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N searchers are sent out by a source in order to locate a fixed object which is at a finite distance D, but the
search space is infinite and D would be in general unknown. Each of the searchers has a finite random lifetime,
and may be subject to destruction or failures, and it moves independently of other searchers, and at interme-
diate locations some partial random information may be available about which way to go. When a searcher is
destroyed or disabled, or when it “dies naturally,” after some time the source becomes aware of this and it
sends out another searcher, which proceeds similarly to the one that it replaces. The search ends when one of
the searchers finds the object being sought. We use N coupled Brownian motions to derive a closed form
expression for the average search time as a function of D which will depend on the parameters of the problem:
the number of searchers, the average lifetime of searchers, the routing uncertainty, and the failure or destruction
rate of searchers. We also examine the cost in terms of the total energy that is expended in the search.
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I. INTRODUCTION

It is very common to search for a known or recognizable
object, without knowing the path to the object in a precise
manner, or knowing only imprecise information. Once the
searcher is close to the object being sought, it can detect or
recognize it �e.g., smell generated by food�, however the
challenge is to get close enough to it without exact informa-
tion about where it is. If the search space is infinite, the
searcher may also become lost “forever.” The search process
may be dangerous for the searcher and it may be destroyed
�e.g., eaten by a predator�. The searcher will often have a
finite life span �e.g., finite fuel for a mobile robot�, which is
known at least in probabilistic terms. Examples of such situ-
ations include: �i� foraging by an animal that can recognize
an edible object or a mate when it finds it, but does not know
exactly where to find it, and can also be harmed during the
search, �ii� packets traveling in a very large wireless or wired
network �1,2�, without the benefit of fully reliable routing
tables in intermediate network nodes, with possible packet
loss due to transmission errors or buffer overflows, �iii� com-
puter search of specific data or a complex digitally repre-
sented object �which may be a visual entity� in a very large
number database �3�, with a finite computational budget �life
span�, and the possibility that the software may fail to run in
some part of the database, �iv� motion of a particle under the
effect of a random field; in this case the “object being
sought” may be a location with an opposite electric charge
that ends the movement of the “searcher” particle: the finite
life span can result from the decay of the searcher’s charge,
�v� motion of a biological agent �4� until it docks onto a
specific site where it can become active, while it loses its
reactivity as it ages, �vi� motion of a physical robot sent to
find a specific object with a finite reserve of fuel. For in-
stance, packets in an ad hoc wireless network travel over a
random number of relay nodes toward a destination whose
location may not be precisely known �5�. In such systems

once a packet reaches its destination it may be able to send
back an acknowledgment by reversing the path it used and
avoiding any repetitions in the nodes visited. If the source
has not heard back from the packet after some predetermined
time �the “time out”�, the sender sends out another packet on
the assumption that the previous packet has been lost; if the
current packet is not lost or dead, it will self-destroy at the
same time out to avoid having duplicate packets in the net-
work �6,7�.

The work in the present paper is primarily motivated by
�ii� and �iv� above, in that the departure point of all the
searchers is exactly the same, so that their distance to the
object being sought is an identical quantity D for all of the
searchers.

Starting from different perspectives, several authors have
analyzed such systems with different physical assumptions.
For instance, the work in �8,9� models the search behavior of
an animal which replenishes its energy supply while it for-
ages and searches; energy dissipation and replenishment are
judiciously included in the Langevin equation used to repre-
sent the search process, and an approximate solution is ob-
tained. In �10� the search space is represented by a sequence
of finite graphs with probabilistic connection, as one may
represent a wired computer network or a system of roads,
and detailed first passage time probabilities are derived for a
random initial search location. Search for a prey which will
jump away at random when the predator gets close is con-
sidered in �11�, and interesting results are derived for the
number of searchers that are needed to guarantee that the
prey is caught in a finite search area. In �12� the search is
conducted as a random walk with jumps, so that one proba-
bilistically alternates neighborhood movement with random
jumps; interesting results are derived about how this alter-
nate motion can be conducted to optimize the search.

Simulation examples

Before we proceed with our analysis, we will present two
simulation examples within the framework of our approach.
In the case that we consider, the search space is infinite, i.e.,*e.gelenbe@imperial.ac.uk

PHYSICAL REVIEW E 82, 061112 �2010�

1539-3755/2010/82�6�/061112�8� ©2010 The American Physical Society061112-1

http://dx.doi.org/10.1103/PhysRevE.82.061112


it has no natural finite boundaries that limit the area/volume
in which the search is conducted so that a searcher may
meander indefinitely and still not find the object being
sought. However, the object being sought is at a finite dis-
tance D from the initial point of the search, but D is un-
known. Furthermore, each searcher has a probabilistically
finite lifetime, but after this lifetime or “time out” elapses a
new searcher will be sent out from the initial point so that the
search can be repeated again.

In the first simulation example, the average travel time of
a single packet that is sent out toward an unknown destina-
tion in a two-dimensional grid of wireless transceivers is
shown in Fig. 1 using Monte Carlo simulations, as a function
of the average value of the finite lifetime or time out of the
packet. Here, the packet may be picked up by any one of the
immediate neighboring nodes after one step. The simulation
results clearly show the strong influence of the time-out pa-
rameter r on the average overall time it takes the packet to
find its destination, where r−1 is the average value of the time
out.

The next simulations consider the effect of the number N
of duplicate packets or searchers that are simultaneously sent
out, as well as on the distance that a packet can travel in one
hop. Figure 2 summarizes results from Monte Carlo simula-
tions for the average travel time of the first, among N packets
sent simultaneously from the same source, that reaches the
destination node in a regularly spaced two-dimensional grid
of wireless transceivers. Each point on the curves is the av-

erage earliest arrival time among the N packets, for 40 simu-
lations conducted in identical circumstances, and we clearly
see how increasing the number of searchers and also increas-
ing the travel distance in one hop will reduce the average
search time. The top curve corresponds to the case when the
travel distance in one hop for the packet is six units, while
the following curves that are below it correspond to 10, 14,
16 units of distance, respectively.

II. MODELING THE SEARCH PROCESS

Let the search begin at time t=0 and number the searchers
from 1 to N. Let Yi�t� denotes the ith searcher’s distance
from its destination at time t�0; each searcher starts at dis-
tance Yi�0�=D. The effective search time T��N� is then ob-
tained from the variables,

Ti = inf�t:Yi�t� = 0� , �1�

so that T��N�=inf�T1 , . . . ,TN�. Let si�t� denote the state of the
searcher at time t�0. Then si�t� can take one of the values
�Si ,Li ,Wi ,P� which are defined as follows:

�i� Si: if the ith searcher’s search is going on and
its position from the destination is Yi�t��0. We denote the
probability density function of the position Yi�t� by
f i�zi , t�dzi= P�zi�Yi�t��zi+dzi&si�t�=Si�.

�ii� Li: it has been destroyed or lost, and its search is
ended. The time spent in this state is exponentially distrib-
uted with the same parameter r as the life span since the
source realizes that the searcher is lost or destroyed via the
life-span effect. At the end of this exponentially distributed
time, the searcher is handled just as if it has “died” �see the
next point�. We write Li�t�= P�si�t�=Li�.

E[T]

1/r

FIG. 1. Monte Carlo simulation of the average search time
E�T�� until the object sought is found by a single search agent or
packet N=1; the x axis is the average time-out value of the time-out
r−1. The packet travels reliably �so that it cannot be destroyed other
than at the time out�, and from any location it can reach any neigh-
boring location North-East-South-West in one time unit. All nodes
operate under “perfect ignorance” �b=0� so that the packet is
equally likely to get further or closer to the destination in one hop.
The total distance between the starting point of the search and the
location of the object that is sought is D=10. After the time out, the
sender at the origin where the search initiates will wait on average
ten more time units ��=0.1�, before sending out another packet.
Each point on the curve is the average of 20 simulation runs with
the same parameter set.

FIG. 2. Monte Carlo simulation results for the average travel
time from source to destination for the first among N packets to
arrive at the destination, versus N the number of packets that are
simultaneously sent. The initial distance is D=50, and the average
time out is r−1=600. Each point on the curve is the average of 40
simulation runs. The intermediate transceivers are placed in a regu-
lar rectangular unit grid, and the one time step transmission range of
a packet is varied from 6 �top curve� to 16 �bottom curve� hops.
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�iii� Wi: its life span has ended, and so has its search.
Note that this may have happened �previous point� because it
was destroyed or became lost, but this becomes known to the
source via the life-span effect. After an additional exponen-
tially distributed delay of parameter �, meant to avoid mis-
takes in assuming that the ith searcher is “dead,” it is re-
placed at the source by a new searcher with the same
identity. We write Wi�t�= P�si�t�=Wi�.

�iv� P: One of the searchers has found the object being
sought; the search process stops for all searchers, including
the ones who are lost or dead. Notice that P is a synchro-
nized state for all of the searchers. After one time unit, the
search process starts again as before at the source with N
searchers being sent out. We write P�t�= P�si�t�=P�.

Notice that the above process repeats itself indefinitely,
and E�T�� is the average time that it takes from any succes-
sive start of the search until the first instance when state P is
reached again. Let P�t� be the probability that the model we
have just described is in state P at time t�0, and let
P=limt→� P�t�. Then

P =
1

1 + E�T��
, E�T�� =

1 − P

P
. �2�

During the ith searcher’s travel in state Si while
�Yi�t�=y�0� the following events can occur in the time in-
terval �t , t+�t�:

�i� With probability 	�t+o��t� the ith searcher is de-
stroyed or lost, and enters state Li. From that state it enters
state Wi after an exponentially distributed delay of param-
eter.

�ii� With probability r�t+o��t� the searcher’s life span
runs out and it enters state Wi. Note that 1

r is the average life
span. As indicated earlier, when it enters state Wi, after an
additional delay of average value 1

� , the ith searcher is re-
placed with a new one at the source.

A real number b represents the average rate of change
over time �t , t+�t� of the searcher’s distance to the destina-
tion, and the variance of the distance traveled by the searcher
in that time interval is c�t, c�0,

b = lim
�t→0

E�Yt+�t − Yt�Yt = y�
�t

,

c = lim
�t→0

E��Yt+�t − Yt�2� − �E�Yt+�t − Yt��2�Yt =�y�
�t

,

so that we assume that the medium in which the searchers
move is homogenous in space and time. While b�0 is the
favorable case where the searcher on average gets closer to
the destination with time, we may also have cases of interest
with b�0, which means that the searcher on average moves
away from the object of interest, for instance because inter-
mediate locations provide wrong information on average, or
it lacks information altogether when b=0. It was shown that
even when b�0 it is possible to have a travel time to desti-
nation which is finite on average �7�.

We now express the process �si�t� : t�0� in terms of a
system of equations describing a somewhat unusual mixed
continuous space �diffusion� and discrete space random pro-

cess �13–17�. We first write the equations that the probability
density function f i�zi , t�dzi, zi�0, and the probability masses
Li�t�, Wi�t� and P�t�, t�0 will satisfy.

We represent the interaction between the diffusion pro-
cesses using the parameter ai�t�, 1� i�N in the following
unusual manner; ai�t� is the total rate of attraction exerted at
time t by all other diffusion processes, on the ith diffusion
due to the fact that one of the other diffusions may have
reached its absorbing barrier at zj =0 to represent the event
when the jth searcher has found the object being sought. The
system of coupled differential and partial differential equa-
tions representing the search are

� f i�zi,t�
�t

= − �	 + r + ai�t��f i�zi,t� − b
� f i�zi,t�

�zi
+

1

2
c
�2f i�zi,t�

�zi
2

+ �P�t� + �Wi�t��
�zi − D� , �3�

while

dLi�t�
dt

= − �r + ai�t��Li�t� + 	�
0+

�

f i�zi,t�dzi, �4�

dWi�t�
dt

= − �� + ai�t��Wi�t� + r	Li�t� + �
0+

�

f i�zi,t�dzi
 ,

�5�

dP�t�
dt

= − P�t� + �
i=1

N

lim
zi→0+

	− bfi�zi,t� +
1

2
c
� f i�zi,t�

�zi

 , �6�

and

ai�t� = �
j=1,j�i

N

lim
zj→0+

	− bf j�zj,t� +
1

2
c
� f j�zi,t�

�zj

 . �7�

We also have that the sum of the probabilities is one.

1 = Li�t� + Wi�t� + P�t� + �
0+

�

f i�zi,t�dzi. �8�

From Eq. �7� we see that ai�t� is the rate at which the ith
searcher is attracted to the origin, i.e., to finish its search,
because any one of the other N−1 searchers has found the
object being sought.

�i� This is reflected both in Eq. �4� and in the Eqs. �5� and
�6� where the searcher can be forced into the rest state from
the “lost” state and the “time out before retransmission”
state, as well. We also see that we enter the loss state from
any position zi�0, and that a time out can occur for a
searcher that is in the lost state.

�ii� Since the behavior of all searchers when they are not
in the rest state are independent, it follows that the event that
triggers the jump of searcher i into the rest state does not
depend on the prior state of searcher i but on the state of the
other searchers.

�iii� In Eq. �4� we can see the terms related to the rate of
loss 	 and the time-out rate r, as well as the jump back to the
start state both from the rest state and the time-out state.

Note again that these equations represent the system
where, whenever any one searcher has reached the destina-
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tion, all other searchers’ progress is artificially stopped and
restarted from the rest state s. The purpose here is to com-
pute E�T�� by constructing a synthetic ergodic process.

The system of differential and partial derivative equations
for 1� iN takes the following form in steady-state:

0 = − �	 + r + ai�f i�zi� − b
� f i�zi�

�zi
+

1

2
c
�2f i�zi�

�zi
2

+ �P + �Wi�
�zi − D� , �9�

while

�r + ai�Li = 	�
0+

�

f i�zi�dzi, �10�

�� + ai�Wi = r�Li + �
0+

�

f i�zi�dzi , �11�

P = �
i=1

N

lim
zi→0+

	bfi�zi� +
1

2
c
� f i�zi�

�zi

 , �12�

ai = �
j=1,j�i

N

lim
zj→0+

	− bf j�zj� +
1

2
c
� f j�zi�

�zj

 , �13�

with

1 = Li + Wi + P + �
0+

�

f i�zi�dzi. �14�

Dropping the dependence on i because all searchers are sta-
tistically identical, we write the characteristic polynomial of
the diffusion equation,

0 = − �	 + r + a� − bu +
1

2
cu2, �15�

which has two real roots,

u1,u2 =
b � �b2 + 2c�	 + r + ai�

c
. �16�

Note that one root is always non-negative, both when b is
positive or negative. Since we are seeking a solution which is
a probability density function whose integral over �0,+��
must be finite, for z�D we can only use the negative root

u2=
b−�b2+2c�	+r+ai�

c , while when z�D we use both roots,

f�z� = Ceu2z, z � D ,

f�z� = Aeu1z + Beu2z + F, 0 � zi � D ,

where the A ,B ,C ,F�0 are constants. Because f�z , t� has an
absorbing boundary at z=0 and f�0�=0, we get F=−�A+B�.
Furthermore, using Eq. �9� at z=0 we have

b�u1A + u2B� =
1

2
c�Au1

2 + Bu2
2� , �17�

which results in B=−A so that we end up with

f�z� = A�eu1z − eu2z�, 0 � z � D . �18�

Using the continuity at z=D we have Ceu2D=A�eu1D−eu2D�
so that

f�z� = A�e�u1−u2�D − 1�eu2z, z � D , �19�

Denote Q=�0+
� f �z�dz so that

Q = A�eu1D − 1�	 1

u1
−

1

u2

 ,

=A�eu1D − 1�
�b2 + 2c�	 + r + a�

	 + r + a
, �20�

and using Eq. �20� with Eq. �14�, and Eqs. �11�–�13� we end
up with

A = ��b2 + 2c�	 + r + a�

�	N +
eu1D − 1

	 + r + a
�1 +

	

r + a
�1 +

r

� + a

�−1

,

�21�

a =
1

2
Ac�N − 1��u1 − u2� = �N − 1�A�b2 + 2c�	 + r + a� .

�22�

Thus using Eqs. �21� and �22� we can compute A and a, and
P=AN�b2+2c�	+r+a� so that

P =
N

N +
eu1D − 1

	 + r + a
�1 +

	

r + a
�1 +

r

� + a
 ,

E�T�� = �AN�b2 + 2c�	 + r + a��−1 − 1,

=
eu1D − 1

N�	 + r + a��1 +
	

r + a
�1 +

r

� + a


=
eD/c�b+�b2+2c�	+r+a�� − 1

N
.

�� + r + a�
�r + a��� + a�

, �23�

which is easier to interpret when we multiply both the nu-
merator and denominator of the exponent by u2, yielding

E�T�� = �e−2D�	+r+a/b−�b2+2c�	+r+a�� − 1�
�� + r + a�

N�r + a��� + a�
.

�24�

A. Simulation and numerical examples

In Fig. 3 the theoretical prediction �the solid line� from
Eq. �24� is compared with a Monte Carlo simulation for the
case N=1. It appears that the theory estimates a larger aver-
age search time than the simulation; this may be due, espe-
cially when the search times are shorter around the optimum
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value of 1 /r, to the slower convergence of the discrete event
simulations to the continuous Brownian motion when the
times are shorter. The next numerical examples are based on
the predictions of the theory. Figure 4 illustrates the effect of
c and N as 1 /r varies: we see that more randomness, i.e., a
larger c, reduces the search times, and that N has a substan-
tial effect especially for smaller c. Figure 5 shows that a
higher searcher loss rate 	 will substantially lengthen the
average search time, and that this can be compensated with
larger N.

Figure 6 shows how the average search time varies with N
for various values of b; we see that N has a particularly
strong effect when b�0, i.e., when at each intermediate step,
the information available is sending the searchers on average
away from the object being searched. Finally in Fig. 7, again

for b�0, we illustrate the effect of N on the average search
time for different values of c and of the loss rate 	. Higher
loss rates, and less randomness in the search, i.e., smaller c,
will increase the average search time for all values of N.

B. When D is a random variable

Note that Eqs. �21� and �22� allow us to compute a as a
function of A quite easily, but A has a nonlinear dependence
on a and D. Thus we do not expect that we can obtain a
simple closed form expression for a as a function of D, and
hence we do not expect to be able to compute E�T�� as a
function of D in some general simple explicit form. Our
purpose in this paper is to ask how the average search time
varies with D and N, as well as the other parameters of the
problem, but essentially the results have to be computed nu-
merically from the nonlinear dependence of Eq. �21� together
with the simpler expression �22�. Therefore more generally
we do not expect that we can derive closed-form expressions

FIG. 3. �Color online� The average search time E�T�� until the
object is found by a single searcher �N=1� is plotted using the
theoretical analysis �solid line� and Monte Carlo simulations on a
rectangular unit grid. There are no losses 	=0, and D=10, b=0.5,
c=1, �=0.1. Each simulation point on the curve is the average of
20 simulation runs with the same parameter set.

FIG. 4. Average search time to find the object versus the average
time out 1 /r for D=10,�=0.1,	=0.1 and b=0 and different values
of N.

FIG. 5. Average search time to find the object versus the average
time out 1 /r for D=10,�=0.1,c=3 and b=0.5 with varying N.

FIG. 6. Average search time to find the object versus the number
of searchers N with D=10, �=0.1, c=1, 	=0.01, and r=0.02.
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for E�T�� when D is a random variable. However, this can be
done at least in the simple case when N=1 and hence a=0.

If D is a random variable and N=1 we have

E�T�� = �e−2D�	+r/b−�b2+2c�	+r�� − 1��1

r
+

1

�
 . �25�

If D is expressed in the form of a probability density function
g�D�, the analysis tells us that the random search by a single
searcher will find the object in an average time,

�T� = �
0

�

E�T��g�D�dD

= 	g��2D	 	 + r

b − �b2 + 2c�	 + r�

� − 1
�1

r
+

1

�
 ,

�26�

where d��s� is the Laplace-Stietjes transform of g�D�.
For instance, assuming “perfect ignorance” with b=0, and

taking 	=0 so that a searcher cannot be disabled during the
search process, we have

�T� = �
0

�

E�T��g�D�dD = 	g��−�2r

c
 − 1
�1

r
+

1

�
 .

�27�

If we consider the case where g�D�= 1
E�D�e

−D/E�D�, i.e., the
exponential distribution with mean E�D�, we obtain

�T� =
1

1 − E�D��2r

c

�1

r
+

1

�


and we see that in this case the average search time is finite
only if r is small enough so that E�D��� c

2r . Thus the de-
signer of the search strategy would try to select a time-out

value that is big enough in relation to the remaining charac-
teristic parameters of the search, i.e.,

1

r
�

2�E�D��2

c
.

III. ENERGY CONSUMPTION

If the search is carried out by a physically moving
searcher such as a robot, the energy consumed will depend
on its velocity and positive acceleration �while deceleration
can potentially be used to store energy�. In a virtual search,
the speed of computation �and hence the rate at which the
search progresses over time� can also affect energy consump-
tion with higher speeds costing more energy. In wireless
transmission things are more complicated because higher
transmission speeds may be more or less error prone, or
prone to interference or collisions with other communica-
tions, depending on the frequency bands that are used and on
the time during which the channel is occupied by the trans-
mission.

Here we simplify matters and assume that a searcher con-
sumes energy only when it is actually moving in the search
process, and that no energy is being consumed by an indi-
vidual searcher when it has been disabled or when the source
is waiting to reinitiate the sending out of the searcher.

Let J�N� be the lower bound estimate to the amount of
energy expended in the search that is obtained by assuming
that as soon as any one of the searchers has found the object,
then all the other searchers will also stop their search, and
that energy is only expended during the movement of the
searchers in proportion to the time spent in searching. Thus
J�N� is proportional to N times the expected effective travel
time E�ef f� of each of the N searchers, where

E�ef f� = �1 + E�T����
0

�

f i�zi�dzi

and J�N�=N .E�ef f�. From the previous analysis we obtain

J�N� = �e−2D�	+r+a/b−�b2+2c�	+r+a�� − 1�
1

	 + r + a
. �28�

In Fig. 8 we see that J�N� is not significantly affected by N
for very different values of 	.

In Fig. 9, we vary J�N� against the average time-out 1 /r
for three different values of N, with a very high value of loss
rate 	=0.2 and “perfect ignorance” b=0 during the search:
we see that for larger N, J�N� is not sensitive to changes in
1 /r. Figure 10 uses a lower loss rate 	=0.01 so that each
search is now much faster. Here we do see that when the
number of searchers increases, energy consumption becomes
less sensitive to 1 /r. Figure 11 on the other hand shows that
the number of searchers N has little effect on J�N� when the
loss rate is very high 	=0.2 and 1 /r varies across a large
range of values.

In order to see how N should we chosen to optimize both
delay and energy consumption, we have plotted the locus of
J�N� and E�T�� when 1 /r is varied for b=0.2 and 	=0.01, a

FIG. 7. Average search time to find the object versus the number
of searchers N with D=10, �=0.1, b=0.5, and r=0.02.
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favorable condition, in Fig. 12, and the unfavorable case
where b=0 and 	=0.15 in Fig. 13. WE see in both cases that
it should be possible to find an operating point with an ap-
propriate value of 1 /r where both energy and close to mini-
mum.

IV. CONCLUSIONS

This paper presents a model for search by N agents in an
unbounded random environment. We assume that a time out
is used to eliminate searchers which have searched too long
without yielding a result, and that when this happens a new
searcher is launched to replace the one that has been re-
moved; all searchers behave independently of each other but
with identical statistical behavior.

We derive an expression for the time it takes to find the
object being sought as a function of the distance from the
source to the object, using a multidimensional Brownian pro-

cess. The model allows for the loss or destruction of search-
ers and their finite lifetime, and it includes parameters which
characterize the randomness of the search process. As long as
a new searcher is sent out to replace one that died or got lost,
and that the search process is random so that previous mis-
takes are not systematically repeated, we show that the object
being sought will be found in a finite time if the distance to
the object from the source is finite. Depending on the param-
eters of the system being considered, N can either favorably
or adversely affect the average search time. Similarly, the
average value of the time out has a very significant impact on
the search time, and its can be used to optimize both the
search time and the energy being consumed. We therefore
also develop estimates of the energy consumed. In the case
when the distance from the source to the object is a random
variable, we have also shown in the case where N=1 that the
average time it takes to find the object may be finite or infi-

FIG. 8. Lower bound to the expected energy consumption ver-
sus the number of searchers. The parameters are b=0, c=1,
�=0.05, D=10 for different values of 	.

FIG. 9. The average energy consumption J�N� versus the aver-
age time out 1 /r with b=0.1, c=2, 	=0.01, �=0.05, and D=10.

FIG. 10. �Color online� The average energy consumption J�N�
versus the average time-out 1 /r with D=10, b=0, c=1, �=0.05,
and 	=0.2.

FIG. 11. The average energy consumption J�N� versus the av-
erage time-out 1 /r with D=10, b=−0.1, c=1, �=0.01, and
	=0.05.
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nite, depending on the probability distribution of the dis-
tance.

We have presented several numerical examples to illus-
trate our results and notice that it should be possible to mini-
mize the average search time and the average energy con-
sumption by an appropriate choice of the time out.

From this work, many interesting problems and exten-
sions can arise. For instance, it would be useful to develop
models for the case where the object being sought is moving
or even escaping from the searchers. Also, the approach that
we have developed raises the issue of how communication or
learning among the searchers may improve the search. An-
other interesting question arises when we assume that we are

willing to accept to stop the search when we find an object
which is approximately similar to the object sought.

One could also consider the case when there are in fact
more than one, or even an infinite number of objects which
are similar to the one being sought, and we could then study
the time it takes to find the first M objects, or we could
determine the rate at which objects are found. Yet another
challenging question arises when some of the objects being
sought, such as explosive mines �18�, may actually destroy
some of the searchers. Thus we feel that this paper formu-
lates and solves a particular problem, but that it raises a large
class of other problems and offers a possible method for
addressing a class of research issues.
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FIG. 12. The locus of the average effective packet delay E�T��
and the energy consumption J�N� when the average time-out 1 /r is
varied. The parameters are D=10, b=0.2, c=1, �=0.05, and
	=0.01. For these low packet loss rates, the minimum energy con-
sumption is obtained when the average travel time is also with
minimum.

FIG. 13. The locus of the average effective packet delay E�T��
and the energy consumption J�N� when the average time-out 1 /r is
varied. The parameters are D=10, b=0, c=1, �=0.05, and
	=0.15. For such high packet loss rates, the minimum effective
travel time does not coincide with minimum energy consumption.
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