs. 9 and 10 it can be seen,

0.006¢

amplitude

FIG. 9. Oscillations amplitude (left) and syn-
chronization index (right) with respect to noise
intensity.
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FIG. 10. Oscillations amplitude (left) and syn-
chronization index (right) with respect to cou-
pling strength.
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that the SI grows at the Hopf values similar to the amplitude
and shows a pronounced synchronization maximum. Coming
closer the second Hopf-bifurcation point by further increase
of noise intensity D both measures decrease to zero. For
higher o there is no second Hopf bifurcation (see Fig. 6).
However, the amplitude as well as the SI shrinks after pass-
ing the maximum. This lessening can be explained by con-
sidering the interplay of time scales. The activation rate be-
comes greater with higher coupling, so the mean activation
time 1/v becomes very short and most units occupy the ex-
cited state in the same time. Although the individual units
keep rotating between two states, they spend vanishing short
time in the resting state. Because of the finite size of chain,
the global output practically does not affected by these tran-
sitions and finally seems to be not oscillatory, deluding both
measurements, amplitude and synchronization index, which
are assumed only for oscillatory signals. However for small
D and o, they give the bifurcation point adequately close to
the mean-field theory and they found increase of coherence
close to bifurcation. This behavior of very short activation
time, which stabilizes the depolarized state, is indeed known
from neurobiology. The occurrence of a stable depolarized
state often corresponds to a pathological regime of neuronal
behavior, such as spreading depression [35] or poisoning of
cells by potassium [36,37]. In these studies, due to synaptic
or intercellular chemical coupling, the excitable units per-
form a delayed interaction due to finite propagation velocity.
If this effect is strong enough, they show a bursting behavior
and even more, a regime of almost complete depolarization
over a long time.

V. CONCLUSIONS

Analytical studies and simulations results indicate that
large ensembles of coupled two-state units exhibit a rich dy-
namics. At the MF level, global excitatory coupling leads to
monostability and bistability, which alternate through saddle-
node or pitchfork bifurcations. Each unit changes between
both states following its individual waiting time distribution.
The latter nevertheless is affected by the global coupling
driving the ensemble to one of two dynamical regimes. It is
important to note that although the ensemble reaches one of
the two stable steady states, the individual units still transit
between excited and resting state, following their internal
clock. A more complex behavior arises, when global cou-
pling feds back to each individual activation time after a
certain time delay. The ensemble now passes through a Hopf
bifurcation to an oscillating regime, in the sense of almost
synchronous activation. For appropriate time delay a Hopf
bifurcation occurs for inhibitory coupling, however for dif-
ferent values of noise intensity. Future work is necessary to
develop a locally coupled model in order to investigate spa-
tial behavior in the various dynamical regimes.
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