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I. INTRODUCTION

Spectral analysis of the products of random matrices is a
powerful tool in several domains of statistical physics, allow-
ing, for example, to study Lyapunov exponents for disor-
dered and chaotic dynamical systems �1�. It is also useful in
a class of problems related to multiplicative matrix-valued
noncommutative diffusion processes �2�. Several applica-
tions go beyond physics, as for instance, those related to the
stability analysis of ecological systems �3� or to telecommu-
nication applications based on the scattering of electromag-
netic waves on random obstacles �4,5�. In many of those
cases, some exact analytic results were obtained for rela-
tively small matrices. Interestingly, quite often analytic cal-
culations are possible under another limit—the limit of ma-
trix dimensions tending to infinity. Examples include
products of pseudounitary matrices, representing transfer
matrices in mesoscopic wires �6�, large N Wilson loops in
Yang-Mills theory �7–9� or multiplicative diffusion of infi-
nitely large complex and/or Hermitian matrices �10,11�. In
most of these cases, the reason why the exact spectral distri-
bution is within the reach of analytic methods is due to a link
to free random variable �FRV� calculus �12,13�, which is a
very powerful technique. This is also why the spectra of
products of large random matrices represent a challenge for
mathematicians �14,15�. In this paper, we generalize the
analysis of the product of large square random Gaussian ma-
trices, performed in �16�, to the product of rectangular ma-
trices. In particular, we study the product

P � A1A2 ¯ AL �1�

of L�1 independent rectangular large random Gaussian ma-
trices Al, l=1,2 , . . . ,L, of dimensions Nl�Nl+1. We are in-

terested in the eigenvalue and singular value density of P in
the limit NL+1→� and

Rl �
Nl

NL+1
= finite, for l = 1,2, . . . ,L + 1. �2�

In other words, all matrix dimensions grow to infinity at
fixed rates and, obviously, RL+1=1. The product P is a matrix
of dimensions N1�NL+1 and has eigenvalues only if it is a
square matrix: N1=NL+1.

We assume the matrices Al in the product �Eq. �1�� to be
complex Gaussian matrices drawn randomly from the en-
semble defined by the probability measure

d��Al� � e−��NlNl+1�/�l
2Tr�Al

†Al�DAl, �3�

where DA��a,bd�Re�A�ab�d�Im�A�ab� is a flat measure. A
normalization constant, fixed by the condition 	d��A�=1, is
omitted. This is the simplest generalization of the Girko-
Ginibre ensemble �17–19� to rectangular matrices. The �l
parameters set the scale for the Gaussian fluctuations in Als.
The entries of each matrix Al can be viewed as independent
centered Gaussian random variables, the variance of the real
and imaginary parts being proportional to �l

2 and inversely
proportional to the square root of the number NlNl+1 of ele-
ments in the matrix.

The eigenvalue density of the product �Eq. �1�� of square
Gaussian matrices was calculated in �16� while the singular
value distribution was determined in �14,15,20�. The eigen-
value density was derived using a planar diagrammatic
method for non-Hermitian matrices �10,21–23�, while the
singular value density was obtained using free random vari-
ables calculus �13,24,25�. Both techniques work in the infi-
nite matrix size limit. After explaining notation �Sec. II� and
listing the main results of the paper �Sec. III�, we shall fol-
low those same methods to derive the corresponding results
for the product of rectangular matrices. In Sec. IV, we
present a diagrammatic derivation of the moment generating
function for the product P. In Sec. V, using the tools of free
random variables calculus, we obtain the moment generating
function for Q=P†P, recovering results given in �20�. Sec-
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tion VI concludes the paper with a discussion on particular
applications of our results and possible generalizations.

II. GENERALITIES

Let us spend a few words on the notations to be used in
this paper. The eigenvalue density �X��� of a Hermitian ma-
trix X is a real function of real argument, while in the case of
a non-Hermitian matrix it is a real function of complex ar-

gument. In the latter case we shall write �X�� , �̄� and treat �

and its conjugate �̄ as independent variables.
In the Hermitian case, the eigenvalue density can be com-

puted from a Green’s function GX�z� �26,27� which contains
the same information as the density itself:

�X��� = −
1

	
lim


→0+
Im GX�� + i
� . �4�

For a non-Hermitian matrix, the corresponding Green’s
function GX�z , z̄� is nonholomorphic and therefore we shall
write it explicitly as a function of z and z̄. In this case the
eigenvalue distribution is reconstructed from the Green’s
function as �28–30�

�X�z, z̄� =
1

	

�

� z̄
GX�z, z̄� . �5�

Actually, this equation reduces to Eq. �4� when the nonholo-
morphic region shrinks to a cut along the real axis, as it
happens for Hermitian matrices. The Green’s function GX�z�
for a Hermitian matrix is written as a function of a single
argument since everywhere except on the cut one has �z̄GX
=0, and thus it is z̄ independent.

In many applications it is often convenient to use the mo-
ment generating function or M transform, which is closely
related to the Green’s function: MX�z�=zGX�z�−1. For a
Hermitian matrix X one has

MX�z� = 

n�1

mn

zn = 

n�1

1

zn� �X����nd� , �6�

where the mns are the moments of the eigenvalue density. If
the matrix X is of finite dimensions N�N, the moments are
given by mn= 1

N �Tr Xn
. The moment generating function en-
codes the same information as the Green’s function GX�z�
=z−1MX�z�+z−1. Thus, one can calculate the corresponding
eigenvalue distribution from MX�z�.

One can also introduce a similar function for non-
Hermitian matrices: MX�z , z̄�=zGX�z , z̄�−1. In this case,
however, it does not play the role of a moment generating
function anymore since now one also has mixed moments
�Tr Xn�X†�k
, which in general depend on the ordering of X
and X† in the product under the trace.

The situation is slightly simplified when the M transform
is a spherically symmetric function: MX�z , z̄�=MX��z�2�. In
this case Eq. �5� can be cast into the form

�X�z, z̄� =
1

	
MX� ��z�2� + f�2�z, z̄� , �7�

where MX� is the first derivative of MX and f =1+MX�0� is
a constant representing the fraction of zero modes. In this

case, the eigenvalue distribution is spherically symmetric as
well �see, for example, �16� for the product of square matri-
ces�. As we shall see later, this is also going to be the case for
the product �Eq. �1�� of rectangular Gaussian matrices �Eq.
�3��.

III. RESULTS

The matrix P �Eq. �1�� has eigenvalues only if it is square,
while it has singular values for any rectangular shape. As a
matter of fact, its singular values can be determined as the
square roots of the nonzero eigenvalues of the matrix

Q � P†P �8�

or, alternatively, of the matrix R=PP†. Q and R are Hermit-
ian, and they have non-negative spectra which differ only in
the zero modes.

The main finding of this paper is that the eigenvalue dis-
tribution and the M transform of the product �Eq. �1�� are
spherically symmetric. We shall show the M transform to
satisfy the Lth order polynomial equation

�
l=1

L �MP��z�2�
Rl

+ 1� =
�z�2

�2 , �9�

where the scale parameter is �=�1�2¯�L. When all of the
matrices involved are square, this equation reproduces the
results in �16�.

An analogous equation for Q reads

�R1
MQ�z� + 1

MQ�z� �
l=1

L �MQ�z�
Rl

+ 1� =
z

�2 . �10�

It is an algebraic equation of order �L+1�, and it was first
obtained in �20� in the context of wireless telecommunica-
tion. Equations �9� and �10� are strikingly similar. They ac-
tually differ only by the prefactor in front of the product.
Moreover, the free argument in the first equation is �z�2, while
z in the second one. This observation represents the second
main result of this paper. Since conventions used in telecom-
munication theory and in physics differ a bit, in Sec. V we
rederive Eq. �10� for completeness.

When P is a square matrix, then R1=1 and the square root
at the beginning of Eq. �10� can be omitted. When the prod-
uct of square matrices is considered, all of the Rls become
equal to unity and the two equations take the following form:

�MP��z�2� + 1�L =
�z�2

�2 , MQ
−1�z��MQ�z� + 1�L+1 =

z

�2 .

�11�
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Equations �9� can be easily rewritten in terms of the corre-
sponding Green’s functions �see the previous section�. If one
does that and then applies the prescriptions in Eqs. �5� and
�4� respectively, it becomes clear that

�P��,�̄� � ���−2�L−1�/L, and �Q��� � �−L/�L+1�,

as � → 0. �12�

In the more general case of rectangular matrices, when solv-
ing Eqs. �9� and �10� for the Green’s functions, one can then
see that only those brackets in which Rl=1 contribute to the
singularity at zero, while all others approach a constant for
z→0. Thus, the eigenvalue density displays the following
singularity

�P��,�̄� � ���−2�s−1�/s, as � → 0, �13�

where s is the number of those ratios among R1 , . . . ,RL
which are exactly equal to unity. On the other hand, the
eigenvalue density of Q behaves as

�Q��� � �−s/�s+1�, as � → 0. �14�

The third result we want to mention here is a heuristic
form for the finite size corrections to the eigenvalue distri-
bution. For a large but finite order of magnitude N of the
matrices involved, the eigenvalue distribution is still spheri-
cally symmetric. So let �N�r� denote the radial profile of this
distribution, where r= ���. As we shall show, the evolution of
the radial shape with the size N is very well described by a
simple multiplicative correction:

�N�r� � ��r�
1

2
erfc�q�r − ���N� . �15�

In the N→� limit the correction becomes a step function, so
that ���r�=��r� for r�� and ���r�=0 otherwise. This type
of finite size corrections can be derived analytically for
Girko-Ginibre ensembles �31–33�, for which the exact form
of the joint probability of eigenvalues is known. In that case
the error function comes about as a result of a saddle-point
approximation. In the present case, we do not know the joint
probability distribution, but we believe the nature of the
saddle point approximation to be quite generic so that it may
be responsible for shaping all rotationally symmetric eigen-
value densities close to the edge in a similar way. This is
why we choose the error function correction, suggested by
the solvable case. As we shall show later, this form of cor-
rections �Eq. �15�� indeed reproduces very well finite-size
densities of products of Gaussian matrices.

IV. EIGENVALUES OF A PRODUCT OF RECTANGULAR
GAUSSIAN RANDOM MATRICES

In this section, we present a derivation of the main result
of this paper �Eq. �9�� a realization of it in the case L=2, and

numerical simulations to confirm our findings. To this end,
we employ a technique for summing planar diagrams, the
Dyson-Schwinger equations �more precisely described in
�10,16��, extended to a non-Hermitian framework.

The evaluation of the Green’s function for a product P of
random ensembles by means of planar diagrammatics is non-
linear with respect to �wrt� the constituent matrices. It is
possible to linearize the problem by means of the following
trick �10,16�. Consider the following block matrix:

P̃ ��
0 A1 0 ¯ 0

0 0 A2 ¯ 0

] ] ] � ]

0 0 0 ¯ AL−1

AL 0 0 ¯ 0
� . �16�

It is a matrix of dimensions Ntot�Ntot, where Ntot�N1+N2

+ ¯+NL. It is important to notice that the Lth power of P̃ is
a block diagonal matrix �10,16�

P̃L =�
B1 0 0 ¯ 0

0 B2 0 ¯ 0

0 0 B3 ¯ 0

] ] ] � ]

0 0 0 ¯ BL

� , �17�

with square blocks B1=A1A2¯AL−1AL, B2=A2¯ALA1,
¯, being cyclically permuted products of A1, A2 , . . . ,AL. All
these blocks have identical nonzero eigenvalues. They differ
only in the number of eigenvalues, which may vary from
block to block. The first diagonal block B1 is equal to the
product P �Eq. �1��. Taking into account that this block has

dimensions N1�N1, while the total matrix P̃L has dimen-
sions Ntot�Ntot, one can easily deduce the following relation

between the M transforms of P and P̃:

MP̃�w,w̄� =
LN1

Ntot
MP�wL,w̄L� . �18�

The importance of this relation relies in the fact that one can
use it to calculate MP�z , z̄� from MP̃�w , w̄�. The latter can be
calculated using Dyson-Schwinger equations, since the ma-

trix P̃ is linear wrt the constituent matrices Ai.
The first step in writing the Dyson-Schwinger equations is

to know the propagators of the random matrix in question,

namely, P̃, or more precisely its “duplicated” version:

P̃D = �P̃ 0

0 P̃†
� . �19�

We shall think of it as a four–block matrix, each block being
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an L�L block matrix. We shall denote the L�L block indi-
ces in these four blocks by lm �upper left corner�, lm̄ �upper

right�, l̄m �lower left�, and l̄m̄ �lower right�, each one cover-

ing the range 1,2 , . . . ,L; for example, �P̃D�2̄1̄=A1
†. All the

other matrices involved shall inherit this same structure. For
instance,

GD = �Gww Gww̄

Gw̄w Gw̄w̄ � =�
�GD�11 �GD�12 ¯ �GD�1L �GD�11̄ �GD�12̄ ¯ �GD�1L̄

�GD�21 �GD�22 ¯ �GD�2L �GD�21̄ �GD�22̄ ¯ �GD�2L̄

] ] � ] ] ] � ]

�GD�L1 �GD�L2 ¯ �GD�LL �GD�L1̄ �GD�L2̄ ¯ �GD�LL̄

�GD�1̄1 �GD�1̄2 ¯ �GD�1̄L �GD�1̄1̄ �GD�1̄2̄ ¯ �GD�1̄L̄

�GD�2̄1 �GD�2̄2 ¯ �GD�2̄L �GD�2̄1̄ �GD�2̄2̄ ¯ �GD�2̄L̄

] ] � ] ] ] � ]

�GD�L̄1 �GD�L̄2 ¯ �GD�L̄L �GD�L̄1̄ �GD�L̄2̄ ¯ �GD�L̄L̄

� , �20�

and similarly for WD and �D �to be defined in a moment�.
For the sake of simplicity, we shall disregard some subscripts
and symbols of dependence on w and w̄.

We are interested in computing the Green’s function of P̃,
i.e.,

GP̃�w,w̄� =
1

Ntot
Tr Gww =

1

Ntot


l=1

L

Tr�GD�ll =
1

Ntot


l=1

L

NlGll,

�21�

where it is useful to define the normalized traces

Gll �
1

Nl
Tr�GD�ll, Gll̄ �

1

Nl
Tr�GD�ll̄, Gl̄l

�
1

Nl
Tr�GD�l̄l, Gl̄l̄ �

1

Nl
Tr�GD�l̄l̄. �22�

Hence, we should evaluate the Glls.

The only nonzero propagators of P̃D are readily deter-
mined from the probability measures in Eq. �3�:

��P̃D�12�P̃D�2̄1̄
 =
�1

2

�N1N2

1N1
� 1N2

,

��P̃D�23�P̃D�3̄2̄
 =
�2

2

�N2N3

1N2
� 1N3

,

]

��P̃D�L1�P̃D�1̄L̄
 =
�L

2

�NLN1

1NL
� 1N1

.

�23�

Thus, we are now in position to write down the two

Dyson–Schwinger equations for P̃D. The first one, being the
definition of the self-energy matrix �D, is independent of the
propagators �10�:

GD = �WD − �D�−1, �24�

where WD is defined as w1Ntot.
in its left upper block �where

w�C�, w̄1Ntot.
in the right lower block, and zero elsewhere.

The second one is presented in �10,16�, and the structure of
the propagators �Eq. �23�� implies that the only nonzero
blocks of the self-energy matrix read

��D�ll̄ =
�l

2

�NlNl+1

Tr�GD�l+1,l + 11Nl
= �l

2�Nl+1

Nl
Gl+1,l + 1

��l

1Nl
,

�25�

��D�l̄l =
�l−1

2

�Nl−1Nl

Tr�GD�l − 1,l−11Nl
= �l−1

2 �Nl−1

Nl
Gl − 1,l−1

��l

1Nl
,

�26�

for all l=1,2 , . . . ,L, with the cyclic convention 0=L, where
the normalized traces �Eq. �22�� have been used.

The results �Eqs. �25� and �26� mean that the four blocks
of the matrix �WD−�D� are diagonal. Such a matrix can be
straightforwardly inverted: its four blocks remain diagonal
and read as
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�WD − �D�−1 =�
w̄
11N1

0 ¯ 0 �1
11N1
0 ¯ 0

0 w̄
21N2
¯ 0 0 �2
21N2

¯ 0

] ] � ] ] ] � ]

0 0 ¯ w̄
L1NL
0 0 ¯ �L
L1NL

�1
11N1
0 ¯ 0 w
11N1

0 ¯ 0

0 �2
21N2
¯ 0 0 w
21N2

¯ 0

] ] � ] ] ] � ]

0 0 ¯ �L
L1NL
0 0 ¯ w
L1NL

� , �27�

where, for all l=1,2 , . . . ,L,

1


l
� �w�2 − �l�l = �w�2 − ��l−1�l�2

�Nl−1Nl+1

Nl
Gl+1,l + 1Gl − 1,l−1.

�28�

Substituting Eq. �27� into Eq. �24�, we find that the only
nonzero blocks of the duplicated Green’s function �Eq. �20��
are, for all l=1,2 , . . . ,L,

�GD�ll = w̄
l1Nl
, �GD�ll̄ = �l
l1Nl

, �GD�l̄l

= �l
l1Nl
, �GD�l̄l̄ = w
l1Nl

. �29�

Taking the normalized traces of both sides of every equality
in Eq. �29� leads to the final set of equations,

Gll = w̄
l, Gll̄ = �l
l, Gl̄l = �l
l, Gl̄l̄ = w
l. �30�

The structure of Eq. �30� is the following: the fourth one
is the conjugate of the first, and it is then redundant. The
second and third ones read as

Gll̄ = �l
2�Nl+1

Nl
Gl+1,l + 1
l, �31�

Gll = �l−1
2 �Nl−1

Nl
Gl − 1,l−1
l. �32�

We see that Eqs. �28�, �31�, and �32� form a closed set of 3L
equations for 3L unknowns, Gll̄, Gl̄l, and 
l. Once solved,
when the 
ls have been found, we are able to recover the

Green’s function of P̃, and subsequently the M transforms of

P̃ and P �in the argument wL� �Eq. �18��,

GP̃�w,w̄� = w̄
1

Ntot


l=1

L

Nl
l, i.e., MP̃�w,w̄�

=
1

Ntot


l=1

L

Nl�l, i.e., MP�wL,w̄L� =
1

L


l=1

L

Rl�l,

�33�

where we have traded the 
ls for a more convenient set of
variables,

�l � �w�2
l − 1. �34�

Equations �31� and �32� form a set of decoupled recur-
rence relations for Gll̄ and Gl̄l, respectively. Iterating these
recurrences down to l=1 gives us

Gll̄ = G11̄
1

��1�2 ¯ �l−1�2

1
�Rl

1


1
2 ¯ 
l−1
, �35�

Gl̄l = G1̄1��1�2 ¯ �l−1�2 1
�Rl


2 ¯ 
l. �36�

Applying the cyclic convention 0=L, we get the following
equation:

��1�2 ¯ �L�2�
1
2 ¯ 
L�G11̄ = G11̄. �37�

Straightforwardly, we get a trivial solution: Gll̄=0 for all l,
i.e., remembering Eq. �28�, 
l=1 / �w�2, or equivalently �l
=0 from Eq. �34�, and therefore MP�z , z̄�=0 from Eq. �33�.
This is the holomorphic solution, holding outside the eigen-
value density domain. In order to retrieve information on the
eigenvalue distribution, let us take G11̄�0.

After a change in variables to �l and some simplifications,
Eq. �28� becomes

�l =
�w�2G11̄G1̄1

�1 + 1

1

Rl
, �38�

from which we get the relation:

�l

R1
= �l =

�1

Rl
. �39�

After plugging Eq. �39� into Eq. �37�, in terms of the �l
variables we obtain

��1 + 1���1

R2
+ 1�¯ ��1

RL
+ 1� =

�wL�2

�2 . �40�

On the other hand, substituting Eq. �39� into Eq. �33�, we
get

MP�wL,w̄L� = �1. �41�

All in all, after changing the argument from w to z=wL we
see that MP�z , z̄� obeys the Lth order polynomial equation
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�MP�z, z̄�
R1

+ 1��MP�z, z̄�
R2

+ 1�¯ �MP�z, z̄�
RL

+ 1� =
�z�2

�2 ,

�42�

which is precisely the first main result of our paper �Eq. �9��.
The last point to be addressed is to determine the validity

domain of the nonholomorphic solution �Eq. �42��, knowing
�22� that on the boundary of such a domain, the nonholomor-
phic and holomorphic solutions must be joined. Thus, plug-
ging the latter �MP�z , z̄�=0� into Eq. �42�, we obtain an equa-
tion for the borderline:

�z� = � . �43�

This means that the eigenvalues of the P matrix are scattered
on average, with the density stemming from Eq. �42�, within
a centered circle of radius �.

When L=2, Eq. �42� is just a second degree equation, and
it is easily solved. Indeed, in this case the nonholomorphic M
transform reads as

MP�z, z̄� =
1

2
�− 1 − R +��1 − R�2 + 4R

�z�2

�2 � , �44�

where we pose R�R2=N2 /N1, and where the proper solu-
tion of Eq. �42� has been picked up in order to satisfy the
matching condition �Eq. �43�� with the holomorphic one on
the borderline. As a result, we immediately obtain the
Green’s function:

GP�z, z̄� =
1

2z
�1 − R +��1 − R�2 + 4R

�z�2

�2 � . �45�

When deriving the average spectral density, one has to be
cautious in the vicinity of the origin of the complex plane in
order to properly take possible zero modes into account. Let
us first expand Eq. �45� near z=0 in order to clarify its be-
havior:

GP�z, z̄� �
f

z
+ regular terms, as z → 0, where f

� �1 − R , for R � 1,

0, for R � 1.
� �46�

Taking the derivative �1 /	��z̄ of this singular term yields
a Dirac delta function at the origin, f��2��z , z̄�. Altogether,

�P�z, z̄�

= �
1

	�2

R

��1 − R�2 + 4R
�z�2

�2

+ f��2��z, z̄� , for �z� � � ,

0, for �z� � � .
�

�47�

Moreover, one can also verify that the density, in the ther-
modynamic limit, changes on the borderline from being non-
holomorphic with value given by

�P�z, z̄���z�=� =
1

	�2Rh, where
1

Rh
� 


l=1

L
1

Rl
, �48�

to being holomorphic with value 0. However, for finite sizes
of the random matrices, this step gets smoothed out. Let us
then consider the radial density,

�P
rad�r� � 2	r�P�z, z̄���z�=r �49�

and following �16�, let us propose the following model for
this finite-N effect �where by N we denote the order of mag-
nitude of the dimensions of the matrices, say N�N1�. We
introduce an “effective” radial density in order to properly
incorporate such finite-N behavior at the borderline,

�P
eff�r� � �P

rad�r�
1

2
erfc�q�r − ���N� , �50�

where q is a free parameter whose value is to be adjusted by
fitting. We numerically verify this hypothesis �see Figs. 1 and
2�.

V. SINGULAR VALUES OF A PRODUCT OF
RECTANGULAR GAUSSIAN RANDOM MATRICES

In the following we show how to derive formula �10�, i.e.,
an �L+1�th order polynomial equation obeyed by the M
transform �which, as already discussed, encodes the same
information contained in the spectral density� of the Hermit-
ian matrix Q�P†P �Eq. �8��, P being the product �Eq. �1��
of rectangular �Eq. �2�� Gaussian random matrices �Eq. �3��.
Our result agrees with that in �20�, obtained in the context of
wireless telecommunication theory, provided we synchronize
the conventions. In particular, our resolvent G�z� relates to
Stieltjes transform as G�z�=−G�−s�. The underlying idea
will be to rewrite Q as a product of some Hermitian matrices
in order to apply the techniques provided by FRVs calculus.
Loosely speaking, FRV calculus �initiated by the pioneering
works of Speicher and Voiculescu et al.� can be thought as
the extension of standard probability theory to noncommuta-
tive objects, such as matrices. Given the broadness of the
topic, we shall not attempt any introductory discussion here,
and we refer the nonexpert reader to �12,13�.

Let us commence by defining, for any l=1,2 , . . . ,L, a
square Nl+1�Nl+1 matrix

Ql � �A1A2 ¯ Al−1Al�†�A1A2 ¯ Al−1Al�

= Al
†Al−1

†
¯ A2

†A1
†A1A2 ¯ Al−1Al, �51�

being a generalization of Q which includes only the first l
random matrices, as well as a square Nl�Nl matrix, which
differs from Ql only in the position of the last matrix in the
string, i.e., Al, which is now placed as the first matrix in the
string,

Q̃l � AlAl
†Al−1

†
¯ A2

†A1
†A1A2 ¯ Al−1 = �AlAl

†�Ql−1.

�52�

We are interested in the eigenvalues of the Hermitian matrix
Q=QL.
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The orders of the terms in the two above products �Eqs.
�51� and �52�� are related to each other by a cyclic shift,

therefore, for any integer n�1, there will be Tr Ql
n=Tr Q̃l

n.
Hence, the M transforms �see Eq. �6�� of the two above
random matrices are related by the following relation:

MQl
�z� = 


n�1

1

zn

1

Nl+1
�Tr Ql

n
 =
Nl

Nl+1


n�1

1

zn

1

Nl
�Tr Q̃l

n


=
Rl

Rl+1
MQ̃l

�z� . �53�

Now, let us consider the functional inverse of the M trans-
form, called the N transform, defined as MQl

�NQl
�z��

=NQl
�MQl

�z��=z. Employing this definition within Eq. �53�
one easily obtains

NQl
�z� = NQ̃l

�Rl+1

Rl
z� . �54�

Now, since it can be safely stated that independent ran-
dom matrices become free with respect to each other in the

thermodynamical limit, it becomes clear that the reason for

introducing the auxiliary matrix Q̃l is that it is a product of
two free matrices, AlAl

† and Ql−1. Then, the FRV multiplica-
tion �13� law for free matrices can be applied. Such law
states that the N transform of the product of two free matri-
ces, A and B, is simply given by NAB�z�=z / �1
+z�NA�z�NB�z�. �In the language more often found in the
literature on the subject, the N transform is replaced by the
so-called S transform, SX�z���z+1� / �zNX�z��, which then
obeys a simpler multiplication law, SAB�z�=SA�z�SB�z��. So,

when applying this relation to the Q̃l matrix �Eq. �52�� one
can write, for l=2,3 , . . . ,L

NQ̃l
�z� =

z

z + 1
NAlAl

†�z�NQl−1
�z� . �55�

From Eqs. �54� and �55�, we now eliminate the N trans-

form of the auxiliary Q̃l, which leaves us with the following
recurrence relation for the N transform of Ql,
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FIG. 1. �Color online� Numerical verification of theoretical formula �47� for �the radial part �Eq. �49�� of� the mean spectral density
�P�z , z̄� of the product P of L=2 rectangular Gaussian random matrices, as well as the finite-size correction �Eq. �50��. �a� A numerical
histogram �red crosses� versus the theoretical prediction �Eq. �47��, supplemented with the finite-size smoothing �Eq. �50�� �black solid line�,
for N1=100 and N2=200 �i.e., R=R2=2�, and for 105 Monte Carlo iterations �i.e., the histogram is made of 107 eigenvalues�. The adjustable
parameter q �Eq. �50�� is fitted to be q�1.14. �b� An analogous graph to �a�, this time with N1=100 and N2=150 �i.e., R=1.5�. We find
q�1.08 here. �c� An analysis of the finite-size effects: numerical histograms for N1=50, N2=100 �red crosses�, N1=100, N2=200 �green
circles�, and N1=200, N2=400 �blue rotated crosses�, i.e., with the same rectangularity ratio R=2, but increasing matrix dimensions. We
observe how these plots approach the black solid line of theoretical formula �47� for the density in the thermodynamic limit. �d� Numerical
histograms for the matrix sizes of N1=100, N2=200 �i.e., R=2; black crosses� and N1=200, N2=100 �i.e., R=1 /2; red rotated crosses�. Due
to the presence of zero modes �not displayed in the picture�, which would account for the proper normalization of the whole density, the latter
is half of the former.

EIGENVALUES AND SINGULAR VALUES OF PRODUCTS… PHYSICAL REVIEW E 82, 061114 �2010�

061114-7



NQl
�z� =

z

z +
Rl

Rl+1

NAlAl
†�Rl+1

Rl
z�NQl−1

�Rl+1

Rl
z�,

for l = 2,3, . . . ,L , �56�

with the initial condition,

NQ1
�z� = NQ̃1

�R2

R1
z� = NA1A1

†�R2

R1
z� , �57�

which stems from Eq. �54� and from the fact that Q̃1
=A1A1

†. The solution of this recurrence �Eqs. �56� and �57��
is then readily found to be

NQL
�z� =

zL−1

�z + R2��z + R3� ¯ �z + RL�
NA1A1

†� z

R1
�

�NA2A2
†� z

R2
�¯ NALAL

†� z

RL
� . �58�

It remains now to find the N transforms of the random
matrices AlAl

†. They are examples of the so-called “Wishart
ensembles,” and the problem of computing their N trans-
forms, with the same normalization of the probability mea-
sures �Eq. �3�� of the Als which we are employing, has first
been solved in �34�: expressions �1.8�, �2.8�, �2.13�, �2.14� of
this paper yield the Green’s function of AlAl

†, which imme-
diately leads to the pertinent N–transform,

NAlAl
†�z� = �l

2

�z + 1��� Nl

Nl+1
z +�Nl+1

Nl
�

z
. �59�

Substituting Eq. �59� into Eq. �58�, one finally arrives at the
desired formula for the N transform of Q=QL,

NQ�z� = �2�R1
1

z
�z + 1�� z

R1
+ 1�� z

R2
+ 1�¯ � z

RL
+ 1� ,

�60�

with � defined as in the previous sections. In other words,
the corresponding M transform MQ�z� satisfies the following
polynomial equation of order �L+1�:

�R1
1

MQ�z�
�MQ�z� + 1��MQ�z�

R1
+ 1�

��MQ�z�
R2

+ 1�¯ �MQ�z�
RL

+ 1� =
z

�2 , �61�

or in the case of NL+1=N1 �i.e., R1=1, required when one
wishes for P to have eigenvalues too�,

1

MQ�z�
�MQ�z� + 1�2�MQ�z�

R2
+ 1�¯ �MQ�z�

RL
+ 1� =

z

�2 .

�62�

This completes our derivation of Eq. �10�.
We have performed extended numerical tests of formula

�61�, in all cases obtaining perfect agreement, see Fig. 3.

VI. CONCLUSIONS

The main contribution of this paper is Eq. �9� for the M
transforms of the product P=A1A2¯AL �Eq. �1�� of an ar-
bitrary number L of independent rectangular �Eq. �2�� Gauss-
ian random matrices �Eq. �3��. Knowing the M transform one
can easily calculate the eigenvalue density of the product
�Eq. �7��, which turns out to be spherically symmetric in the
complex plane. We also discussed a striking resemblance of
Eq. �9� to the corresponding Eq. �10� of the Hermitian matrix
Q=P†P �Eq. �8��, whose eigenvalues are equal to the
squared singular values of P. Both these equations are poly-
nomial �of orders L and �L+1�, respectively�, so in general
they may only be solved numerically; however, some prop-
erties of the mean spectral densities can still be retrieved
analytically, such as their singular behavior at zero �Eqs. �13�
and �14��.

We are tempted to conjecture that this similarity of the M
transforms for P and Q is generic for random matrices pos-
sessing rotationally symmetric average distribution of the ei-
genvalues and that the corresponding equations differ only
by the prefactor which we have discussed while comparing
Eqs. �9� and �10�. For such models, the nonholomorphic M
transform MX�z , z̄� is a function of the real argument �z�2,
thereby allowing for functional inversion, and hence for a
definition of the “rotationally symmetric nonholomorphic N
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FIG. 2. �Color online� Analogous graphs to Fig. 1�c� but for �a� L=3 and �b� L=4.
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transform”—even though for general non-Hermitian random
matrices a construction of a “nonholomorphic N transform”
remains thus far unknown. This new N transform is then
conjectured to be in a simple relation to the �usual� N trans-
form of the Hermitian ensemble X†X. In a typical situation,
the latter will be much more easily solvable than the former,
owing to the plethora of tools devised in the Hermitian
world, albeit the opposite may be true as well. This is indeed
the case here—our derivation of Eq. �9�, based on non-
Hermitian planar diagrammatics and Dyson-Schwinger’s
equations, is much more involved than a simple application
of the FRV multiplication rule leading to Eq. �10�—and con-
sequently, the aforementioned hypothesis would provide a
shortcut to avoid complicated diagrammatics.

We have also suggested a heuristic model of the finite-size
behavior of the density of P near the edge of the eigenvalues
support �Eq. �50��, deducing it from analogous consider-
ations �31–33� made for the Girko-Ginibre ensemble, where
this behavior is known analytically. It performs outstandingly
well when checked against numerical simulations.

Let us also remark that one could argue, as for square
matrices, that the large-N limit result is the same for elliptic
Gaussian ensembles �16�. We also believe that one can fur-
ther weaken the assumptions on the matrices involved, just
requiring them to belong to the Gaussian universality class of
matrices having independent entries and fulfilling the Pastur-
Lindeberg condition �35� �the matrix analog of the general-
ized central limit theorem in classical probability theory
�36��. One unexpected implication of such universality is that
a product of random matrices whose spectra do not necessar-
ily display rotational symmetry has an eigenvalue distribu-
tion which does possess rotational symmetry on the complex
plane �i.e., the average density depends only on ����.

Let us now list some possible applications of these results
to wireless telecommunication, quantum entanglement, and
multivariate statistical analysis.

Information theory for wireless telecommunication has
been intensively developed in the past decade, after it had
been realized that in a number of situations the information
transmission rate can be increased by an introduction of

multiple antenna channels, known as the “multiple-input,
multiple-output” �MIMO� transmission links. The MIMO ca-
pacity for Gaussian channels has been calculated in the pio-
neering work �37�, triggering large activity in the field. Im-
mediately, it became clear that an appropriate language and
methods to address this type of problems are provided by
random matrix theory �consult �5� for a review�. The model
considered in our paper can be applied to a situation of sig-
nals traveling over L consecutive MIMO links. The signal is
first sent from N1 transmitters via a MIMO link to N2 receiv-
ers, which then retransmit it via a new MIMO link to the
subsequent N3 receivers, etc. Clearly, the capacity will de-
pend on these numbers of intermediate retransmitters; in par-
ticular, if any of the Nls is small, the capacity will be re-
duced. The effective propagation is given by the matrix P
=AL¯A2A1. Such a model of multifold scattering per
propagation path has been already proposed in �20� �or in
�38� where further signal processing and precoding are dealt
with�, where the moment generating function, the M trans-
form, for P†P was calculated. Our result for the M transform
for P complements this calculation.

Let us also mention that one could imagine a more gen-
eral situation, where MIMO links form a directed network—
each directed link lm representing a single MIMO channel
between Nl transmitters and Nm receivers. �The previously
discussed case corresponds to a linear graph, 1→2→¯

→L.� A complex directed network of MIMO links is some-
what similar to the structures appearing in the context of
quantum entanglement. There, one considers graphs whose
edges describe bipartite maximally entangled states, while
vertices describe the couplings between subsystems residing
at the same vertex �39�. In the simplest case of a graph con-
sisting of a single link, it is just a bipartite entangled state.
The corresponding density matrix for a bipartite subsystem is
given by Q=A†A, where A is a rectangular matrix defining a
pure state, being a combination of the basis states in the
subsystem, ��a
 and ��b
 �see, for instance, �26��. One can
easily find that linear graphs with additional loops at the end
vertices correspond. The density matrix for the subsystem
sitting in the end vertex is given by Q=P†P, where P
=A1A2¯AL �39�. If all the subsystems are of the same size,
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FIG. 3. �Color online� Numerical verification of theoretical formula �61� for the mean spectral density �Q��� of the random matrix Q
=P†P �Eq. �8��. Everywhere we have NL+1=N1=50. The number of Monte Carlo iterations is 20 000, i.e., all the histograms are generated
from 106 eigenvalues. �a� L=2, and the matrix sizes are chosen to be N1=50 and N2=150. �b� L=3, and the matrix sizes are N1=50, N2

=100, and N3=150. �c� L=4, and the matrix sizes are N1=50, N2=100, N3=150, and N4=200.
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the average spectral distributions �14,15� of Q are known as
the “Fuss-Catalan family” �40�; they can be obtained from
Eq. �10� by setting all the Rls to 1. However, if the sub-
systems have different sizes, one needs to apply our general
formula �10�.

Finally, another area of applications of our approach is
related to multivariate analysis. The main building block
there is the Wishart ensemble, corresponding to L=1 in our
formalism. The link between the spectral properties of P and
Q may allow one to avoid the well-known bottleneck caused
by the non-Hermiticity of time-lagging correlation functions.
This issue will be discussed in a forthcoming publication.
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