
Reaction-subdiffusion model of morphogen gradient formation

S. B. Yuste,1 E. Abad,1 and Katja Lindenberg2

1Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain
2Department of Chemistry and Biochemistry and BioCircuits Institute, University of California–San Diego,

9500 Gilman Drive, La Jolla, California 92093-0340, USA
�Received 1 August 2010; revised manuscript received 18 November 2010; published 14 December 2010�

We study gradient formation of subdiffusive morphogens. The morphogens are produced at a source point at
a constant rate. From there they move subdiffusively and are also subject to degradation at a rate that may
depend on location and on time. Our analysis is based on a reaction-subdiffusion equation obtained from a
continuous time random-walk model with a long-tailed waiting time distribution that also incorporates an
evanescence process. Spatially uniform degradation at a constant rate leads to an exponentially decreasing
stationary concentration profile hardly distinguishable from that obtained with normal diffusion. On the other
hand, with location-dependent degradation we find a rich gamut of profiles, some qualitatively quite different
from those occurring with normal diffusion. We conclude that long-time morphogen concentration profiles are
very sensitive to the spatial dependence of the reactivity and may also serve as a sensitive measure of the
occurrence of anomalous diffusion.
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I. INTRODUCTION

The spatial distribution, differentiation, and further devel-
opment of many embryonic cells is governed by the spatial
distribution of special signaling molecules called morpho-
gens. A role of morphogen gradients in developmental biol-
ogy has been accepted for decades, including the classic pa-
per of Crick �1�. However, only in the past decade have
experiments made possible the understanding of ways in
which cells can sense and respond to extremely small
changes in even very low concentrations of extracellular sig-
naling factors �2�.

Standard models of morphogen gradient formation as-
sume that a specific part of the embryo secretes morphogens
at a constant rate. The secreted morphogens then undergo
degradation as they disseminate through the tissue, resulting
in a concentration gradient. Different target genes in the em-
bryonic cells are activated when the morphogen concentra-
tion exceeds a specific threshold for that gene, thus leading
to a cell response to the local environment that depends on
the local concentration. Because of this differential response,
cells are able to interpret the morphogen gradient and trans-
late it into specific “code” for their subsequent development
via the expression of relevant genes.

Traditional models of morphogen gradient formation are
based on diffusion equations with an added linear degrada-
tion term and a localized source of morphogen molecules
�3�. Such ordinary diffusion equations arise from continuous
time random walks �CTRWs� with exponentially decaying or
other short-tailed waiting time distributions. However, there
are at least two oversimplifications in this formulation. On
the one hand, the morphogen gradient produced by a degra-
dation process that is independent of location is not well
buffered against inevitably occurring genetic and environ-
mental fluctuations �4�. Such buffering is of course a require-
ment for the stability of any mechanism of cell differentia-
tion and genetic development. One way to achieve buffering
is for the morphogens to decay rapidly close to their source

but more slowly farther away �4�. It is thus important to
explore a variety of degradation mechanisms. Furthermore,
the consequences of different degradation mechanisms de-
pend on the details of the morphogen transport mechanism
�5�. One of the factors affecting morphogen transport is the
nature of the environment. The complexity of biological en-
vironments may result in morphogenic species encountering
a large number of obstacles, barriers, traps, and other impedi-
ments in the course of their trajectories, leading to anoma-
lous transport �6�, more specifically, to subdiffusion. For ex-
ample, it has recently been argued that for morphogens such
as decapentaplegic �Dpp�, wingless �Wg�, and hedgehog
�Hh� the proteins of the heparan sulphate proteoglycan
�HSPG� family act as active obstacles where the morphogens
are stalled with long-tailed waiting time distributions �7�.
CTRWs with such long-tailed distributions are subdiffusive
�see below�.

In this paper we study morphogen gradient formation in
subdiffusive media in which morphogen degradation may
depend on position �and, in principle, also on time�. Our goal
is to show that the profile of the gradient may be sensitively
dependent on the nature of the motion of the morphogens in
the medium as well as on the degradation mechanism. We
will show that in some cases where a stationary gradient
exists in a diffusive medium, there is no stationary gradient
in the subdiffusive counterpart. Morphogen gradients may
therefore provide a sensitive indicator of the nature of the
medium and of the degradation process. Our analysis starts
with a well-known description of anomalous diffusion,
namely, a CTRW, where the morphogen particles are charac-
terized as random walkers. We base our analysis on an ex-
tension of the CTRW model to include degradation, followed
by a coarse graining of the problem to arrive at a fractional
reaction-subdiffusion equation. Our contribution is the deri-
vation and solution of this equation for a number of different
degradation mechanisms, and a detailed analysis of the re-
sulting morphogen profiles. We restrict much of our discus-
sion to one dimension not only for mathematical conve-
nience but because in fact most experimental geometries for
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this problem are effectively one-dimensional. In two-
dimensional experiments the morphogen source is usually a
line and in three-dimensional ones it is usually a surface,
rendering an effectively one-dimensional geometry �see, e.g.,
the discussions in �7,8� and references therein�.

While our discussion here revolves around morphogen
gradient formation, we stress that our results are more gen-
erally applicable to any problem involving a source of par-
ticles that then move subdiffusively �as described by a long-
tailed CTRW model� and are subject to a degradation process
�9�. For example, our discussion could be relevant to the
problem of controlled-release and microfluidic drug delivery
technologies in tissue engineering �10�. It could also be rel-
evant to point-source pollutants in groundwater when these
pollutants can recombine or otherwise disappear. Similar ad-
ditional examples can be found in �11� and references
therein.

In Sec. II we present the model highlighting the principal
steps used in deriving a fractional reaction-subdiffusion
equation starting from a CTRW description that includes
degradation. In Sec. III we detail the solution of this equation
for various degradation profiles and compare and contrast the
resulting morphogen gradients with those that would occur
under the same degradation mechanisms if the motion of the
morphogens were simply diffusive. The issue of robustness
is considered in Sec. IV. We end with a summary and some
remarks about future outlook in Sec. V.

II. MODEL

To construct our model, we specify how the morphogens
move in the medium, how they degrade, and how to combine
these two dynamical contributions in a single evolution
equation for the morphogen concentration as a function of
location and time. There is an extensive recent literature on
reactions in subdiffusive media, a great deal of it based on
CTRW models and the associated integrodifferential equa-
tions. We particularly point to early work showing that sub-
diffusion stabilizes Turing patterns �12,13�. Other examples
of derivations of reaction-subdiffusion equations based on
CTRW models can be found in �14� for walks with internal
dynamics and in �15� in the context of front propagation.
Additional examples include �12,16–20�.

Models of subdiffusion that are based on CTRWs start
with particles described as random walkers whose jumps oc-
cur at times separated by idle time intervals drawn from a
long-tailed waiting time distribution ��t�. In particular, for
long times t

��t� � �t0
�t−1−�, �1�

where t0 is a constant that has dimension of time. The
Laplace transform of ��t� is

�̃�u� � 1 − ��u�� �2�

for small u with ��=��1−��t0
�. The lengths of the jumps are

characterized by a probability distribution function w�x�
whose Fourier transform has the small-q expansion

ŵ�q� � 1 − ��q��. �3�

For ��2, the inverse Fourier transform of ŵ�q� for �x�→	
is

w�x� 
 �−��x�−1−�, �4�

which has an infinite variance. The choice �=2 �e.g., as in a
Gaussian distribution of jump lengths or one with a constant
jump length� corresponds to a finite jump length variance;
specifically, �2 is then half the variance of the jump length.
When �=1 the mean time between jumps is finite, which is
associated with normal diffusion. For our calculations in sub-
sequent sections the jump length variance is finite and the
mean time between jumps is infinite due to the presence of
obstacles and traps, that is, we will take �=2 and ��1.

The coefficients � and � as well as the exponents � and �
are the microscopic parameters of the CTRW model. The
mean-square displacement of these walkers with �=2 grows
sublinearly with time,

�x2� �
2K�

��1 + ��
t�. �5�

Here K� is the subdiffusion coefficient related to the micro-
scopic CTRW parameters by K�=�2 /��. When �=1 �normal
diffusion�, an average over random-walk trajectories in the
limit of long times and large displacements leads to the fa-
miliar classical diffusion equation. Instead, this limit for the
power-law CTRW problem ���1� yields the fractional dif-
fusion equation �9�

�c�x,t�
�t

= K� 0Dt
1−��2c�x,t�

�x2 , �6�

where c�x , t� stands for the morphogen concentration and

0Dt
1−� is the Riemann-Liouville fractional derivative

0Dt
1−�f�t� =

1

����
�

�t
	

0

t

dt�
f�t��

�t − t��1−� . �7�

For normal diffusion this operator reduces to unity and one
recovers the ordinary diffusion equation.

While this fractional subdiffusion equation can be taken
as a starting point for the description of a number of biologi-
cally relevant problems �21�, in the case of morphogens we
must still incorporate the degradation process. This requires
mathematical caution. For example, heuristic equations with
separate added terms for the reaction and the transport pro-
cesses lead to unphysical results such as negative particle
concentrations �see, e.g., �22��. The correct derivation re-
quires the reaction or degradation to be incorporated at a
mesoscopic level of description. As we will see, a properly
extended CTRW model leads to an equation which �in addi-
tion to a standard, purely reactive term� displays a mixed
reaction-transport term containing both the reaction rate co-
efficient and a fractional derivative with respect to time
�12,16–20�.

To obtain a correct description of the evolution of the
morphogen concentration, we follow an approach motivated
by the derivation detailed in �16,23�. For this purpose it is
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useful to first introduce some definitions and abbreviations.
In particular, we define the operator �� /�x� via the relation

F
 ��g�x�
�x� � = − q�ĝ�q� , �8�

where F denotes the Fourier transform. When applied to a
sufficiently well-behaved function g�x�, �� /�x� is the Riesz
fractional derivative �24�. Note that for �=2 this is simply
the Laplacian operator, which we will focus on later. We also
note that the Laplace transform L of the Grünwald-Letnikov
fractional derivative is

L�0Dt
1−�f�t�
 = u1−� f̃�u� , �9�

which coincides with the Riemann-Liouville derivative �25�
provided that f�t� is sufficiently regular at the origin
�limt→0 �0

t d��t−���−1f���=0�. Our morphogen concentration
function c�x , t� will be assumed to fulfill this condition.

We next need to describe the morphogen degradation
mechanism. We assume the loss of particles at location x due
exclusively to reactions to be given by

� �c

�t
�

reaction
= − k�x,t�c�x,t� , �10�

that is, k�x , t� is in general a location and time dependent
decay rate coefficient. Note that this equation does not nec-
essarily imply a first-order reaction since so far k�x , t� is not
restricted and might itself depend on c�x , t� or on the con-
centration of some other species. For instance, there has been
recent discussion of scaling of morphogen gradients relying
on a feedback topology in which the range of the morphogen
gradient increases with the abundance of some diffusible
molecule whose production, in turn, is repressed by morpho-
gen signaling �26�. The integrated form of Eq. �10�,
c�x , t�� /c�x , t�=A�x , t , t��, with

A�x,t,t�� = exp�− 	
t�

t

k�x,t��dt�� , �11�

describes the time evolution of the ratio of the concentration
of the particles at x at time t to the concentration at x at the
initial time t� when the number of particles at x changes due
exclusively to reactions, that is, when the changes in concen-
tration at x caused by particle jumps into or out of x are not
considered. Therefore A�x , t , t�� can be thought of as the �sur-
vival� probability that a particle that is at x at time t� does not
disappear from x, due exclusively to reaction, during the time
interval t− t�.

Next we introduce j�x , t� and i�x , t�, respectively, the in-
coming and outgoing flux of particles at location x at time t.
These two functions are related to one another,

j�x,t� =	 i�x − z,t�w�z�dz , �12�

which simply states that the incoming flux at x at time t
arises from the outgoing fluxes at all other locations x−z at
that time. Since the morphogen concentration at x can only
change due to the incoming and outgoing fluxes and due to

the degradation process at that location, we can write the
balance equation

�

�t
c�x,t� = j�x,t� − i�x,t� − k�x,t�c�x,t� . �13�

An additional relation connecting the fluxes and concentra-
tion is

i�x,t� = ��t�A�x,t,0�c�x,0� + 	
0

t

��t − ��A�x,t,��j�x,��d� .

�14�

This relation states that the outgoing flux from x at time t has
two contributions. One arises from the particles that started
out at x at time t=0, did not degrade or move anywhere up to
time t, and then took a step away from x at time t. The
second contribution arises from those morphogens that ar-
rived at x at some earlier time �, waited there up to time t
without degradation, at which point they stepped away.

Equations �12�–�14� provide all the necessary ingredients
of the model. We now proceed to combine these contribu-
tions to arrive at a final reaction-subdiffusion equation. The
balance Eq. �13� can be rewritten as

A�x,t,0�
�

�t
c��x,t� = j�x,t� − i�x,t� , �15�

where c��x , t��c�x , t�A�x ,0 , t�. Combining this with Eq.
�12� leads readily to

A�x,t,0�
�

�t
c��x,t� = F−1��ŵ�q� − 1�î�q,t�
 ,

�

�t
c��x,t� = A�x,0,t��� ��

�x� i�x,t� , �16�

where the second line follows from the first and the defini-
tion Eq. �8� of the Fourier transform. Upon Laplace trans-
forming the second balance equation �Eq. �14�� with respect
to time and then transforming back, the equation can be re-
written as

i�x,t� = A�x,t,0�L−1
 u�̃�u�

1 − �̃�u�
c̃��x,u��

= A�x,t,0��−�
0Dt

1−�c��x,t� , �17�

where the second line is obtained by using the Laplace trans-
form of the Grünwald-Letnikov operator, Eq. �9�, along with

the explicit form �2� of �̃�u�. Finally, inserting Eq. �17� into
Eq. �16� and expanding the abbreviated notation, we arrive at
the general fractional reaction-diffusion equation that is the
starting point of our analysis:
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�

�t
c�x,t� = K�

��

�x�
exp�− 	
0

t

k�x,t��dt�� 0Dt
1−�
exp�	

0

t

k�x,t��dt��c�x,t��� − k�x,t�c�x,t� . �18�

More specifically, we focus on the case �=2 so that the
spatial operator is the Laplacian, as mentioned earlier, and
we also do not consider the time dependence in the degrada-
tion process. Our central starting reaction-subdiffusion equa-
tion therefore is

�

�t
c�x,t� = K�

�2

�x2 �e−k�x�t
0Dt

1−��ek�x�tc�x,t��
 − k�x�c�x,t� .

�19�

Along with this equation, we assume a constant flux j0 of
morphogens at the origin as our boundary condition. If there
is a stationary state cs�x�, then the incoming flux must be
balanced by the flux of particles “away” from the system due
to degradation, that is,

j0 = 	
−	

	

k�x�cs�x�dx . �20�

This condition can serve as an additional check on results.

III. MORPHOGEN PROFILES

The solution of Eq. �19� with a constant flux j0 at the
origin is related to the Green’s function or propagator G�x , t�
of the problem, that is, the solution when the initial condition
is a Dirac delta function at the origin, c�x ,0�=��x�,

c�x,t� = j0	
0

t

G�x,t − t��dt� �21�

or, in Laplace space,

c̃�x,u� = j0G̃�x,u�/u . �22�

It turns out to be convenient for later manipulations to intro-
duce a function v�x , t� defined via the transformation

ṽ�x,u� = �u + k�x��1−�G̃�x,u� , �23�

in terms of which

c̃�x,u� = j0
�u + k�x��1−�

u
ṽ�x,u� . �24�

The auxiliary function ṽ�x ,u� satisfies the ordinary differen-
tial equation

�u + k�x���ṽ�x,u� − ��x� = K�

�2

�x2 ṽ�x,u� . �25�

Our investigation of a number of representative reactivity
profiles begins with Eq. �25�.

The spatial dependence of k�x� may arise from several
morphogen degradation pathways which for practical pur-

poses can be regarded as “death” or “evanescence” pro-
cesses. Since the rate of each of these may depend on the
local environment, we will explore the consequences of non-
uniform degradation rates associated with spatially nonuni-
form environments �27�. As we will see below, morphogen
concentration profiles turn out to depend strongly on the spa-
tial dependence of the degradation rate. Thus, as noted ear-
lier, the resulting morphogen gradients might provide not
only a possible sensitive measure of the transport properties
of the environment but also of the underlying degradation
process. We next consider three degradation pathway mod-
els. The first one �constant degradation rate� has been exten-
sively considered in the literature but only in conjunction
with normal diffusive motion. The other two, piecewise con-
stant and exponential reactivities, are chosen as simple rep-
resentative models to explore the possible effects of possible
more complex scenarios that are conjectured to occur but
have not yet been characterized in detail �3,26�.

A. Constant reactivity

The most commonly encountered reactivity in morphogen
studies is a constant, k�x , t�=k. The solution of Eq. �25� for
x�0 is of the form ṽ�x ,u�=Ae−��x�+Be��x� with �= �u
+k��/2 /K�

1/2. We must choose B=0 since the solution for fi-
nite time �u�0� must be finite for �x�→	. It also follows
immediately that the spatial derivative of the solution is not
continuous at x=0. In fact, integrating Eq. �25� over the dis-
continuity at the origin leads to

� � ṽ�x,u�
�x

�
x=0+

−� � ṽ�x,u�
�x

�
x=0−

= −
1

K�

�26�

or, equivalently, due to the even symmetry of the solution,

� � ṽ�x,u�
�x

�
x=0+

= −
1

2K�

. �27�

This implies that A−1=2�u+k��/2�K� from which, using Eq.
�23�, it follows that

G̃�x,u� =
1

2

�u + k��/2−1

�K�

exp�− �x��u + k��/2/�K�� . �28�

From Eq. �22�, one then finds the solution

c̃�x,u� =
j0

2

�u + k��/2−1

u�K�

exp�− �u + k��/2/�K��x�� . �29�

The stationary solution is obtained from the final value theo-
rem for the Laplace transform,
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cs�x� = lim
u→0

uc̃�x,u� =
j0

2

k�/2−1

�K�

exp�− �x�/
� , �30�

where the decay length is 
=�K� /k�. Equation �30� general-
izes the well-known stationary exponential profile found for
normal diffusion �3�, which is simply this result with �=1.

Because the separate determination of diffusivities and
reactivities of morphogens poses significant experimental
difficulties, in most cases only the exponential decay and its
characteristic length 
 can be unambiguously determined.
This means that the detailed origin and parameter depen-
dence of the gradient are experimentally uncertain �28� and
opens the door to the possibility of any number of non-
Markovian generalizations such as Eq. �30� that may be
compatible with experimental results.

A typical time progression of the profile obtained from
numerical simulations of the corresponding CTRW model is
shown in Fig. 1, as are the theoretical predictions. The agree-
ment is excellent. A steady-state profile is thus seen to exist
when there is anomalous diffusion, a profile that is formally
equal to that of normal diffusion.

While it may be difficult to distinguish a diffusive from a
subdiffusive environment if the morphogen degradation rate
is a constant independent of location, the characteristic
length of the gradient does depend differently on the mor-
phogen lifetime in the two cases �
�k�/2�. If it were pos-
sible to alter the lifetime of the morphogens it would thus in
principle be possible to obtain information about the nature
of the environment by measuring the consequent change in
the length of the gradient.

An important observation at this point is the very exis-
tence of the steady-state gradient in the case of a subdiffusive
environment together with a constant rate of degradation. A

result that has been used to argue against the existence of a
stationary gradient in this case �29� was obtained in �7�.
However, this mainly serves to point to the importance of the
detailed assumptions of the model. In our case, degradation
occurs at any time, independently of whether the walker is
standing still or taking a step because the two processes,
degradation and spatial transitions, are assumed to be inde-
pendent processes. In the work of �7� degradation occurs
only in association with steps and not during waiting times,
and this is insufficient to sustain a steady state.

B. Piecewise constant reactivity

Next we consider a sequence of piecewise constant reac-
tivities, that is, the reactivity is k0 up to some distance R
from the morphogen source and it is k1 in the region �x�
�R. This profile provides a simple way to model a change in
the degradation mechanism across an interface or beyond a
certain distance from the source. It is the simplest model that
might lead to a kind of complex morphogen patterning �see
below�, thus providing a richer context for gene activation.

The profile can be expressed in terms of the Heaviside
theta function ��x� which is equal to unity when x�0 and
equal to zero when x�0,

k�x� = k0��R − �x�� + k1���x� − R� . �31�

The most dramatic behavior for this sort of reactivity profile
occurs when the reactivity is finite up to some distance and
zero beyond, that is, when degradation does not occur at all
for x�R �k1=0�. In this case, the solution of Eq. �25� for
�x��R is again ṽ�x ,u�=A0e−�0�x�+B0e�0�x� with �0= �u
+k0��/2 /K�

1/2. For �x��R it is ṽ�x ,u�=A1e−�1�x�+B1e�1�x� with
�1=u�/2 /K�

1/2. We must choose B1=0 since again the solution
for finite time �u�0� must be finite for �x�→	. Imposing the
condition of continuity of the solution and its derivative at
�x�=R together with the discontinuity condition �Eq. �27�� at
x=0 leads to

A0 =
1

2K��0

�

1 + �
,

B0 = −
1

2K��0

1

1 + �
,

A1 =
e��0+�1�R

K���1 − �0�
1

1 + �
, �32�

with �=e2�0R��1+�0� / ��1−�0�. By means of these expres-
sions the full solution c̃�x ,u� can be evaluated using Eq. �24�.
The corresponding long-time solution can be straightfor-
wardly obtained via Tauberian theorems. For �x��R we find
the stationary solution

cs�x� =
j0

2k0

� k0
�

K�

csch�R� k0
�

K�

�cosh��x − R�� k0
�

K�

� .

�33�

As �x�→R from below this yields a constant concentration
which is then in effect a boundary condition for the solution
beyond. For �x��R the long-time solution is

FIG. 1. �Color online� Simulation results over 1000 realizations
�symbols� for c�x , t� with k=1 /1000, �=1 /2, and j0=1. The par-
ticles are simulated by means of the CTRW model where the wait-
ing time distribution is a Pareto law, ��t�= �� / t0� / �1+ t / t0�1+� with
t0=1, and the jumps �−1,0 ,1
 are equiprobable. These parameters
lead to the K�-value 1 /�9�. The thin lines are the profiles obtained
from the inverse numerical transformation of Eq. �29�. The thick
line is the theoretical prediction for the steady-state profile �Eq.
�30��. There are no adjustable parameters.
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c�x,t → 	� �
j0

2k0��2 − ��
� k0

�

K�

csch�R� k0
�

K�

�t1−�.

�34�

For normal diffusion this approaches a nonzero constant, as
might be expected for a region without a reaction but with a
constant concentration boundary at one end. However, for
anomalous diffusion the concentration in this region grows
as t1−�, indicating that the constant concentration boundary
“feeds” morphogens into this region more rapidly than sub-
diffusion can carry them away and disperse them. The con-
centration at �x�=R thus becomes discontinuous and there is
no steady state. Both of these features are confirmed by nu-
merical simulations �see Fig. 2�.

Before discussing this outcome further, we note that Fig.
2 also exhibits transient results that illustrate the approach to
the long-time behavior. These results must be viewed with
some caution and not with quantitative severity. The simula-
tions are carried out on a discrete lattice and so a continuum
rendition such as shown in the figure is somewhat uncertain.
More specifically, the simulation results would be the same
for a location of the step anywhere in the range 5�R�6. On
the other hand, the theoretical results vary as we change the
location of the step, especially when the change in the con-
centration as a function of position is very steep. We have
chosen the intermediate location R=5.5 when reporting the
curves in the figure. At time t=105 and location x=6, for
instance, the value of c shown in the figure is 346.4. Had we
chosen R=5 it would have been 399.7, with R=6 it would be
300.4. Nevertheless, the trend is certainly clear.

The bottom line is this: a morphogen degradation profile
such as shown for long times in the figure leads to entirely

different behaviors when the morphogen motion is diffusive
or subdiffusive. Furthermore, the nonmonotonicity of the
profile may have interesting biological consequences: the
combined action of anomalous transport and a rapid spatial
variation of the reactivity �taken to an extreme in this model�
may induce nonstationary complex tissue patterning where
genes in spatially distant cells are similarly expressed.

C. Exponential reactivity profile

Here we consider k�x�=ke−��x� as a continuous model of
rapidly decreasing reactivity as opposed to the sudden step
function drop of the previous case. The morphogen reactivity
might, for example, be affected by the concentration of some
other substance which is itself produced by the morphogens
whose concentration is decreasing with distance �x� from the
source. The mathematics for dealing with a rapidly increas-
ing reactivity ���0� is entirely parallel but the results are
not particularly revealing and so we restrict our attention to
the more interesting situation of a reactivity that decreases
with distance from the source.

Equation �25� does not seem exactly solvable for finite u
with this reactivity profile. It is possible to arrive at an ap-
proximate solution by, for example, approximating �u
+k�x��� by u�+k�x��, but the outcome is not especially illu-
minating. Instead, we focus on the steady-state profile ob-
tained by replacing �u+k�x��� by k�x�� in Eq. �25�. This re-
placement is exact in the long-time limit u→0. The general
solution w̃�x ,u� of the resulting equation is a linear combi-
nation of the modified Bessel functions I�u�/2��k�/2�x�� and
K�u�/2��k�/2�x�� with �=2 / ����K��, but the coefficient of
K�u�/2 must be set to zero for the solution to remain finite as
�x�→	 at finite times. Furthermore, the solution must also
obey the discontinuity condition �w̃�x ,u� /�x �x=0+
−�w̃�x ,u� /�x �x=0−=−1 /K� at x=0 �see Eq. �27��. The ex-
plicit solution valid for small u �long times� then is

w̃�x,u� =
1

�k0
�K�

I�u�/2��k0
�/2e−���x�/2�

I�u�/2+1��k0
�/2� + I�u�/2−1��k0

�/2�
. �35�

Since w̃�x ,u� and ṽ�x ,u� coincide when u→0, we directly
implement Eq. �24� and invert to obtain the long-time solu-
tion cs�x�=c�x , t→	�,

cs�x� = j0
k�/2−1

2K�
1/2

I0��k�/2e−���x�/2�
I1��k�/2�

e−��−1���x�. �36�

For normal diffusion Eq. �36� is a monotonically decreas-
ing profile from the concentration value at the origin to a
constant nonzero limiting value, which is a behavior similar
to that obtained with a step function reactivity. Thus, while
the reactivity here in the outlying regions is not zero, it de-
creases sufficiently rapidly to support a finite morphogen
concentration throughout. This is shown in Fig. 3. The be-
havior is, however, quite different in the subdiffusive case
��1. Now as one moves away from the source, first the
concentration decreases until it reaches a minimum, but then
it increases as exp��1−����x�� �see Fig. 4�. This should be
compared with the behavior associated with a sudden drop of
the reactivity, see Fig. 2. There the concentration diverged

FIG. 2. �Color online� Simulation results for 50 realizations of
c�x , t� �symbols� for a step reactivity �k�x�=k0H�R−x�� with k0

=1 /1000, R=5.5, and j0=1 for �=1 /2. The particles are simulated
as in Fig. 1. The thin lines are the profiles obtained from the inverse
numerical transformation of Eq. �29�. The thick solid line corre-
sponds to the theoretical prediction for the steady-state profile when
x�R. For x�R there is no stationary profile. The convergence of
the simulation results to the stationary profile for x�R is very slow
for values of x close to the discontinuity at x=R. No adjustable
parameters were used.
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and there was no steady state. Here it increases beyond the
minimum but for any value of x there is a steady-state value,
albeit large for large x. While we do not have a divergence
here, the nonmonotonicity of the steady-state profile arising
from the combined action of anomalous transport and a suf-
ficiently rapid spatial decrease of the reactivity may again
induce interesting complex tissue patterning effects.

IV. ROBUSTNESS

A key property of morphogen gradients is their robustness
against environmental and genetic fluctuations �30�. One
way to assess the robustness of a given concentration value

cs�x� against fluctuations in any of the parameters b of the
model, e.g., the anomalous diffusion coefficient or the flux of
any parameter associated with the degradation process, is to
focus on the value x=L at which the concentration has the
given value and find L from the relation L=cs

−1�x� �x=L. A
standard dimensionless robustness parameter Rb used to
quantify the shift of the position L of the profile at a given
level of concentration when b changes then is

Rb = a�b
�L

�b
�−1

, �37�

where a�L is a suitable characteristic length of the system
�for example, the typical size of the cells� �8�. If it is desir-
able to have a system impervious to changes in the parameter
b, then this quantity ought to be as large as possible. On the
other hand, the way that this quantity varies as parameters
are varied tells us whether it can be used to distinguish be-
tween different models or behaviors.

To illustrate the point, consider the robustness of the mor-
phogen profile for a constant reactivity. In particular, con-
sider the robustness against changes in the secreted flux,

R j = a� j0
�L

� j0
�−1

= a� k�

K�
�1/2

, �38�

where we have used Eq. �30�. We wish to highlight the dif-
ference in the behavior of this quantity between a diffusive
and a subdiffusive environment. Because of the multiparam-
eter dependence of the robustness, to extract the effect of �
we need to scale our expression in a way that isolates the �
dependence. We thus write R j =�R j /a. This scaled robust-
ness is then

R j = ��/2, �39�

where �=k� is the degradation rate in units of �−1. The ques-
tion now is, how does this robustness �which is independent
of the value of the flux itself� depend on the degradation
rate? Is the subdiffusive system more or less robust against
changes in the flux? We see that if the parameters � and a are
fixed, then the robustness itself is greater in the diffusive
system when ��1 and greater in the subdiffusive system
when ��1. Subdiffusion thus buffers the effect of fluctua-
tions in the flux if the degradation rate is sufficiently small
compared to the reciprocal of the characteristic stepping
time.

We can similarly explore the robustness against changes
in the degradation rate,

Rk = a�k
�L

�k
�−1

=
a

�/2�1 − ln �� − 1
� k�

K�
�1/2

, �40�

where � is the ratio of the value of the steady-state concen-
tration at the origin and the given value of the concentration
being explored �here chosen to be the concentration at x=L�,
typically of the order e1. One can again introduce a scaling
that leads to a scaled robustness as in Eq. �39�. The conclu-
sions that follow are then exactly as listed above. In particu-
lar, subdiffusion again buffers the effect of fluctuations in the
degradation rate if this rate is sufficiently small compared to
the reciprocal characteristic stepping time.

FIG. 3. �Color online� Convergence of CTRW simulation results
for 50 realizations �symbols� to the stationary associated profile
predicted by formula �36� for j0=1, �=1 �normal diffusion�, K�

=1 /3, and exponentially decaying reactivity k�x�=k exp�−��x��
with k=1 /100 and �=1 /8 �solid line�. The particles are simulated
as in Fig. 1, but with the waiting time distribution ��t�= t0

−1 exp�
−t / t0� with t0=1. The simulation results clearly approach the sta-
tionary solution as time increases.

FIG. 4. �Color online� Convergence of CTRW simulation results
for 50 realizations �symbols� to the stationary profile predicted by
formula �36� for j0=1, �=0.5, the corresponding value K�

=1 /�9� �subdiffusion� and exponentially decaying reactivity k�x�
=k exp�−��x�� with k=1 /200 and �=0.6 �solid line�. The particles
are simulated as in Fig. 1. The simulation results clearly go towards
the stationary solution as time increases, although the convergence
for large x is slow.
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V. CONCLUSIONS AND OUTLOOK

We have investigated concentration profiles of morpho-
gens that move in subdiffusive media such as the embryonic
environment and are also subject to a degradation process.
The degradation process may depend on location. We have
assumed that the subdiffusive motion of the morphogens can
be described as a CTRW and have derived a fractional
reaction-subdiffusion equation starting from a CTRW model
together with a death process. This formulation has allowed
us to exploit a number of powerful analytical techniques
available from fractional calculus. We have found that for
constant reactivity a stationary exponential profile �well
tested experimentally� is predicted by both normal and frac-
tional reaction-diffusion equations, leading us to conjecture
that a subdiffusive process underlying the profile might have
been overlooked in some morphogenesis experiments. On
the other hand, we have found morphogen profiles that ex-
hibit effects not seen in normal diffusion. They include the
absence of steady states, nonmonotonic profiles, and transi-
tions between monotonic and nonmonotonic profiles. Analo-
gous anomalous behavior has been obtained in entirely dif-
ferent contexts, specifically for stationary reaction fronts �23�
and in geminate recombination reactions �18�. In the context
of morphogen gradient formation, these signatures may pro-
vide essential information about the nature of the medium,
about morphogen motion in the medium, and about the mor-
phogen degradation process. We continue to explore other
reactivity profiles and different boundary conditions, as well
as the application of Eq. �18� to degradation processes that
may depend on time and space �12,16,17�. Feedback effects
in the rate of morphogen degradation �involving nonlinear
degradation terms� are also extremely interesting.

It should be noted that while the conclusions reached in
this paper are associated with a CTRW model of subdiffu-
sion, other models �for example, fractional Brownian motion
and diffusion in fractal media� also describe subdiffusive
processes. Which model is appropriate in the context of a

particular system is a subject of intense current scrutiny �31�
and includes the development of methods to distinguish dif-
fusion from subdiffusion in experimental data �32�. The
sharp and distinct results reported here may thus serve as a
useful tool to discriminate not only between normal diffusive
and subdiffusive morphogenesis but also between the differ-
ent flavors of subdiffusive models.

We end by noting that although we have focused on mor-
phogen gradient formation, the reaction-subdiffusion equa-
tion that we have derived and solved may be useful in other
situations that involve creation of a species at a source,
movement of this species through a complex medium, and
simultaneous degradation. We noted that such scenarios
might arise, for example, in the context of point-source pol-
lutants in ground water. At the present stage, we view our
contribution as an exploration of an approach to the problem
and not as a predictive tool for specific experimental results.
Some of the features that we have identified can be expected
to persist even if the subdiffusive motion is described differ-
ently or if the degradation process is somewhat different
from those presented here. For example, it may be a general
feature of a subdiffusive environment that a degradation rate
that decays sufficiently rapidly as one moves away from the
source may define a situation where the morphogens or other
chemical species are not carried away sufficiently rapidly,
and an accumulation of some sort occurs, opening the way
for a nonmonotonic concentration profile and the associated
patterning possibilities. In any case, we have shown that the
interplay of subdiffusion and space-dependent degradation
can together lead to a wide panorama of different behaviors.
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