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We consider a �1+1�-dimensional ballistic deposition process with next-nearest-neighbor interactions, which
belongs to the Kardar-Parisi-Zhang �KPZ� universality class. The focus of our analysis is on the properties of
structures appearing in the bulk of a growing aggregate: a forest of independent clusters separated by “crev-
ices.” Competition for growth �mutual screening� between different clusters results in “thinning” of this forest,
i.e., the number density c�h� of clusters decreases with the height h of the pattern. For the discrete stochastic
equation describing the process we introduce a variational formulation similar to that used for the randomly
forced continuous Burgers equation. This allows us to identify the “clusters” and crevices with minimizers and
shocks in the Burgers turbulence. Capitalizing on the ideas developed for the latter process, we find that
c�h��h−� with �=2 /3. We compute also scaling laws that characterize the ballistic deposition patterns in the
bulk: the law of transversal fluctuations of cluster boundaries and the size distribution of clusters. It turns out
that the intercluster interface is superdiffusive: the corresponding exponent is twice as large as the KPZ
exponent for the surface of the aggregate. Finally we introduce a probabilistic concept of ballistic growth,
dubbed the “hairy” Airy process in view of its distinctive geometric features. Its statistical properties are
analyzed numerically.

DOI: 10.1103/PhysRevE.82.061107 PACS number�s�: 02.50.�r, 05.10.�a, 05.40.�a

I. INTRODUCTION

Growth of aggregates by stochastic deposition of elemen-
tary units was extensively studied over the past few decades
�1�. Much effort has been put into theoretical, numerical, and
experimental investigation of the resulting patterns. Several
theoretical models have been proposed, including the famous
Kardar-Parisi-Zhang �KPZ� �2� and Edwards-Wilkinson �3�
models, the restricted solid-on-solid �4� and Eden �5� mod-
els, the models of molecular-beam epitaxy �6�, polynuclear
growth �PNG� �7–11�, and several ramifications of the bal-
listic deposition �BD� model �12–15�. Within the latter
model, in the simplest setting, one assumes that elementary
units �“particles”� follow ballistic trajectories in space and
adhere sequentially to a growing aggregate. Despite its ex-
tremely transparent geometric formulation, the problem of
stochastic growth in the BD model remains one of the most
challenging subjects in statistical mechanics.

The available theoretical analysis of stochastic deposition
focuses almost exclusively on the properties of the envelop-
ing surface h�x , t�. Here we quote just a few prominent re-
sults. The scaling relations characterizing the surface of a
growing aggregate are

�Var h̃�x,t��1/2 � t1/3,

�h̃�x,t�h̃�x + t2/3l,t�� − �h̃�2 � t2/3F�l� ,

where h̃�x , t�=h�x , t�−vt is the “detrended” profile of the sur-
face �v=limt→� t−1h�x , t� being the average growth rate of

the aggregate�, F�l� is a rescaled correlation function, and the
angle brackets here and below denote averaging with respect
to different realizations of the process. The exponents 1/3
and 2/3 were determined already in Ref. �2� for the original
KPZ model and then observed in a variety of other growth
models. In Refs. �8,16� it was first realized that the distribu-
tion of a rescaled PNG surface height t−1/3�h�0, t�−2t� con-
verges as t→� to the Tracy-Widom distribution �17� for the
Gaussian unitary ensemble, which appears in the theory of
random matrices. Moreover, the full rescaled PNG surface
t−1/3�h�xt2/3 , t�−2t�+x2 converges to a version of the Airy
stochastic process Airy2�x� �9� whose one-point distributions
are precisely Tracy-Widom �18�. The distribution of maximal
heights of the �1+1� dimensional Edwards-Wilkinson and
KPZ interfaces has been determined exactly in Ref. �19� �the
distribution of the local maxima of the surface in the BD
model has been calculated in Ref. �20��.

Since a similar convergence to Airy processes is observed
in other dynamical models such as, e.g., the totally asymmet-
ric simple exclusion process �TASEP� �21�, it is customary to
speak of the “KPZ universality class” whenever such limit
behavior is present. In particular, the KPZ scaling has been
shown in Refs. �22–24� to hold for the BD model in the
thermodynamic limit �25�.

Much less is known, however, about the structure of BD
patterns beneath the enveloping surface. As revealed in nu-
merical simulations, an aggregate consists of a “forest” of
treelike clusters of different sizes, which are separated by a
dual network of treelike channels or crevices �Fig. 1�. Note,
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as well, that essentially the same patterns have been observed
in recent experimental analysis of electrochemically formed
silver �26�, a process resembling in basic features the BD
model.

During the growth process, some clusters randomly col-
lect more particles, spread more and thus isolate their neigh-
bors from the rainfall of incident particles, suffocating their
growth. Consequently, the number of clusters present at
height h in a growing aggregate is a decreasing function of h.
We remark that this “suffocation” mechanism, as well as the
patterns emerging in the BD model, bear a certain similarity
to those observed in diffusion-limited deposition of a hard-
core lattice gas on a zero-temperature boundary �27�, al-
though these two models belong to different universality
classes and thus their quantitative behaviors are different.

In the present work we study the bulk properties of ag-
gregates formed in the BD process. Our analysis is based on
a systematic analogy with turbulent structures in randomly
forced Hamilton-Jacobi equations �28,29�. This allows us to
conclude that BD belongs to a large group of models within
the KPZ universality class, such as the PNG model, a totally
asymmetric simple exclusion process, and others. We con-
sider it as an important conceptual result of our work because
it puts the BD model under study into a wider context. Fur-
ther on, we show that the BD model, like other above men-
tioned models, admits a variational formulation. Capitalizing
on the ideas developed in Refs. �28,29�, we define analyti-
cally the decay of the number density c�h� of clusters at
height h, c�h��h−� with �=2 /3. We show that the horizon-
tal mean-square displacement ��x2�h�� of a cluster’s bound-

ary at height h follows ��x2�h���h� with �=4 /3, and we
also show that the “mass” m distribution P�m� of clusters
decays as P�m��m−7/5. Note that the high value of �, which
is twice as large as the KPZ exponent, implies the superdif-
fusive behavior of the intercluster interface.

These findings are well supported by our numerical simu-
lations shown below. Note, as well, that these results agree
very well with those found in the experimental analysis of
electrodeposition of silver �26�.

Finally, the analogy with the Hamilton-Jacobi dynamics
enables us to suggest a concept of a hairy Airy process, an
extension of classical Airy processes which also takes into
account the geometrical structure of the optimal paths �maxi-
mizers of the action, see Sec. III�. The random field of opti-
mal paths arises naturally in the context of stochastically
forced Burgers equation �28,29�.

The paper is organized as follows. In Sec. II we formulate
the model, define its main structural features and introduce
basic notations. Section III contains an analysis of the struc-
tural similarity of BD patterns to “minimizers” and “shocks”
in the Burgers turbulence �29�, based on the common varia-
tional formulation of the two models. Building on these de-
velopments, in Sec. IV we compute several scaling expo-
nents characterizing the bulk structure of the aggregates
formed during ballistic deposition. Next, in Sec. V we dis-
cuss the KPZ scaling in the BD model and introduce the
notion of a hairy Airy process. Section VI contains conclud-
ing remarks.

II. MODEL AND BASIC DEFINITIONS

A. NNN ballistic deposition model

A standard �1+1�-dimensional BD model with next-
nearest-neighbor �NNN� interactions can be formulated as
follows �see also Refs. �22–24��. Consider a box divided into
L columns of unit width each, enumerated with index
i�i=1,2 , . . . ,L�. For simplicity we assume the periodic
boundary conditions so that the leftmost and the rightmost
columns are neighbors, and identify the index value 0 with L.

At the initial time t=0 the system is empty. Then, at each
time step t=1,2 , . . . , tmax, an elementary unit �particle� of
height � and width 1 is deposited at a column i�t� chosen
randomly with uniform distribution. Define

��i,t� = �1, i = i�t�
0, i � i�t� .

	 �1a�

As shown in Fig. 1, particles deposited in adjacent columns
interact in such a way that they can only touch each other at
corners or at top and bottom, but never along their vertical
sides. Let the height of column i at time t−1 be h�i , t−1�.
Upon adding a particle it changes according to

h�i,t� = �max 
h�i − 1,t − 1�,h�i,t − 1�,h�i + 1,t − 1�� + � , ��i,t� = 1

h�i,t − 1� , ��i,t� = 0.
	 �1b�

FIG. 1. Snapshot of an aggregate obtained within the ballistic
deposition of N=2000 particles in a periodic box of size L=100
with next-nearest-neighbor interactions. Black lines trace the chan-
nels �crevices� between adjacent clusters.
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This dynamics is supplemented with the initial condition
h�i ,0��0 for all 1� i�L. Equations �1a� and �1b� com-
pletely describe updating rules for the NNN discrete ballistic
deposition.

We will use Eq. �1b� represented in a different form. De-
fine the “thin” and “thick” discrete “� functions”

L0�k,i� = �� k − i 	 0

0 k − i = 0,
	L1�k,i� = �� k − i 	 1

0 k − i � 1.
	
�2�

Consider first the trivial dynamics described by the
equation h�i , t�=h�i , t−1�. It can be rewritten as h�i , t�
=max

k

�h�k , t−1�−L0�k , i��: indeed, max
k�i

�h�k , t−1�−���−�

and therefore h�i , t�=max
h�i , t−1� ,−��=h�i , t−1�. It is
now clear that the stochastic Eq. �1b� can be recast in the
form

h�i,t� = max
k

�h�k,t − 1� − L��i,t��k,i�� + ���i,t� . �3�

This dynamics should be compared with the commonly
used discrete equation with “additive noise” describing the
evolution of an interface h��i , t� in a �1+1�-dimensional
polynuclear growth �9�, which in our notation takes the form

h��i,t� = max
k

�h��k,t − 1� − L1�k,i�� + ���i,t� . �4�

According to Eq. �3�, the height h�i , t� remains unchanged
if nothing is deposited to column i at time t. On the contrary,
in Eq. �4� the height h��i , t� relaxes spontaneously even in
the absence of deposition to column i at time t because
h��i , t� is defined to be the maximum of the triple

h��i−1, t−1� ,h��i , t−1� ,h��i+1, t−1��. Note that process
described by Eq. �3� is sometimes referred to as “dynamics
with multiplicative noise.”

B. Clusters, crevices, and scaling exponents
of a growing aggregate

Let us now take a closer look at Fig. 1. We say that two
particles in the aggregate are connected if they touch one
another at corners or if one is situated directly on top of the
other.

It often happens that the upper particle is connected si-
multaneously to two lower particles. For reasons that will
become clear shortly, it is better to avoid these “one-on-two”
configurations. The model is therefore slightly augmented:
one assumes in Eqs. �1b� and �3� that

� = ��t� = 1 + 10−10
�t� , �5�

where 
�t� are independent normal random variables. It is
clear and well supported by numerical experiments that this
modification removes the possibility of one-on-two configu-
rations while preserving, within the limits of statistical er-
rors, statistical characteristics of the aggregate for ��1. Al-
ternatively one might resolve one-on-two configurations for

=0 by simply disconnecting the upper particle from one of
its two lower neighbors at random. In either way, elimination
of one-on-two configurations allows us to define a unique

“path” corresponding to every particle, namely, a backward
directed chain of connected particles going from a given par-
ticle to the bottom level of the aggregate.

Consider all connected paths originating from the topmost
particles. These paths can merge. We define the backbone of
a cluster as the connected set of such paths, i.e., the union of
all paths that end up at the same bottom level particle. It is
easy to see that the bottom level particles are split into two
classes: those that are reached by the paths originated at the
top of the aggregate and those that are not. Obviously the
first class gets smaller as t increases. For every particle from
this class define cluster as the collection of all paths ending
up at this particle. The difference between a backbone and a
cluster is that clusters contain paths not necessarily originat-
ing from the top level particles.

We say that a pair of two top level particles occupying
adjacent columns defines a shock, which is located between
them, if they belong to two different clusters. The channel of
white space between two neighboring clusters is called a
crevice. Clearly, every crevice is associated with a shock at
the top, and the connected paths from top particles defining
the shock form the left and right boundary of a crevice. Con-
necting shocks at adjacent time moments, we get curves that
branch backward in time and play a role dual to that of
backbones. These curves are sketched in Fig. 1 in black.

It is clear from Fig. 1 that many channels that are initially
present at bottom of the bulk then merge at some height,
blocking the growth of the clusters situated in between. Thus
the crevices form a treelike structure just as the clusters do,
but contrary to the clusters they merge upward. This causes
the number of percolating clusters and crevices in the box to
decrease as a function of h. In the thermodynamic limit this
behavior is characterized by the following three scaling ex-
ponents whose values are identified in Sec. IV.

The thinning exponent � characterizes the expected num-
ber density c�h� of percolating crevices �or, equivalently, per-
colating clusters� at height h, see Fig. 2�a�:

c�h� =
1

L
�Nh� � �h/L�−�, �6�

where Nh is the number of clusters surviving up to height h
in a given realization of the deposition process.

The roughness exponent � characterizes the mean-square
displacement �in the units of L� of the boundary of a perco-
lating cluster between the bottom of the bulk and a specified
height h, see Fig. 2�b�:

��x2�h�� � �h/L��. �7�

The mass exponent � characterizes the mass distribution
of clusters:

P�m� � m−�, �8�

where P�m� is the fraction of clusters of mass m in the en-
semble, see Fig. 2�c�.
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III. BALLISTIC DEPOSITION
AND BURGERS TURBULENCE

A. Variational formulation of the BD

The discrete equation

h�i,t� = max
k

�h�k,t − 1� − L�k,i,t�� + ���i,t� , �9�

whose particular cases for specific choices of L�k , i , t�
=L��i,t��k , i� and L�k , i , t�=L1�k , i� are correspondingly the

BD model Eq. �3� and the discrete PNG model Eq. �4�, ad-
mits a natural variational formulation.

Fix some initial condition h�i ,0� and consider the
discrete “variational” problem of finding a trajectory
���0� ,��1� , . . . ,��t�� that satisfies the “boundary condition”
��t�= i and maximizes the discrete “action”

A0
t ��� = h���0�,0� − �

1�s�t


L���s − 1�,��s�,s� − �����s�,s�� .

�10�

The function in the square brackets plays a role of a discrete
“Lagrangian” of the system. The problem bears an obvious
resemblance to the zero-temperature limit of the free energy
of a statistical system, expressed as the sum over configura-
tions �:

lim
T→0

T ln�e�1/T�A1 + ¯ + e�1/T�AN� → max
A1, . . . ,AN� .

Another obvious connection is with mechanics, where the
dynamical trajectory can be found by optimizing the corre-
sponding action �in our case, at variance with the usual con-
vention, the action is maximized�.

Action maximization in Eq. �10� is related to solving Eq.
�9� as follows. To be specific, consider the BD growth Eq.
�3�, where particles are added to the system as “dropping
events” �i�s� ,s� in �1+1� dimensional discrete space time.
Maximization of the action A0

t in Eq. �10� amounts to finding
a trajectory that terminates at �i , t� and passes through a
maximal number of dropping events under the following
constraint: the trajectory stays constant, ��s�=��s−1�, unless
��s−1�= i�s�1, i.e., there is a dropping event in adjacent
column. In the latter case the trajectory may �but does not
necessarily have to� jump to i�s� at time step s. Note that for
the PNG model Eq. �4� this constraint is relaxed: a trajectory
may jump at all times, but only to adjacent columns. Other-
wise the two models are structurally similar, and the rest of
the argument in this subsection applies to both.

The lack of a strict obligation to pass through an adjacent
dropping event allows to “collect” dropping events more ef-
ficiently: it is easy to construct trajectories for which it is
more profitable, from the point of view of maximizing the
number of dropping events, to skip some isolated dropping
events in order not to be driven away from a later series of
several adjacent dropping events.

Direct maximization of the action Eq. �10� is a difficult
problem because the solution depends on the whole future
history of dropping events. Observe however that for all
1� j�L, 1�s� t the height function h�j ,s� gives the maxi-
mal number of dropping events available for a trajectory
coming to the point �j ,s�, and this fact can be exploited to
construct a maximizing trajectory in reverse time.

Consider again the BD case where L�k , j ,s�=L��j,s��k , j�.
Then the maximizing trajectory passing through an arbitrary
�i , t� can be reconstructed by setting ��t�= i and solving re-
cursively
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FIG. 2. �Color online� Numerical evidence for scaling exponents
identified in the text. Note that the mean height �h� of the aggregate
is proportional to the number of dropping events per column,
�h�� t /L. We therefore plot the quantities of interest as functions of
t /L rather than h: �a� the number density of percolating clusters
�and crevices� as function of t /L; �b� the mean-square displacement
of the boundary of a percolating cluster ��x2� as function of t /L; �c�
the probability P�m� to find in a large system a cluster of mass m.
Note that departures of numerical data from theoretical predictions
appear here due to evident finite-size effects.
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��s − 1� = arg max
k


h�k,s − 1� − L����s�,s��k,��s���

+ �����s�,s� �11�

for s= t , t−1, . . . ,1. Here arg maxk is the standard notation
for the value of k that provides maximum to the expression
in the right hand side of Eq. �11�.

The algorithmic implementation of the above goes as
follows. Solve first Eq. �9� “upstairs” starting from
given initial conditions and obtain the set of values
h�1,s� ,h�2,s� , . . . ,h�L ,s� for all 0�s� t. Then choose a
specific point, say �i , t�, and restore the path to this point
going “downstairs,” i.e., back in time, by solving Eq. �11�
step by step. This procedure defines a trajectory maximizing
the action A0

t in Eq. �10�. This class of algorithms is known
in the optimization theory as dynamic programming, and Eq.
�9� is called the Bellman equation �see, e.g., the classical
book �30��.

B. BD aggregates and the Burgers turbulence

It turns out that there is a far-reaching analogy between
the BD deposition model and phenomenology of “shocks”
and “minimizers” for the Burgers or Hamilton-Jacobi equa-
tion with random forcing �see, e.g., Ref. �29��. We first recall
the latter.

Consider the inviscid Burgers equation

�tu + u�xu = − �x��x,t� ,

where ��x , t� is the forcing potential. The substitution
u=�xh transforms this equation into

�th + ��xh�2/2 + ��x,t� = 0.

More generally, one can consider the Hamilton-Jacobi equa-
tion

�th + H��xh� + ��x,t� = 0, �12�

where H�p� is a convex function representing the kinetic
energy. Using the Legendre transform representation
H�p�=maxv�pv−L�v��, one can write

�th + v�xh − L�v� + ��x,t� � 0

with equality only for �xh=L��v�, i.e., v=H���xh�. Hence
along any trajectory ��t� the rate of change in h is bounded
by the Lagrangian

d

dt
h��,t� � L��̇� − ���,t�

�here �̇=d� /dt�, which implies for any � passing through x
at time t that

h�x,t� � A0
t ��� = h���0�,0� + �

0

t

�L��̇� − ���,s��ds

�13�

with equality only for minimizers of the action, which must
satisfy the equation

�̇�t� � H���xh��,t�� . �14�

The Hamilton-Jacobi Eq. �12� is thus intimately con-
nected with the variational problem of minimizing the action
Eq. �13�, just as the Bellman Eq. �9� arises in maximization
of the discrete “action” Eq. �10�. Note in particular the simi-
lar structure of the action �the difference in sign results in
maximization replacing minimization in the discrete case�.
Moreover, a known solution h to Eq. �12� allows us to re-
construct minimizing trajectories using Eq. �14�, much as Eq.
�11� generates maximizing trajectories in the discrete prob-
lem.

It is therefore natural to consider the discrete maximizing
trajectories defined in the previous subsection as analogs of
continuous minimizers. There is one apparent difference:
continuous minimizers never cross, while discrete maximiz-
ing paths merge and form treelike structures. However con-
tinuous minimizers have a tendency to approach each other
with exponential rate in reverse time due to hyperbolicity,
and in the discrete case the same hyperbolicity manifests
itself in the exponentially decreasing probability for two ad-
jacent maximizers to stay separate as time runs backward.

FIG. 3. �a� An aggregate growing by sequential deposition with highlighted crevices; �b� the growing aggregate in the �2+1�-dimensional
space time; �c� density plot of second local difference �discrete analog of second derivative� of the height, which highlights the disconti-
nuities corresponding to shocks. Panels �a� and �c� represent front and top views, respectively, of the three-dimensional structure in panel �b�.
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We are now in position to establish the relation between
discrete maximizers and connected paths defined within the
aggregate in Sec. II. Lift the maximizing trajectories to the
�i , t ,h� space by setting h=A0

t ��� for a maximizer � such
that ��t�= i. Then connected paths are given by the projection
of these “lifted” maximizers to the �x ,h� plane �see Fig. 3�.
In other words, the intervals of time between successive
dropping events along a maximizer are collapsed into unit
steps in h. Correspondingly the transversal fluctuations
of maximizers as a function of time are transformed to
transversal fluctuations of connected path as a function of
height h.

The analogy between continuous minimizers and discrete
maximizers extends to shocks. In the Burgers turbulence it
typically happens that two or more minimizing trajectories,
which start at different initial locations, pass through same
point x at time t so that the map from �x , t� to the initial
location is discontinuous �see, e.g., �29��. These discontinui-
ties are called shocks; in space time they form continuous
shock curves. This definition is obviously parallel to the defi-
nition of shocks given in the BD setting in Sec. II �and has
inspired the latter�.

IV. SCALING ANALYSIS OF BD PATTERNS

A. Thinning of a forest of clusters and roughness
of clusters’ boundaries

Relying on the connection between shocks and bound-
aries of clusters, we can directly transfer the scaling argu-
ments of statistics of shocks developed in Ref. �29� to the
scaling analysis of a growing BD aggregate and determine
the values of the scaling exponents � and � in the dependen-
cies c�h��h−� and ��x2�h���h� defined correspondingly in
Eqs. �6� and �7�. Recall that c�h� is the averaged number
density of clusters percolating to height h and ��x2�h�� is the
mean-square displacement of a cluster boundary at height h.

Denote by d�t� the horizontal size of a given cluster at
time t. At t=0 the cluster has zero size, i.e., d�0�=0. In what
follows we shall use the obvious fact that the growth time t
in the sequential deposition process is proportional to the
average height h of the growing aggregate and, consequently,
to the cluster height �see, for example, Fig. 3�b��.

The typical value of d�h� can be obtained by scaling con-
siderations. Namely, growth of d�h� is determined by two
additive effects. On the one hand, there is a “driving force”
promoting the “smearing” of the cluster due to the velocity
fluctuations. For BD this effect can be estimated as follows.
Consider clusters with size of order d. Under the uniform
random rainfall of deposited particles, one cluster can ran-
domly screen part of its neighbors, and increase its own
“spot.” Since different clusters are correlated weakly, it is
natural to conjecture that the typical scale of fluctuations of
cluster sizes is of order of �d. Thus the rate w of cluster
“smearing” due to these fluctuations is w��d /d�d−1/2.
Speaking more carefully, the above means that the average
growth rate of the cluster of size d is

w =
1

d
�

k�j�k+d

�h�j + 1,t� − h�j,t�� ,

where k and k+d are the left and the right boundaries of
some cluster. The increments of h�j , t� are uncorrelated for

the uniform ballistic “rain” and �h�j+1, t�−h�j , t��=0.
Hence, evidently,

�
k�j�k+d

�h�j + 1,t� − h�j,t�� � d1/2, �15�

and it is therefore natural to expect that w�d−1/2, as conjec-
tured.

On the other hand, there is a certain smearing of clusters
due to a random deposition of new particles near the cluster
boundary. This process can be interpreted as a “diffusion” of
the boundary. Over time t this diffusion leads to the smearing
of the cluster’s horizontal size on typical scales of order of
�t.

The typical size of a growing cluster at time t is deter-
mined by an additive contribution of these two effects:

d�t� � wt + t1/2 =
t

�d�t�
+ t1/2. �16�

For sufficiently large t, the dominant contribution to d�t�
comes from the first term on the right-hand side of the latter
equation, which is consistent with the physical intuition.
Hence, we have that

d�t� � t2/3. �17�

Since t�h, we immediately come to the conclusion that
d�h��h2/3. Note that this estimate is a direct paraphrase of
the arguments provided in Ref. �29� for a scaling analysis of
statistics of shocks in a �1+1�-dimensional Burgers equation
with random forcing.

The number density c�h� of independent clusters surviv-
ing up to the height h is inversely proportional to the cluster
size, c�h���d�h��−1. Hence, we find

c�h� � h−2/3, �18�

which implies that �=2 /3 �26�.
Finally, a horizontal mean-square displacement ��x2�h��

of a cluster boundary at height h can be estimated straight-
forwardly as

��x2�h�� = d2�h� � h4/3, �19�

which gives �=4 /3. Note that, surprisingly, the roughness
exponent describing fluctuations of the intercluster boundary
is two times larger than the roughness exponent characteriz-
ing the KPZ interface. The wandering of the intercluster
boundary in the BD model appears to be superdiffusive, in
contrast to the diffusive evolution of the intercluster bound-
ary observed for the diffusion limited deposition of a hard-
core lattice gas on a zero-temperature boundary �27�.

B. Cluster mass distribution

This subsection contains the scaling analysis of the prob-
ability P�m��m−� to find a cluster of mass m in a large
aggregate. To begin with, note that the number of particles,
i.e., the mass m�h� of a cluster percolating to height h can be
obtained integrating the horizontal size, d�h�, of cluster at a
given height:
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m�h� � �
0

h

�h���dh� � h�+1. �20�

From Eq. �18� we know that the cumulative probability of
clusters surviving until height h is of the order of h−�. This
implies that the probability density of clusters at height h
scales as h−��+1�dh. In order to calculate mass distribution,
we change variables from h to m, take into account that
dm�h�dh, or dh�h−�dm=m−�/��+1�dm, and get

P�m� � m−�dm � h−��+1�dh � m−1m−�/��+1�dm

= m−�2�+1�/��+1�dm . �21�

For �=2 /3 we get �=7 /5=1.4. The exponent �=7 /5 is well
supported by our own numerical simulations shown in Fig.
2�c�. Curiously, it also agrees quite well with the value
�=1.370.04 found in experiments on cluster formation in
quasi-two-dimensional electrochemically formed silver
branching structures �26�.

One can say that the clusters are ranked �ordered� accord-
ing to their masses and m is the corresponding rank. Thus
Eq. �21� has similarity with Zipf’s law that appears in many
areas of science ranging from word statistics in linguistics
�31� to nuclear multifragmentation �32,33� where clusters
have power-law distribution in sizes �masses, charges, etc.�
�34�.

V. FROM BD PATTERNS TO AIRY PROCESSES

A. Basics of classical KPZ scaling

Recall first the basics of classical KPZ scaling related to
Airy1 process, which is closest to our setting. The scheme
described below is due to Sasamoto �21�.

Consider a directed random walk on a �1+1�-dimensional
lattice. Suppose that the space-time lattice is equipped by a
random potential with independent values ��i ,s� at each
point �i ,s�. Then for every i one can consider the maximum
of an action over all random-walk paths of length t terminat-
ing at that point, i.e., define as

a�i,t� = max
�:��t�=i

�
1�s�t

����s�,s� ,

where L�k , i� is a kinetic part of the action that ensures a
certain control of how far the trajectory � can jump over unit
time steps. It is easy to see that t−1a�i , t�→v at t→�, where
v is some nonrandom constant independent of i. We now
consider the rescaled process

At�x� =
1

��t1/3 �a��t2/3x,t� − vt� . �22�

The main statement is that At�x� converges as t→� to a
universal spatially homogeneous limit process called
Airy1�x�. Universality here means that whenever one opti-
mizes in a disordered medium the action of a path from a
point that varies over a line to a parallel line separated from
the first one by distance t �“point-to-line last-passage perco-
lation”�, the process corresponding to the optimal action con-
verges as t→� to the Airy1 process.

Note that spatial homogeneity of Airy1�x� immediately
follows from the construction. Of course one has to ensure
convergence by subtracting the mean value of order t, nor-
malizing the difference by t1/3 and rescaling the starting point
by t2/3. The constants � and �� in Eq. �22� are nonuniversal
and are to be chosen properly to ensure convergence to the
standard Airy process. A similarly rescaled “point-to-point”
percolation results in the Airy2 process.

B. Airy process for BD pattern

As we have shown in Sec. III the height function in the
BD process can be viewed as given by maximization proce-
dure for random paths in random potential. The only differ-
ence with the classical picture just described is related to the
rarity of the deposition events. In other words, in order to
achieve the displacement of order 1 in space direction one
needs time of order L. This explains why time has to be
rescaled.

The most natural way to do this is through a local stochas-
tic change in time variable. Namely, we collapse the time
between two deposition events to 1. This is exactly the trans-
formation from �lifted� maximizers to connected paths pre-
sented in Sec. III. It is therefore no surprise that the Airy1
process can be obtained from the BD height function:

lim
t→�

1

���t/L�1/3 
h���t/L�2/3x,t� − t/L� = Airy1�x� . �23�

This formula simply indicates that the appropriately rescaled
height function in BD is the visualization of the process
which converges in the thermodynamic limit to the Airy pro-
cess.

C. Hairy Airy process

The Airy1 process carries only part of the information
about the system: it is oblivious to the maximizing trajectory
associated to the �rescaled� point �x , t�. It is therefore natural
to consider the limit

�a��t2/3x,t� − vt

��t1/3 ,
��t2/3x,t�ts�

��t2/3 � →
�t→��

�Airy1�x�,�x�s�� ,

�24�

where �i,t is the maximizing trajectory that passes through i
at time t and �x�s� is a continuous path defined over �0,1�
such that �x�1�=x. For obvious reasons we propose to call
this limit the hairy Airy process.

As we previously did, in the BD setting we collapse time
intervals between adjacent deposition events to unit steps
and get particle paths instead of maximizing trajectories
in formula �24� above. Applying transversal rescaling
��t /L�2/3x and height rescaling ���t /L�1/3 as in Eq. �23�, we
get a realization of a hairy Airy process from the rescaled BD
aggregate. This process describes the joint distribution of
fluctuations of the height function and transversal displace-
ments of cluster boundaries in the spatially homogeneous
BD process.

In other words, the rescaled height function for the BD
model alone is a realization of the Airy1 process, while the
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rescaled height function together with the rescaled forest of
maximizers corresponds to a realization of the hairy Airy
process. The distinctive geometric features of this joint pro-
cess actually suggests the name hairy Airy process, cf. Fig.
4�a�.

We demonstrate the existence of correlations in the joint
distribution for the hairy Airy process by computing numeri-
cally the joint distribution of the height fluctuation �h at the

top of a shock and the corresponding displacement �x of the
cluster boundary. To be precise, we compute the correlation
coefficient between the fluctuations of the displacement �x
of the right boundary of a cluster �or equivalently a back-
bone� and the height fluctuation �h at the top right point of
the same cluster, see Fig. 4�a�. For convenience we explicitly
recall here the standard definition of the correlation coeffi-
cient corr
a ,b� between two random variables a and b:

corr
a,b� =
��a − �a���b − �b���

���a − �a��2���b − �b��2�
. �25�

Let the top right particle of some cluster be located at
time t in column j. Let h�j , t� be its height and �h�t�� the
mean height of the whole surface at time t. Denote further-
more h�j , t�− �h�t�� by �h�j , t� and the displacement of the
right boundary of the same cluster at time t, measured from
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FIG. 4. �Color online� �a� Correlation between the height of
cluster’s boundary and the displacement of the corresponding con-
nected path; �b� the corresponding correlation coefficient; �c� the
averaged difference between the height of cluster’s right boundary
and the mean height of the BD growing interface.

FIG. 5. �Color online� �a� Correlation between the heights inside
the cluster �“in”� and separated by a shock �“out”�; �b� the corre-
sponding correlation coefficients.
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the position of this boundary at t=0, by �xj�t�. We fix a time
t, collect for each cluster the joint information
��h�j , t� ,�xj�t��, and perform averaging over all clusters.
Behavior of the corresponding time-dependent correlation
coefficient corr
�h ,�x�, where the angle brackets corre-
spond to averaging over the sample, is shown in Fig. 4�b� for
different time values.

Strong correlations between the vertical and horizontal
displacements of cluster boundaries are clearly seen in the
data. The negative sign of these correlations is due to the fact
that the height of the top right particle in a typical cluster is
smaller than the averaged height of the growing BD inter-
face. This observation is supported by Fig. 4�c�, where the
averaged difference between the height of the cluster right
boundary and the averaged height of the interface is plotted
against time. Clearly this difference is always negative and
tends to zero from below as t→�. One may speculate that
growth of the leftmost- and rightmost-connected paths in a
cluster is slower due to screening between neighboring clus-
ters.

In order to better understand the influence of clusters on
the morphological structure of the growing BD surface, we
also compute the joint distribution of height fluctuations in
two columns separated by distance �=3 in lattice units, as
shown in Fig. 5�a�. Two different situations are distin-
guished: �i� two test column belong to the same cluster �con-
figuration A� and �ii� two test columns belong to different
clusters, i.e., are separated by a shock �configuration B�.

Computing the correlation coefficient
corr
�h�k , t� ,�h�m , t�� according to Eq. �25�, we see that
correlations between �h�1, t� and �h�2, t� inside a cluster are
stronger than those across a shock between different clusters.

VI. CONCLUSION

In this paper we analyzed the internal structure of an ag-
gregate formed in a closed box in the course of a standard
homogeneous ballistic deposition process with next-nearest-
neighboring �NNN� interactions. Our numerical simulations
showed that such an aggregate is a collection of independent

clusters separated by crevices. Moreover, we realized that as
the aggregate grows, the clusters compete for the incoming
particles and mutually screen each other, which results in
thinning of the forest of clusters; the number density c�h� of
clusters decreases with the height h of the pattern.

Further on, we have demonstrated that the discrete sto-
chastic equation describing the BD process can be naturally
represented in terms of a dynamic programming language
associated with the so-called Bellman equation. This dy-
namic programming point of view allowed for a systematic
translation of the study of clusters and crevices evolution in
the NNN BD model into the language of maximizers and
shocks in discrete equations of the Burgers or Hamilton-
Jacobi type. This is the key point of our work which not only
puts the model under study in a wider context but also al-
lowed us to take an advantage of the ideas developed for the
latter process. Specifically, we have found the exponents
characterizing the decay of the number density of clusters,
wandering of the intercluster interface and also have defined
the tail of the cluster mass distribution. Our analytical results
have been confirmed by extensive numerical simulations.

Finally, we introduced a kind of the Airy process charac-
terizing ballistic deposition patterns, whose realizations de-
fine a rescaled height function together with a rescaled forest
of maximizers. This very distinctive geometric feature of the
process suggests the name of hairy Airy process. Statistical
properties of this process were analyzed numerically.
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