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We extend the framework of forward and reverse processes commonly utilized in the derivation and analysis
of the nonequilibrium work relations to thermodynamic processes with repeated discrete feedback. Within this
framework, we derive a generalization of the detailed fluctuation theorem, which is modified by the addition of
a term that quantifies the change in uncertainty about the microscopic state of the system upon making
measurements of physical observables during feedback. As an application, we extend two nonequilibrium work
relations: the nonequilibrium work fluctuation theorem and the relative-entropy work relation.
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I. INTRODUCTION

The nonequilibrium work relations are a family of predic-
tions concerning the fluctuations in the work performed on a
microscopic system driven far from equilibrium �1–8�. They
have been important for the study of fundamental issues in
the thermodynamics of small systems and have proven to be
powerful tools for calculating equilibrium free-energy differ-
ences from nonequilibrium processes, both in experiments
�9–11� as well as in computer simulations �12�.

At the heart of the nonequilibrium work relations is a
statement about the time-reversal symmetry of the micro-
scopic dynamics termed as the detailed fluctuation theorem
�13–19� �also called microscopic reversibility �3� or the gen-
eralized fluctuation-dissipation theorem �1,20,21��. The de-
tailed fluctuation theorem relates the probability to observe
microscopic trajectories of the system through phase space
during two thermodynamic processes related by time rever-
sal: the forward process and the reverse process. This frame-
work of forward and reverse processes has been beneficial
for investigating the role of irreversibility at the microscopic
scale �6�.

However, the nonequilibrium work relations and the de-
tailed fluctuation theorem are not applicable to systems ma-
nipulated using feedback—a procedure in which microscopic
information about a system is utilized to manipulate or con-
trol its evolution. Given the frequency with which feedback
occurs in physics, biology, and engineering �22�, it is impor-
tant to extend the work fluctuation relations to include feed-
back. This will clarify the thermodynamics of feedback
�23–26�, as well as the thermodynamics of computation
�27–29�, and possibly elucidate the role of information pro-
cessing in control theory �30,31�.

Feedback can be implemented discretely through a series
of feedback loops initiated at a sequence of predetermined
times or continuously at every instant of time. Initial inves-
tigations into the work fluctuation relations in the presence of
continuous feedback were made by Kim and Qian in the
context of molecular refrigerators driven by velocity-
dependent feedback control �32�. The first work relation ex-
tended to include discrete feedback was the nonequilibrium
work fluctuation theorem �2�, recently reported by Sagawa

and Ueda �33�. They demonstrated that when a system is
manipulated using one feedback loop the nonequilibrium
work fluctuation theorem is modified by the addition of a
term that accounts for the microscopic information gained
during feedback. In this paper, we develop a framework of
forward and reverse processes for repeated discrete feedback
in order to analyze and extend Sagawa and Ueda’s result.
Moreover, we generalize the detailed fluctuation theorem to
include repeated discrete feedback. We find that the informa-
tion gained during feedback must be incorporated into the
work relations. As an application, we extend the nonequilib-
rium work fluctuation theorem �2,33� as well as the relative-
entropy work relation �4,5� in the presence of repeated feed-
back. �While this paper was under consideration, similar
results were published �34�. We postpone a discussion com-
paring Ref. �34� with the present work until the conclusion.�

Our central result �Eq. �1� below� can be summarized as
follows. Consider a classical thermodynamic system initially
in equilibrium at inverse temperature �. Imagine driving this
system away from equilibrium from time t=0 to � by imple-
menting a series of feedback loops at N predetermined times
tk, with k=1, . . . ,N. At each tk, a physical observable Mk is
measured. Based on the outcome of this measurement we
drive the system by varying a set of external parameters �
with time. In each repetition or realization of this entire pro-
cess, which we call the forward process, the system will
trace out a different microscopic trajectory ��,0 through
phase space. Furthermore, the protocol �t used to vary the
external parameters � will differ in each realization due to
fluctuations in the measurement process. We are interested in
comparing the statistics of ��,0 and �t in the forward process

to those of the time-reversed conjugate pairs �̃�,0 and �̃t in
the time-reversed process, which we call the reverse process.
There is no feedback in the reverse process �no measure-
ments are made�. Instead, an ensemble of realizations of the
reverse process is generated by executing each external pa-
rameter protocol observed in the forward process in reverse.
Our main result is that the ratio of the probability to observe
��,0 and �t in the forward process P���,0 ;�t� to the probabil-

ity to observe �̃�,0 and �̃t in the reverse process P̃��̃�,0 ; �̃t�
satisfies a detailed fluctuation theorem for discrete feedback:
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P���,0;�t�

P̃��̃�,0;�̃t�
= e�Wd���,0;�t�+I���,0;�t�, �1�

where Wd is the dissipated work. The new quantity appearing
in Eq. �1�, I, quantifies the change in our uncertainty about
the microscopic state of the system upon measuring the
physical observables M1 ,M2 , . . . ,MN in each realization.
The average of I over many realizations �I� is the mutual
information �30�, which is an information theoretic measure
of the reduction in our uncertainty about the microscopic
state of the system upon making measurements. Moreover,
�I� naturally appears in the thermodynamics of feedback de-
veloped by Cao and Feito �26�, where �I� is equal to the
reduction in the Shannon entropy of a thermodynamic sys-
tem under feedback control �see Eq. �7� of Ref. �26��.

Our analysis begins in Sec. II by motivating the defini-
tions of the forward and reverse processes using the Szilard
engine as a pedagogical example. Our main result �Eq. �1�� is
then derived in Sec. III. In Sec. IV, the interpretation of I is
developed in detail using ideas from Bayesian inference.
Equation �1� is then exploited in Sec. V to generalize two
work fluctuation relations: the nonequilibrium work fluctua-
tion theorem �2,33� and the relative-entropy work relation
�4,5�. Finally, we conclude in Sec. VI with an outlook toward
future research directions.

II. MOTIVATION AND DEFINITIONS

Before deriving Eq. �1�, it is instructive to first motivate
and establish the definitions of the forward and reverse pro-
cesses in the context of the Szilard engine �35�, depicted in
Fig. 1. This will generalize the usual notions of forward and
reverse processes common in the study of the work relations
�3,4�. The Szilard engine is composed of a single ideal-gas

particle in a box of volume V in thermal contact with a heat
bath at inverse temperature �. We begin by describing the
forward process, which is illustrated in Fig. 1 by the se-
quence of snapshots proceeding from top to bottom. Initially,
the engine is allowed to relax to equilibrium. A partition is
then inserted in the center of the box, isolating the particle in
either the left or right half of the box. Feedback begins by
measuring in which half of the box the particle is located.
The position of the partition is then shifted in a manner that
depends on the measurement outcome: if the particle is
found in the left �right� half of the box, the partition is slide
all the way to the right �left�. Finally, the partition is removed
and the particle is allowed to relax back to equilibrium.
Imagine repeating this process a number of times, each time
equilibrating the particle, implementing the feedback loop,
and finally allowing the engine to relax back to equilibrium.
This generates an ensemble of realizations of the forward
process.

Within the framework of the work relations, the reverse
process is implemented by carrying out each step �or each
macroscopic control action� of the forward process in the
reverse order. For feedback processes the external parameter
protocols are implemented in response to the outcomes of
measurements. The naive time reversal of this procedure—
implementing a protocol and then making the measurement
used to determine this protocol—would be acausal, because
we would have to implement protocols in response to mea-
surements made after the protocol was executed. Instead, we
generate an ensemble of realizations of the reverse process
by first generating an ensemble of realizations of the forward
process and then implementing the reverse of each protocol,
which was observed in the forward process. For example,
suppose that we observe a realization of the Szilard engine in
which the particle was found in the left half of the box and
the partition was moved to the right. Having observed this
realization of the forward process, we generate a realization
of the reverse process by actuating each action of the forward
process in reverse, which is depicted in Fig. 1 by reading the
images from bottom to top. The particle is first equilibrated
at inverse temperature �. The partition is then inserted on the
right side of the box and then slide to the center. Finally, the
partition is removed and the engine is allowed to relax back
to equilibrium. Repeating this process a number of times,
each time reversing an observed realization of the forward
process, generates an ensemble of realizations of the reverse
process.

Observe that in the reverse process no measurements are
performed. Instead, in an ensemble of realizations of the re-
verse process the protocols are implemented randomly ac-
cording to the distribution in which they occur in the forward
process. The reverse process cannot be executed indepen-
dently of the forward process; one must first perform the
forward process. This reliance of the reverse process on the
forward process is a consequence of the time-reversal asym-
metry of feedback and is an essential difference between
thermodynamic processes with and without feedback.

III. DERIVATION

We are now in a position to derive Eq. �1�. Let us begin
by fixing notation. Consider a classical system, whose posi-

FIG. 1. Illustration of a realization of the forward and the re-
verse processes for the Szilard engine in which the particle is mea-
sured to be in the left half of the box. The forward process is
depicted by the sequence of illustrations running from top to bot-
tom. The reverse process is the time-reversed forward process; as
such, time flows from bottom to top.
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tion in phase space �or microscopic configuration� is z
= �x ,p�, where x denotes the system’s coordinates and p de-
notes its momentum. The energy of the system E�z ,�� is
parametrized by a vector of controllable external parameters
� and is assumed to be time-reversal invariant for each fixed
�, E�z ,��=E�z� ,��, where z�= �x ,−p�. The dynamics are as-
sumed to be Markovian dynamics �which includes determin-
istic dynamics� that preserve the canonical equilibrium dis-
tribution for each fixed �:

Peq�z��� = e��F���−E�z,���, �2�

where F��� is the free energy. The position of the system at
time t will be denoted as zt. The collection of phase-space
points visited by the system during the course of its evolu-
tion from t=r to s will be termed as a microscopic trajectory
and will be labeled �s,r= �zt	t=r

s .
The forward process is defined as the following sequence

of events. The system is initially equilibrated with a thermal
reservoir at inverse temperature � with the external param-
eters fixed at �=A0. Consequently, the initial statistical state
of the system is Peq�z �A0� �Eq. �2��. From t=0 to t1 the
system is driven away from equilibrium by varying � with
time using a predetermined initial protocol �t

0, from �0
0=A0

to �t1
0 =B0. Then at subsequent times tk, with k=1, . . . ,N,

feedback loops are implemented. At each tk a physical ob-
servable Mk is measured with �possibly continuous� out-
comes mk. Each measurement outcome mk occurs with a
probability that depends on the phase-space position of the
system at the time of measurement, Pk�mk �ztk

�, and is inde-
pendent of the previous measurements. We collect all the
measurement outcomes up to and including time tk into a
vector �k= �m1 , . . . ,mk	, which we call the measurement tra-
jectory up to tk. During each time interval from t= tk to tk+1
�tN+1=�� the external parameters are varied using a protocol
which depends on the outcomes of all measurements up to tk,
�t

k��k�, from �tk
k ��k�=Ak��k� to �tk+1

k ��k�=Bk��k�. Addition-
ally, we assume that each �k is associated to a unique proto-
col �i.e., �t

k��k���t
k��k�� for all �k��k�� and that Ak��k�

=Bk−1��k−1� to ensure that the protocol is continuous at each
measurement time tk. The microscopic trajectory �tk+1,tk

taken
by the system during this time interval occurs with probabil-
ity P��tk+1,tk

�zk ,�t
k��k��, which is conditioned only on the

position of the system at time tk, ztk
—since the dynamics are

Markovian—and depends on the protocol executed �t
k��k�.

The complete protocol executed from t=0 to � is represented
by collecting the individual protocols used in each feedback
loop into a vector, �t��N�= ��t

0 , . . . ,�t
N��N�	. The probability

to observe a realization of the entire forward process with
trajectory ��,0 and protocol �t��N� is

P���,0;�t� = P���,tN
�ztN

,�t
N��N��PN�mN�ztN

� ¯

�P��t2,t1
�zt1

,�t
1��1��P1�m1�zt1

�

�P��t1,0�z0,�t
0�Peq�z0�A0� . �3�

The work done on the system along this trajectory is

W���,0;�t� = 

k=0

N

Wk��tk+1,tk
;�t

k��k��

= 

k=0

N �
tk

tk+1

ds�̇s
k��k�

�

��
E�zs,�s

k��k�� , �4�

the heat flow into the system is

Q���,0;�t� = 

k=0

N

Qk��tk+1,tk
;�t

k��k��

= 

k=0

N �
tk

tk+1

dsżs
�

�z
E�zs,�s

k��k�0� , �5�

and the change in energy satisfies the first law of thermody-
namics:

	E���,0;�t� = E�z�,B
N��N�� − E�z0,A0�

= W���,0;�t� + Q���,0;�t� , �6�

where t0=0 and �t
0��0�=�t

0. Since the protocols depend on
the measurement outcomes, the free-energy difference is re-
alization dependent:

	F��t� = F���
N��N�� − F��0

0� = F�BN��N�� − F�A0� . �7�

Likewise, the dissipated work is

Wd���,0;�t� = W���,0;�t� − 	F��t� . �8�

As discussed in Sec. II, we generate an ensemble of
realizations of the reverse process by carrying out each ob-
served realization of the forward process backward in time.
Take, for example, the time reversal of a realization of the
forward process with protocol �t��N�= ��t

0 , . . . ,�t
N��N�	. The

system is first equilibrated at inverse temperature � with ex-
ternal parameters fixed at ��

N��N�=BN��N�, so that the initial
statistical state of the reverse process is Peq�z �BN��N�� �Eq.
�2��. Then from time t=0 to � the external parameters are
varied according to the time-reversed individual protocols
executed in the reverse order: for each time interval t=�
− tk+1 to �− tk, with k=0, . . . ,N, the external parameters are
varied according to the reverse individual protocol

�̃t
N−k��k�=��−t

k ��k�. The reverse complete protocol �̃t=��−t

is �̃t��N�= ��̃t
0��N� , . . . , �̃t

N	. Observe that in an ensemble of
realizations of the reverse process the probability to observe

reverse complete protocol �̃t��N�, 
̃��̃t��N��, is independent
of the microscopic trajectory and is equal to the probability
that the conjugate forward complete protocol �t��N�
= �̃�−t��N� occurs in the forward process, 
��t��N��:


̃��̃t� = 
��t� =� d��,0P���,0;�t� , �9�

where d��,0 is a measure on the space of microscopic trajec-
tories. Moreover, due to the assumed one-to-one correspon-
dence between measurement trajectories and protocols, the
probability distribution 
��t��N�� is equal to the probability
distribution of measurement trajectories in the forward pro-
cess
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PN��N� = PN�mN��N−1� ¯ P2�m2��1�P1�m1� , �10�

where Pk�mk ��k−1� is the conditional probability to observe
measurement outcome mk in the forward process conditioned
on the measurement trajectory �k−1, and the equality follows
from the product rule of conditional probabilities �36�. Com-
bining Eqs. �9� and �10�, the probability to implement re-

verse complete protocol �̃t in the reverse process is


̃��̃t��N�� = PN��N� . �11�

For every trajectory from time t=s to r, �r,s= �zt	t=s
r there is a

conjugate reverse trajectory �̃�−s,�−r= �z̃t	t=�−r
�−s = �zt

�	t=r
s , where

z̃t=z�−t
� �see Fig. 2�.

The probability to observe reverse trajectory �̃�,0 and re-

verse complete protocol �̃t in the reverse process is

P̃��̃�,0;�̃t� = P��̃�,0��̃t�
̃��̃t� , �12�

where P��̃�,0 � �̃t� is the conditional probability to observe

�̃�,0 conditioned on executing protocol �̃t. Substituting in

Eqs. �10� and �11�, and expanding P��̃�,0 � �̃t� in conditional
probabilities using the product rule of conditional probabili-

ties �36�, allows us to express P̃ as

P̃��̃�,0;�̃t� = P��̃�,�−t1
�z̃�−t1

,�̃t
N�P��̃�−t1,�−t2

�z̃�−t2
,�̃t

N−1��1��

�P1��1� ¯ P��̃�−tN,0�z̃0,�̃t
0��N��PN�mN��N−1�

�Peq�z̃0�BN��N�� . �13�

The structure of Eq. �12� �Eq. �13�� suggests an alterna-
tive method for implementing the reverse process. We ran-

domly select a reverse protocol �̃t��N� according to the dis-

tribution 
̃��̃t��N�� �Eq. �11��. Next, we equilibrate the
system at inverse temperature � with external parameters

fixed at �̃0��N�=BN��N�, drive the system away from equi-

librium according to �̃t��N�, and finally allow the system
relax back to equilibrium at inverse temperature � with ex-

ternal parameters fixed at �̃���N�=A0.

With this setup, we can now derive Eq. �1� as a conse-
quence of the detailed fluctuation theorem �1,3,5,13–21�,

P��tk+1,tk
�ztk

,�t
k��k��

P��̃�−tk,�−tk+1
�z̃�−tk+1

,�̃t
N−k��k��

= e−�Qk��tk+1,tk
;�t

k��k��, �14�

where Qk is defined in Eq. �5�. Equation �14� has been de-
rived for a wide class of dynamics and is a consequence of
the time-reversal symmetry of the microscopic dynamics—
the energy is time-reversal invariant �see the discussion pre-
ceding Eq. �2��.

To derive Eq. �1�, we take the ratio of Eqs. �3� and �13�,
then substitute in Eqs. �2�, �5�, �6�, �8�, and �14�, and the
definition of the change in uncertainty:

I���,0;�t� = ln�PN�mN�ztN
� ¯ P2�m2�zt2

�P1�m1�zt1
�

PN�mN��N−1� ¯ P2�m2��1�P1�m1�

 ,

�15�

which, after a short manipulation, leads to Eq. �1�, reprinted
here for convenience,

P���,0;�t�

P̃��̃�,0;�̃t�
= e�Wd���,0;�t�+I���,0;�t�. �16�

Equation �16� �Eq. �1�� is an extension of the detailed fluc-
tuation theorem �Eq. �14�� for systems driven away from
equilibrium by repeated discrete feedback. However, there is
a fundamental difference between Eqs. �16� and �14� due to
the inherent time-reversal asymmetry of feedback. Since no
measurements are made in the reverse process, there are mi-
croscopic trajectories and reverse complete protocols whose
time-reversed conjugates do not occur together in the for-
ward process; that is, there exists a ��,0 with conjugate re-

verse trajectory �̃�,0, and �t= �̃�−t, such that P���,0 ;�t�=0

and P̃��̃�,0 ; �̃t��0. Consequently, the ratio P / P̃, appearing

in Eq. �16�, is well defined, but the reciprocal P̃ /P is not
well defined—mathematically, we say that P is absolutely

continuous with respect to P̃ �P� P̃� �37�; however, the re-
verse is not true. For example, consider a Hamiltonian sys-
tem in which we implement feedback by making an error-
free measurement at t=0 of whether the system is in a region
of phase space �. If the system is found in �, we drive the
system with external parameter protocol �t

�. The region of
phase space � then evolves deterministically to the region of
phase space ��, as illustrated in Fig. 3. In the reverse process
the initial system state is sampled from a canonical distribu-
tion over all phase space. Consequently, when the protocol

�̃t
� is executed, the system may evolve along a trajectory


̃—the conjugate trajectory of 
 depicted in Fig. 3, which
begins outside � and terminates outside ��. Clearly, the con-
jugate trajectory 
 can never be observed in the forward
process simultaneously with �t

�; P�
 ;�t
��=0, while

P̃�
̃ ; �̃t
���0.

FIG. 2. Illustration of the forward trajectory ��,0 and reverse
trajectory �̃�,0 with two feedback loops implemented at times t1 and
t2.
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IV. INTERPRETATION OF I

We have mentioned that I �Eq. �15�� quantifies a change
in uncertainty about the microscopic state of the system upon
making measurements. We now provide an argument sup-
porting that assertion using methods of Bayesian inference.
Our analysis begins by using Bayes’ theorem �36� to rewrite
Eq. �15� in terms of the conditional probability distributions
��ztk

��k� to find the system at ztk
conditioned on the se-

quence of measurement outcomes in �k,

I���,0;�t��N�� = 

k=1

N

ln� ��ztk
��k�

��ztk
��k−1�
 . �17�

To interpret Eq. �17�, recall that probability distributions
measure the degree of belief a rational person has in the
truth of a proposition, i.e., they quantify our uncertainty �36�.
For example, as rational statistical physicists, our uncertainty
in the state of our system at time t1, just prior to the first
measurement, is

��zt1
� = �zt1

d�t1,0P��t1,0�z0,�t
0�Peq�z0�A0� . �18�

Upon making a measurement, we gain information altering
our beliefs and forcing us to update �or change� the probabil-
ity distribution describing our state of knowledge about the
system. For example, suppose that at time t1 we measured
M1 and obtained outcome m1. We have gained some infor-
mation and as rational beings we must update our uncertainty
��zt1

�. Bayesian inference tells us that the new probability
distribution describing our uncertainty—the posterior prob-
ability distribution—is obtained from Bayes’ theorem and is
simply ��zt1

�m1�, the conditional probability for the system
to be at zt1

given that the outcome of the measurement was
m1 �36�. Comparing with Eq. �17�, we see that the k=1 term
in the sum is ln���zt1

�m1� /��zt1
��, the logarithm of the ratio

of the probability distributions before and after the measure-
ment; hence, it is a measure of how our uncertainty changes
upon making a measurement. Repeating this argument, we
find that each term in the sum in Eq. �17� represents a change
in our uncertainty upon making each new measurement. No-
tice that I can be positive or negative in any given realiza-

tion; our uncertainty can decrease or increase. However, the
average of I over many realizations �I� is always positive
�30�, reflecting that on average gaining information lowers
our uncertainty.

V. APPLICATIONS

Equation �1� immediately leads to two work relations
�Eqs. �19� and �20� below�. It is a straightforward exercise
using Eq. �1� to show that

�e−�Wd−I� = 1, �19�

where the angular brackets denote an average of an ensemble
of realizations of the forward process. Equation �19� is a
generalization of the nonequilibrium work fluctuation rela-
tion of Sagawa and Ueda �33� for multiple feedback loops.
Similarly, Eq. �1� implies a generalization of the relative-
entropy work fluctuation relation �4,5�:

D�P � P̃� = ��Wd� + �I� , �20�

where D�f �g�=�dxf�x�ln�f�x� /g�x�� is the relative entropy,
an information theoretic measure of the distinguishability of
two probability distributions �30�. Furthermore, applying
Jensen’s inequality �30� to Eq. �19� or exploiting the positiv-
ity of the relative entropy �30� in Eq. �20�, one finds that

��Wd� + �I� � 0, �21�

which can be viewed as a generalization of the second law of
thermodynamics in the presence of feedback �33�.

VI. CONCLUSION

For systems driven by repeated discrete feedback, we
have introduced a framework of forward and reverse pro-
cesses. We defined a reverse process in which the steps of the
forward process are carried out backward in time. As a con-
sequence, we found that the change in uncertainty I �Eq.
�15�� during each feedback loop must be incorporated when
analyzing the thermodynamics of feedback. I is a natural
generalization to repeated discrete feedback of the informa-
tion measure utilized by Sagawa and Ueda in Ref. �33�. Cao
and Feito also observed that the ensemble average �I� natu-
rally occurs in their thermodynamics of feedback �26�. These
observations support the conclusion that analyzing feedback
using the framework of forward and reverse processes devel-
oped here may be beneficial to understanding the thermody-
namics of feedback. Exploiting Eq. �1�, we generalized the
detailed fluctuation theorem �Eq. �1��, the nonequilibrium
work fluctuation theorem �Eq. �19��, and the relative-entropy
work relation �Eq. �20�� to systems manipulated by repeated
feedback.

The next step in understanding the thermodynamics of
feedback is to incorporate feedback into the fluctuation rela-
tions �13–19,38–40� which are predictions about the fluctua-
tions of thermodynamic quantities in far from equilibrium
systems. A first step in this regard has already been taken by
Kim and Qian �32�, who analyzed the fluctuation relations in
the presence of velocity-dependent feedback control.

FIG. 3. Illustration of the tube of trajectories of the forward
process evolving from phase-space region � and to region �� under
Hamiltonian dynamics driven by external parameter protocol �t

�

associated to measuring the initial state of the system inside region

�. 
̃, the conjugate trajectory of 
, exemplifies a trajectory of the
reverse process whose conjugate trajectory 
 cannot be realized in
the forward process simultaneously with �t

�, since 
 begins outside
phase-space region �.
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While this paper was under consideration, another paper
proposing a detailed fluctuation theorem in the presence of
feedback was published �34�. Although the results are simi-
lar, our analysis contains a number of additional important
elements not found in Ref. �34�. Our central result �Eq. �1��
applies to processes with multiple feedback loops, while Ref.
�34� considers only a single loop. We also provide a detailed
physical interpretation of the reverse process, including a
description of the procedure for executing that process, and a
discussion of the asymmetry between the forward and re-
verse processes. Finally, we give a physical interpretation for
the change in uncertainty along a microscopic trajectory.

Moreover, we believe that the main conclusions �Eqs. �11�
and �13�� of Ref. �34� suffer from physical inconsistencies.
While Eq. �11� of Ref. �34� assumes that feedback is imple-
mented in both the forward and reverse processes, the proto-
col employed in the reverse process is acausal: it is executed
in response to a measurement made in the future �cf. Eq. �8�
of Ref. �34��. Reference �34� also investigates forward and

reverse processes identical to those discussed in the present
paper. In this context Ref. �34� proposes a Crooks-type fluc-
tuation relation for the joint distribution of dissipated work
and change in uncertainty, p�Wd , I�. This result is problem-
atic: the change in uncertainty in the reverse process is ill
defined since no measurements are made in the reverse pro-
cess �41�.
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