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The large-deviation method can be used to study the measurement trajectories of open quantum systems. For
optical arrangements this formalism allows to describe the long time properties of the �nonequilibrium� photon
counting statistics in the context of a �equilibrium� thermodynamic approach defined in terms of dynamical
phases and transitions between them in the trajectory space �J. P. Garrahan and I. Lesanovsky, Phys. Rev. Lett.
104, 160601 �2010��. In this paper, we study the thermodynamic approach for fluorescent systems coupled to
complex reservoirs that induce stochastic fluctuations in their dynamical parameters. In a fast modulation limit
the thermodynamics corresponds to that of a Markovian two-level system. In a slow modulation limit, the
thermodynamic properties are equivalent to those of a finite system that in an infinite-size limit is characterized
by a first-order transition. The dynamical phases correspond to different intensity regimes, while the size of the
system is measured by the transition rate of the bath fluctuations. As a function of a dimensionless intensive
variable, the first and second derivatives of the thermodynamic potential develop an abrupt change and a
narrow peak, respectively. Their scaling properties are consistent with a double-Gaussian probability distribu-
tion of the associated extensive variable.
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I. INTRODUCTION

The interaction of small quantum systems with an infinite
set of uncontrollable degrees of freedom leads to nonequilib-
rium time irreversible evolutions. This is the main topic of
the theory of open quantum systems �1�. In this context, a
diverse kind of physical systems can be described through a
quantum master equation, which defines the dynamics of
their density matrix operators.

Quantum optical arrangements fall in the previous cat-
egory �2–6�. The irreversible dynamics is induced by the
background electromagnetic field, which leads to the natural
radiative decay of the system. The opposite mechanism,
where the system becomes excited to higher energy levels,
can be induced by the interaction with an external laser field.
The competition between both effects produces a continuous
emission of photons.

The detection of the radiated photons occurs at random
times. Successive measurement realizations provide an en-
semble of trajectories, which define a stochastic �point� pro-
cess �7�. Its statistics can be described through different ap-
proaches, such as generating operator techniques �8�, or the
quantum jump approach �1–4�. These formalisms can also be
utilized in the description of fluorescent systems coupled to
classically fluctuating reservoirs �9–11�. The interaction with
the bath is modeled through a set of random processes that
modify the characteristic parameters of the system �12–16�.
In these cases, the main task is to relate the environment
fluctuations with the photoncounting statistics �9–20�.

In contrast to the previous approaches, statistical mechan-
ics provides the theoretical tools for describing systems in
thermal equilibrium �21�. It allows to get the dependence of
extensive thermodynamic observables as a function of the
conjugate �intensive� variables. Phase transition points are
defined by nonanalycities of a thermodynamic potential in
the parameter space.

While both nonequilibrium �small� quantum systems and
thermodynamic ones are described with intrinsically differ-

ent approaches, in a recent contribution Garrahan and Le-
sanovsky related both kind of descriptions �22�. The bridge
between both areas is provided by the large-deviation �LD�
theory �23�. This formalism is concerned with the exponen-
tial decay of probabilities corresponding to large fluctuations
in a stochastic system. It allows to describe its ensemble of
trajectories in the same way as equilibrium statistical me-
chanics describes ensemble of configurations in phase space
�23–27�. The role of the thermodynamic variables is played
by dynamical order parameters or their associated conjugate
fields. The existence of “space-time” phase transitions in
glassy systems �28� was established through this approach.

We notice that the dynamic and physical properties, such
as sub-Poissonian photon statistic, photon-antibunching,
spectrum peaks �Mollow triplet�, squeezed noise, bistability,
etc., that can be found in quantum optical systems are very
well known �5,6�. The breakthrough introduced in Ref. �22�
is not directly related with those phenomena. The main idea
was to apply the LD formalism to the measurement trajecto-
ries of simple open quantum systems, such as �two� three-
level fluorescent systems and a micromaser. The extra physi-
cal aspect that can be analyzed with the LD approach is the
asymptotic �long time� statistical properties of the measure-
ment trajectories, such as for example the statistic of the
number of detected photons in the case of fluorescent sys-
tems or the number of atoms leaving the cavity in a given
state for the micromaser. The LD approach, by going beyond
the central limit theorem �23�, allows to describe the
asymptotic regime with a set of functions that in a statistical
mechanics interpretation play the role of entropy and free
energy. By modifying the system parameters and a conjugate
dimensionless �dynamical� order parameter, properties such
as scale invariance points, crossover between distinct dy-
namical phases, and an actual first-order phase transition
were found in the thermodynamic approach �22�. As these
properties are related with physical observables defined from
the ensemble of measurement trajectories they should be de-
tectable in experiments.

PHYSICAL REVIEW E 82, 061106 �2010�

1539-3755/2010/82�6�/061106�11� ©2010 The American Physical Society061106-1

http://dx.doi.org/10.1103/PhysRevLett.104.160601
http://dx.doi.org/10.1103/PhysRevLett.104.160601
http://dx.doi.org/10.1103/PhysRevE.82.061106


The main goal of this paper is to extend the analysis of
Ref. �22� to the case of fluorescent systems coupled to com-
plex self-fluctuating reservoirs. The system-bath dynamics is
described through a density matrix formalism �19,20�. Our
interest is to characterize the thermodynamic formalism as-
sociated to the photon counting probabilities as a function of
the statistical properties of the environment fluctuations. We
show that in a fast modulation limit, i.e., when the charac-
teristic time of the bath fluctuations is the minor time scale of
the problem, the thermodynamic frame reduces to that of a
Markovian fluorescent two-level system. A scale invariance
point is recovered for a special set of system parameter val-
ues. On the other hand, in a slow modulation limit the ther-
modynamical properties of the measurement trajectories are
equivalent to those of finite systems that in an infinite-size
limit develop a first-order phase transition �29–32�. Here, the
phases are related with different intensity regimes of the
scattered radiation, while the �thermodynamic� size of the
system is associated to the characteristic rate of the bath
fluctuations. The finite-size effects are similar to those found
in the Ising or q-state Potts models �31,32�. These properties
are shown through the thermodynamical response functions,
i.e., the first and second derivatives of the thermodynamic
potential with respect to an intensive parameter.

The paper is outlined as follows. In Sec. II, based on the
theoretical results established in Ref. �22�, we define the
thermodynamic approach for an arbitrary counting process.
In Sec. III we define the density matrix evolution and photon
counting statistics of the system of interest, i.e., a fluorescent
�two-level� system driven by classical fluctuations. In Sec.
IV we analyze the thermodynamic approach in the limit of
fast environment fluctuations, while the case of slow fluctua-
tions is developed in Sec. V. The conclusions are presented
in Sec. VI.

II. THERMODYNAMICS OF COUNTING PROCESSES

Here, we define the thermodynamic formalism �22� for an
arbitrary counting process �7�. In the next section, it is build
up from the photon statistics of a fluorescent system driven
by classical fluctuations.

A counting process is defined by a set of trajectories, each
one consisting in a series of consecutive events occurring at
random times �7�. It can be statistically characterized by a set
of probabilities �Pn�t��n=0

� , satisfying 0� Pn�t��1, and the
normalization

�
n=0

�

Pn�t� = 1. �1�

Each Pn�t� is the probability of occurrence of n-events up to
time t. From these objects, we introduce an associated sto-
chastic process defined by the probabilities

qn�t� �
1

Zt�s�
Pn�t�e−sn, �2�

where s is a real parameter. Consistently with the condition
�n=0

� qn�t�=1, the function Zt�s� is defined by

Zt�s� � �
n=0

�

Pn�t�e−sn. �3�

Hence, Zt�s� is the generating function �7� of the original
counting process,

Zt�s� = 		exp�− snst�t��

�P�. �4�

Here, nst�t� is the �stochastic� number of events up to time t
in a given realization while 		¯ 

�P� denotes an average over
the realizations associated to the set �Pn�t��n=0

� .
From the transformation �2�, one can deduce that unlikely

events of the counting process �Pn�t��n=0
� becomes typical

events in the s-ensemble �23�, i.e., in the set of realizations
defined by the probabilities �qn�t��n=0

� . At each time t, the rare
events has associated a thermodynamiclike structure. The
consistency of this affirmation becomes evident after intro-
ducing the corresponding statistical objects. A thermody-
namic entropy function St can be defined as the Shannon
entropy of the s-ensemble,

St � − �
n=0

�

qn�t�log�qn�t�� . �5�

By reading the function Zt�s� as a partition function �21�, we
define a “free energy function” or “grand �thermodynamic�
potential” as

�t � − log�Zt�s�� . �6�

A “internal energy” is defined as

		E

t � − �
n=0

�

qn�t�log�Pn�t�� , �7�

while the “average particle number” reads

		N

t � �
n=0

�

qn�t�n . �8�

Then, it is straightforward to relate the previous objects
through the thermodynamic relation

�t = 		E

t − St + s		N

t. �9�

In fact, in units of energy where kT=1, k denoting the Bolt-
zmann constant and T temperature, and defining a �dimen-
sionless� “chemical potential” ��−s, the previous relation
arises in the description of thermodynamical �equilibrium�
processes carried out in open systems that can exchange both
heat and matter with their surroundings �21�. Therefore, both
the energy and particle number can fluctuate. Consistently
with a statistical derivation based on maximizing entropy,
		E

t and 		N

t can be read as the constraints on the average
energy and particle number respectively. Here, the average,
denoted as 		¯ 

t, is defined by the set of probabilities
�qn�t��n=0

� .
The thermodynamic interpretation allows us to write the

average number �extensive variable� as the derivative of the
�pseudo� grand potential �t with respect to the �pseudo�
chemical potential s �21� �intensive variable�,
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		N

t =
�

�s
�t, �10�

while the average of the centered quadratic fluctuations fol-
lows from the second derivative,

		�N2

t � 		N2

t − 		N

t
2 = −

�2

�s2�t. �11�

These �two� thermodynamic relations can alternatively be
derived by writing 		N

t and 		�N2

t as the average and
variance of the number of events up to time t associated to
the set of probabilities �qn�t��n=0

� .
The thermodynamic frame �Eq. �9�� is parametrized by

the time t. In a long time regime, for ergodic processes, it is
expected that all averaged quantities �strictly, all cumulants�
become proportional to the evaluation time t. Hence, the nor-
malized asymptotic average values

		 ¯ 

 � lim
t→�

1

t
		 ¯ 

t, �12�

become time independent. In this regime, the partition func-
tion acquires a LD form �22�

lim
t→�

Zt�s� � exp�− t��s�� . �13�

Then, the previous relations �Eqs. �10� and �11�� maintain
their validity after replacing �t→��s� and 		¯ 

t→ 		¯ 

.
Notice that ��s� and all normalized average values 		¯ 


have units of �1/time�.

The pseudo-thermodynamic structure defined previously
is associated to the probabilities �2�. The LD formalism al-
lows to relate it with an observable property of the original
counting process, i.e., with the long time behavior of the
probabilities �Pn�t��n=0

� . Consistently with Eq. �13�, their
asymptotic structure is written as limt→� Pn�t�
�exp�−t�� n

t ��. Taking into account that the LD function
��N� �N=n / t� also defines the asymptotic behavior of the
internal energy �Eq. �7�� and entropy �Eq. �5��, it can be
related to the grand potential through a Legendre-Fenchel
transformation �22,23�, ��N�=maxs���s�−sN�, which in
turn guarantees that ��s� has convexity properties consistent
with the thermodynamical interpretation.

From the previous relations, it becomes evident that the
thermodynamical potential ��s� provide an alternative and
complete characterization of the asymptotic properties of the
set �Pn�t��n=0

� . In consequence, possible phase transitions
happening in the thermodynamic frame must to be related to
strong modifications in the statistical properties of the origi-
nal counting process. These relations and its associated the-
oretical frame provide an alternative and novel approach for
analyzing measurement trajectories of single open quantum
systems subjected to a continuous measurement process �22�.

III. FLUORESCENT SYSTEMS DRIVEN BY CLASSICAL
FLUCTUATIONS

In many nanoscopic optical systems, such as those ana-
lyzed in the context of single-molecule spectroscopy �9–11�,

the randomness of the photon emission process arises from
both the interaction with the background electromagnetic
field and intrinsic environment fluctuations. This last effect
can be modeled by a set of noises that modify �modulate� the
parameters of the system evolution �12–16�. As demon-
strated in Refs. �19,20�, the noises modeling can be reformu-
lated through a density matrix formalism. Here, we present a
short derivation of both the underlying density matrix evolu-
tion and the photon counting statistics.

The environment is defined by a set of �configurational�
macrostates, each one leading to a different system dynam-
ics. The transitions between the bath states are described by
a classical rate equation �7�.

dPR�t�
dt

= �
R�

�RR�PR��t� − �
R�

�R�RPR�t� , �14�

where PR�t� is the probability of finding the environment in a
given state R=1, ¯Rmax, at time t. The set ��RR�� define the
hopping rates. The system density matrix 	�t� is described by
a set of auxiliary states �	R�t��, each one representing the
system dynamic for each bath state. Then, by writing

	�t� = �
R

	R�t� , �15�

and demanding the condition

Tr�	R�t�� = PR�t� , �16�

where Tr�¯ � denotes a trace operation in the system Hilbert
space, we introduce the evolution �19�

d	R�t�
dt

=
− i



�HR,	R�t�� + �RL�	R�t��

+ �
R�

�RR�	R��t� − �
R�

�R�R	R�t� . �17�

The last line of this equation introduces a coupling between
the auxiliary states and takes into account the environment
fluctuations. The constant �R define the natural decay of the
system associated to each R-bath state. Consistently, the
Lindblad superoperator L� • � reads �1�

L� • � = −
1

2
��†�, •�+ + � • �†, �18�

where �¯ �+ denotes an anticommutation operation. The op-
erator ���†� is the lowering �raising� operator between the
system eigenstates. It is modeled through a two-level optical
transition with eigenstates �� 
�. Then, �= �−
	+� and
�†= �+
	−�.

In the first line of Eq. �17�, HR is the system Hamiltonian
associated to each bath state. It reads �19,20�

HR =

�R

2
�z +


�R

2
��†e−i�Lt + �e+i�Lt� , �19�

where �z is the z-Pauli matrix in the basis �� 
�, and �R
=�0+��R. Therefore, �0 defines the bare transition fre-
quency of the system, while ��R are the spectral shifts in-
duced by the interaction with the bath. The second contribu-
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tion takes into account the interaction with the external laser
field. �R is the effective Rabi frequency associated to each
reservoir state, while �L is the frequency of the external laser
excitation.

The sum structure Eq. �15�, added to the local character of
the evolution �17�, imply the presence of strong non-
Markovian effects in the system dynamics �19�. On the other
hand, Eq. �17� does not take into account light assisted pro-
cesses. While these phenomena appear in real experimental
situations �9–11�, most of the results developed in the next
sections can be easily extended to include such kind of ef-
fects �19,20�.

Photon-counting statistics

The photon detection statistics can be obtained by ex-
pressing the system density matrix �Eq. �15�� as

	�t� = �
n=0

�

	�n��t� . �20�

Each state 	�n��t� corresponds to the system state conditioned
to n-photons detection events �2,3�. The probability of count-
ing n-photons up to time t reads

Pn�t� = Tr�	�n��t�� . �21�

This set of probabilities can be obtained through a generating
function approach �7�. Due to the quantum nature of the
system, a “generating operator” is introduced

G�t,s� � �
n=0

�

e−sn	�n��t� , �22�

where the extra real parameter s plays the same role as in Eq.
�2�. The partition function Eq. �3� follow as

Zt�s� = Tr�G�t,s�� . �23�

From the equality 	�t�=G�t ,s� �s=0, the condition Zt�s� �s=0=1
is consistently satisfied.

The conditional states 	�n��t� can be decomposed into the
contributions associated to each configurational state of the
reservoir, leading to the expression

G�t,s� = �
n=0

�

e−sn�
R

	R
�n��t� � �

R

GR�t,s� . �24�

Each matrix 	R
�n��t� defines the state of the system under the

condition that at time t n-photon detection events happened,
and the environment is in the configurational state R. Con-
sistently, each contribution GR�t ,s� defines the �conditional�
generating operator “given” that the reservoir is in the
R-state. Its evolution reads �19�

dGR�t,s�
dt

=
− i



�HR,GR�t,s�� + �RLs�GR�t,s��

+ �
R�

�RR�GR��t,s� − �
R�

�R�RGR�t,s� , �25�

where the superoperator Ls is given by

Ls� • � = −
1

2
��†�, •�+ + e−s� • �†. �26�

The evolution �25� can be solved in a Laplace domain. From
Eq. �24�, the partition function �Eq. �23�� can always be writ-
ten as a quotient of two polynomial functions, Zu�s�
= f�u� /g�u�, where u is the Laplace variable. Then, by using
the residues theorem, the grand potential ��s� �Eq. �13��
follows from the larger root of the equation g�u�=0. This
property allows us to get all objects characterizing the
s-ensemble. In the following section we study its associated
statistic in a fast and slow modulation limits.

In Ref. �22� it was demonstrated that it is always possible
to find a density matrix 	̃�t� whose associated measurement
statistics is given by the probabilities qn�t�, Eq. �2�. In the
present context, one can affirm that the s-ensemble statistics
can be recovered from a set of auxiliary states �	̃R�t��R=1

Rmax

defined as

	̃R�t� =
lR
1/2	R�t�lR

1/2

�
R

Tr�lR	R�t��
, �27�

where the set of operators �lR� is the left “eigenoperator” of
the evolution �25�.

IV. FAST MODULATION LIMIT

The thermodynamic frame associated to Eq. �23� in gen-
eral cannot be characterized in an analytical way. Neverthe-
less, in the limit of fast and slow environment fluctuations
the problem becomes analytically treatable.

For the original ensemble of trajectories �Eq. �21��, the
fast modulation limit refers to the case in which the environ-
ment transitions are much faster than the photon emission
process. From Eq. �17�, this condition can explicitly be writ-
ten as

��RR�� � �IR� . �28�

The constant IR is the intensity associated to the R-bath state
�diagonal contribution in Eq. �17��, i.e., the intensity of a
Markovian two-level system with natural decay �R, Rabi fre-
quency �R, and detuning �R �19,20�,

IR =
�R�2

�R
2 + 2�2 + 4�R

2 , �29�

where �R��L−�R. Both, �L and �R are defined from Eq.
�19�. The inequality �28� implies that the average time be-
tween two consecutive photon emissions is much larger than
the characteristic time of the bath fluctuations. Under this
condition, the fluorescent system can be approximated by a
Markovian system whose evolution is defined by the average
parameters �16,19�

� = �
R

PR
��R, � = �

R

PR
��R, � = �

R

PR
��R. �30�

The weights �PR
�� are the stationary solution of Eq. �14�,
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PR
� � lim

t→�
PR�t� . �31�

Therefore, the generating operator �Eq. �24�� can be approxi-
mated as

G�t,s�  GM�t,s� , �32�

where GM�t ,s� is defined by the Markovian evolution

dGM�t,s�
dt

= −
i



�H,GM�t,s�� + �Ls�GM�t,s�� . �33�

Here, Ls� • � follows from Eq. �26� while H can be read from
Eq. �19� after replacing �R→� and �R→�. The subindex
M indicates the underlying Markovian approximation.

From Eqs. �13� and �23�, it is possible to associate a ther-
modynamic potential �M�s� to the operator GM�t ,s�. Its ther-
modynamics cumulants are

		N

M =
��M�s�

�s
, 		�N2

M = −

�2�M�s�
�s2 . �34�

The analytical expression for �M�s� that can be obtained
from Eq. �33� correspond to the larger root of a fourth degree
polynomial. When the external laser excitation is in reso-
nance with the �Markovian� system, i.e., �L=�, the polyno-
mial is of third order. Thus, the expression for �M�s� be-
comes much more simple. Under the previous condition,
from Eqs. �13� and �23�, we get

�M�s� =
�

2
−

1

6
f�s� +

4�2 − �2

2f�s�
. �35�

The auxiliary function f�s�, after introducing the “fugacity”
z�exp�−s� �21�, reads

f�s� = �54z��2 + ��54z��2�2 + 27�4�2 − �2�3�1/3.

�36�

Notice that when �=2� it follows �M =��1−e−s/3�, which
recovers the result presented in Ref. �22�. It is characterized
by the scale invariant property 		�N2

M / 		N

M =1 /3, i.e.,
the normalized fluctuations do not depend on s.

In Fig. 1, we characterize the thermodynamic frame asso-
ciated to Eqs. �17� and �25� in the fast modulation limit. We
assume a two-dimensional configurational space, i.e., the
bath is characterized by only two states, R=A ,B. We take
�R=�0 and �R=�, i.e., the spectral shifts are null and the
system-laser interaction is independent of the bath states.
Hence, the reservoir only affects the natural decay of the
system, ��R�. Furthermore, the laser excitation is assumed to
be in resonance with the system, �L=�0. Under these con-
ditions, we can approximate the grand potential as ��s�
��M�s� �Eqs. �35��.

In Fig. 1�a� we plot the average number 		N

. In the inset,
we show the corresponding grand thermodynamic potential,
which is obtained as the larger root of an eighth order poly-
nomial function. For the chosen parameter values, the fast
modulation limit is achieved for all values of s. In fact, in
both cases the curves are indistinguishable from the analyti-
cal expressions Eqs. �35� and �34�. The average rate �Eq.
�30�� is indicated in the plots. Notice that for the upper �blue

filled squares� curve � /��2, while for the lower �red filled
circles� curve � /��2. Each value corresponds respectively
to an overdamped �2�� /���� and underdamped
�0�� /��2� regimes of the Markovian dynamics, Eq. �33�.

In Fig. 1�b� we plot the normalized fluctuations
		�N2

 / 		N

. This function is almost indistinguishable from
the fitting that follows from Eqs. �35� and �34�. In the limit
s→+�, asymptotically all curves converge to 1. This prop-
erty is fulfilled by a Poisson process �7�. In the limit s→
−�, all curves converge to 1/3, i.e., the value of the scale
invariant regime �22�. In the curves associated to the red
filled circles and blue filled squares the parameters are the
same than in Fig. 1�a�. On the other hand, the extra curves
associated to the red empty circles and blue empty squares
correspond to a different set of parameter values that also are
in the underdamped and overdamped regimes, respectively.
From these curves we deduce that, in both regimes, when
� /�→2 the transition between 1/3 and 1 occurs for higher
values of the chemical potential, s→+�. Furthermore, we
checked that when � /�=2 a scale invariance property �22�
is recovered, 		�N2

 / 		N

=1 /3. The validity of this behav-
ior occurs for increasing values of the rates �RR�.

FIG. 1. �Color online� �a� Average number value 		N

 as a
function of the chemical potential s in the fast modulation limit. The
inset show the respective grand potential ��s�. �b� Plot of the nor-
malized fluctuations 		�N2

 / 		N

. All curves are almost indistin-
guishable with the fitting defined by Eqs. �34� and �35�. The param-
eters of the Hamiltonian dynamics are �R=�0 and �R=�, while
for the irreversible one read �A /�=2, �B /�=3 �blue filled
squares�, and �A /�=0.3, �B /�=0.7 �red filled circles�. In �b�, the
parameters of the extra curves are �A /�=2.5, �B /�=1.64 �blue
empty squares�, and �A /�=0.01, �B /�=0.03 �red empty circles�.
In all cases we take �AB /�=�BA /�=10. The average decay rate,
Eq. �30�, is written in each plot.
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V. SLOW MODULATION LIMIT

When ��RR��� �IR�, the system is able to emits a huge
quantity of photons before a bath transition occurs
�16,19,20�. Therefore, the photon emission process develops
a blinking property, i.e., the intensity randomly changes be-
tween the set of values �IR�. Each change in the intensity
regime can be associated to a bath configurational transition.
This limit is much more interesting than the previous one.
Signatures of a thermodynamical phase transition can be
found in this regime. First, we describe the emission process
through a stochastic approximation. In a second step, we
characterize the thermodynamic associated to the
s-ensemble.

A. Stochastic approach

In the slow modulation limit, the realizations of the pho-
ton counting process �i.e., the realizations associated to the
probabilities �21�� can be approximated by the stochastic
process

nst�t� = �
R
�

0

t

d��RRst���
dnR

st���
d�

. �37�

As in Eq. �4�, nst�t� is the �stochastic� number of photon
detection events up to time t. On the other hand, Rst���
� �1, ¯Rmax� is a random process that indicates which is the
state of the reservoir at time �. Then, the contribution defined
by the discrete delta function �RRst��� does not vanish only
when Rst���=R, where it is equal to 1. Finally, nR

st��� is the
�stochastic� number of photon recording events up to time �
corresponding to a Markovian fluorescent system defined by
the decay rate �R, transition frequency �R, and Rabi fre-
quency �R, i.e., the parameters associated to each reservoir
state.

Consistently with the slow modulation limit, we can as-
sume that Rst��� and the set �nR

st���� are statistically indepen-
dent between all them. Hence, the average number follows
from Eq. �37� as

		nst�t�

�P� = �
R
�

0

t

d�	�RRst���

dnR

st���
d�

. �38�

With 	¯ 
 and the overbar �¯ � symbols we denote an aver-
age over the realizations of Rst�t� and nR

st�t�, respectively.
Trivially, one can write 	�RRst���
= PR���, where �PR�t�� are
the solution of Eq. �14�. After assuming that nR

st�0�=0 and
PR�0�= PR

� �Eq. �31��, we get

		nst�t�

�P� = �
R

PR
�nR

st�t� . �39�

Therefore, the average number 		nst�t�

�P� can be written as
a linear combination of the averages �nR

st�t��, each one being
weighted by the stationary configurational populations �PR

��.
Taking into account that nR

st�t�= IRt, the normalized
asymptotic average value 		�nst

�P�
� limt→��1 / t�		�nst�t�

�P�, trivially reads

		nst

�P� = �
R

PR
�IR. �40�

The second cumulant, defined by

		�nst
2 �t�

�P� � 		nst

2 �t�

�P� − 		nst�t�

�P�
2 , �41�

can be obtained in a similar way. First, from Eq. �37� we
write the second moment as

		nst
2 �t�

�P� = 2�

RR�
�

0

t

d��
0

�

d��	�RRst����R�Rst����


�
d

d�

d

d��
�nR

st���nR�
st ����� . �42�

The average appearing in the first line can be written as

	�RRst����R�Rst����
 = P�R,�;R�,��� , �43a�

=P�R,��R�,���PR����� , �43b�

=P�R,��R�,���PR�
� . �43c�

By definition, P�R ,� ;R� ,��� is the joint probability for ob-
serving successively the bath in the states R� and R at times
�� and �, respectively ������. By using the Markov property
of the underlying bath fluctuations it can be expressed in
terms of the conditional probability P�R ,� �R� ,��� �7�. As
before, for simplifying the analysis, in the third line of the
previous equation we assumed that the bath fluctuations be-
gin in their stationary state.

The second line of Eq. �42� define the correlation of the
counting processes �nR

st����. Due to the statistical indepen-
dence of these objects, when R�R� it follows nR

st���nR�
st ����

=nR
st���nR�

st ����= IRIR����. After some manipulation, the sec-
ond cumulant �Eq. �41�� reads

		�nst
2 �t�

�P� = 2�

R
�

0

t

d��
0

�

d��
d

d�

d

d��
�nR

2��,���

� P�R,��R,���PR
� + 2�

RR�

IRIR�fRR��t� ,

�44�

where we have introduced the matrix of functions

fRR��t� = �
0

t

d��
0

�

d���P�R,��R�,��� − PR
��PR�

� , �45�

and the diagonal correlation �R
st�� ,���=nR

st���nR
st����

−nR
st���nR

st����. The correlation time of this object is much
smaller than the bath transition time. Hence, we can approxi-
mate
�d /d����nR

st�� ,�������−����nR
st�� ,��=���−����nR

st���,
where

�nR
2��� = nR

st���nR
st��� − nR

st���nR
st��� , �46�

is the second cumulant of each process nR
st���. From Eq. �44�

we get the final expression
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		�nst
2 �t�

�P� = �

R

PR
��nR

2�t� + 2�
RR�

IRIR�fRR��t� . �47�

We notice that in addition to the linear combination given by
the first contribution, 		�nst

2 �t�

�P� is also proportional to the
intensities �IR�. The normalized cumulant 		�nst

2 


=limt→��1 / t�		�nst

2 �t�

 reads

		�nst
2 

�P� = �

R

PR
��nR

2 + 2�
RR�

IRIR�fRR�. �48�

The matrix fRR� is given by

fRR� � lim
t→�

1

t
fRR��t� , �49�

the intensities �IR� follows from Eq. �29� and

�nR
2 = IR�1 −

�6�R
2 − 8�R

2��R
2

��R
2 + 2�R

2 + 4�R
2�2� , �50�

where as before �R=�L−�R. This expression, as well as that
for the set �IR�, satisfy the relations

IR =� ��M� �s�
�s

�
s=0,

, �nR
2 = −� �2�M� �s�

�s2 �
s=0,

, �51�

where �M� is the grand potential associated to Eq. �33� under
the replacements �→�R, �→�R, and �→�R.

For a two-dimensional configurational bath space,
R=A ,B, the constants �49� can easily be written as fRR�
= �2�RR�−1�PA

�PB
�. From Eq. �48�, we get

		�nst
2 

�P� = �

R=A,B
PR

��nR
2 + 2

PA
�PB

��IA − IB�2

��AB + �BA�
, �52�

where PA
�=�AB / ��AB+�BA� and PB

�=�BA / ��AB+�BA�. We
notice that these expressions recover the results obtained in
Ref. �16� through a different approach.

B. Extension to the thermodynamic approach

The previous stochastic approach describes the
s-ensemble in s=0, i.e., in a slow modulation limit it can fit
the statistical behavior dictated by the probabilities �Pn�t��
�Eq. �21�� or equivalently the states �	R�t�� �Eq. �15��. For
s�0, it does not apply. In this case, the relevant objects are
the probabilities �qn�t�� �Eq. �2�� and the states �	̃R�t�� �Eq.
�27��. In the following calculations, we assume that the slow
modulation limit and the stochastic approach can also be
applied for any value of the pseudo chemical potential s. The
consistency of this ansatz relies on the results that can be
obtained from it.

By noting that 		nst

�P�= 		N

 �s=0, from Eq. �40�, we
write the first s-dependent cumulant as

		N

  �
R

P̃R
��s�		NR

 , �53�

where consistently 		NR

�		N

M� . Here, 		N

M� is defined
by Eq. �34� after replacing �→�R, �→�R, and �→�R. On
the other hand, here the weights are

P̃R
��s� � lim

t→�
Tr�	̃R�t�� , �54�

where 	̃R�t� is defined by Eq. �27�.
Taking into account that 		�nst

2 

�P�= 		�N2

 �s=0, from Eq.
�47� we propose the expression

		�N2

  �
R

P̃R
��s�		�NR

2

 + 2�
RR�

		NR

		NR�

 f̃RR��s� ,

�55�

where 		�NR
2

�		�N2

M� also follows from Eq. �34� after

replacing �→�R, �→�R, and �→�R.
The expressions �53� and �55� depend on the stationary

populations �54� and the generalized matrix f̃RR��s�. Its defi-
nition can read from Eq. �49� after introducing in Eq. �45�
the s-dependence of the bath populations �PR→ P̃R�s��. The
exact expressions for these objects for arbitrary bath spaces
�Eq. �14�� are very complicated and do not provide an intui-
tive frame for understanding the thermodynamics of the
s-ensemble. Therefore, from now on we restrict to a two-
dimensional reservoir, R=A ,B. From Eq. �52� we write

		�N2

  �
R=A,B

P̃R
��s�		�NR

2

 + 2
P̃A

��s�P̃B
��s�

�̃�s�

� �		NA

 − 		NB

�2, �56�

where �̃�s�= �̃AB�s�+ �̃BA�s�.
Equations �53� and �56� only depends on the stationary

populations �P̃R
��s�� and the generalized rate �̃�s�. These

functions can be approximated in the following way. Consis-
tently with an equilibrium thermodynamic approach, the
populations are expressed as

P̃A
��s� 

e−��A+�A�s��

Z�s�
, P̃B

��s� 
e−��B+�B�s��

Z�s�
, �57�

where �R+�R�s� is the “energy” associated to each R-bath
state. This splitting is defined such that �R�0�=0. On the
other hand, the function Z�s� guarantees the normalization

P̃A
��s�+ P̃B

��s�=1. Then, we can rewrite

P̃A
��s� 

1

2
�1 − tanh��0 + ��s��� , �58a�

P̃B
��s� 

1

2
�1 + tanh��0 + ��s��� , �58b�

where �0= ��A−�B� /2, and ��s�= ��A�s�−�B�s�� /2. In s=0,

these expressions must to satisfy the condition P̃R
��0�= PR

�,
which imply the expression

�0 =
1

2
log�PB

�

PA
�� =

1

2
log��BA

�AB
� . �59�

On the other hand, the dependence of ��s� is assumed to be
linear in s, i.e., ��s�s��. The constant �� can be determine
from the relation between Eqs. �53� and �55� in s=0, i.e.,
�� /�s�		N

 �s=0=−		�N2

 �s=0. After some algebra, from Eq.
�56�, it follows
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��s�  s�� = s
IA − IB

�AB + �BA
. �60�

Both �0 and �� may assume positive and negative values.
The generalized rate �̃�s� �Eq. �56�� defines the character-

istic decay time of the s-dependent bath populations. It must
to satisfies the conditions �̃�s��0 and �̃�0�= ��AB+�BA�.
We assume the dependence

�̃�s�  �s�s − 2sp� + ��AB + �BA� , �61�

where sp is a dimensionless parameter while ��0, as well as
�̃�s�, has units of �1/time�. As a function of s, the rate �̃�s�
reaches its minimal value at s=sp. This constant is chosen as
the value of s at which the second contribution of Eq. �56�
reaches its maximal value. It can be approximated by the

value at which the function P̃A
��s�P̃B

��s�=1 / �2 cosh��0
+��s���2 is maximal. Hence, we take

sp = −
�0

��
=

��AB + �BA�
2�IA − IB�

log�PA
�

PB
�� . �62�

Finally, the coefficient � can be determine from the condi-
tion �� /�s�		�N2

 �s=0=−		�N3

 �s=0. Alternatively, due to its
large size expression, it can be considered as a free fitting
parameter.

The s-extension of the stochastic approach allows us to
get closed expressions �Eqs. �53� and �56�� for approximat-
ing the thermodynamic approach in the slow modulation
limit. In Fig. 2 we plot the average number and the normal-
ized fluctuations obtained from Eqs. �13�, �23�, and �25�. As
in the previous section, the configurational bath space is two-
dimensional, R=A ,B. It only affects the natural decay of the
system, ��R�. Hence, we take �R=�0, �R=�, and �L=�0,
i.e., the spectral shifts are null, the system-laser interaction is
independent of the bath states, and the laser excitation is in
resonance with the system.

In Fig. 2�a� we plot 		N

 as a function of s. The full
�black� curve is the �exact� numerical solution obtained from
Eqs. �13�, �23�, and �25�. The grand potential ��s� follows
from the larger root of an eighth order polynomial function.
The dotted �black� curves �indistinguishable� correspond to
the fitting arising from the stochastic approach, Eq. �53�. In
the scale of the plot, we note that the average number can be
approximated as

		N

 � �		NA

 for s � 0

		NB

 for s � 0
�, �IA � IB� . �63�

The superposed blue squares and red circles curves corre-
spond to 		NA

 and 		NB

, respectively. These contributions
follow as the first derivative with respect to s of the grand
potential �M�s�, Eq. �35�, under the replacement �→�R. The
�crude� approximation �63� implies that �see Eq. �53��
P̃A

��s����−s� and P̃B
��s����s�, where ��s� is the step func-

tion ���s�=0 for s�0 and ��s�=1 for s�0�. As the values of
the decay rates ��A /�=2.5,�B /�=0.5� correspond to the
average values of Fig. 1, the behavior of 		NA

 and 		NB


for any value of s can also be read from that plot.

Consistently with the approximation �63�, the behavior of
		N

 around s�0 seems to be discontinuous. We notice that
a similar behavior arises in thermodynamical first-order tran-
sitions. For example, if a transition is driven by temperature,
the discontinuity in the derivative of the thermodynamic po-
tential may corresponds to the difference of specific volume
of two coexisting phases �21�. Here, the “jump” in 		N

 is
�		NA

− 		NB

� �s=0= IA− IB. Hence, two thermodynamic
phases can be associated to the intensity regimes defined by
		NA

 and 		NB

.

While the average 		N

 seems to be a discontinuous func-
tion on a large s-scale, around the origin it is a continuous
function of s. This property is shown in the inset of Fig. 2�a�.
Even at those small scales, the stochastic approach, Eq. �53�,
provides an indistinguishable fitting �black dotted curve�. In
thermodynamical systems, finite-size effects produce a simi-
lar smoothing of the free energy derivative �29–32�. In the
present case, this relation is established in the following sec-
tion.

In Fig. 2�b� we plot the normalized fluctuations
		�N2

 / 		N

 as a function of s. Consistently with the rough
approximation �63�, on larger s-scales we expect the validity
of the approximation

FIG. 2. �Color online� Average number value 		N

 and normal-
ized fluctuations 		�N2

 / 		N

 as a function of s in the slow modu-
lation limit. The insets show the behaviors around s�0. The full
�black� curves correspond to the numerical solutions associated to
Eqs. �13�, �23�, and �25�. The dotted �black� curves are the fitting
obtained from the stochastic approach, Eqs. �53� and �56�. In �a� the
blue squares and red circles correspond respectively to 		NA

 and
		NB

 determined from Eqs. �34� and �35�. In �b� the blue squares
and red circles correspond to 		�NA

2

 / 		N

 and 		�NB
2

 / 		N

. The

parameters are �R=�0, �R=�, �L=�0, �A /�=2.5, �B /�=0.5,
�AB /�=4�10−4, �BA /�=8�10−4, and � /�=2.15.
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		�N2

 � �		�NA
2

 for s � 0

		�NB
2

 for s � 0

�, �IA � IB� , �64�

where 		�NR
2

 follows from Eqs. �34� and �35�. The super-

posed blue squares and red circles curves correspond to this
approximation. While they provide a very good fitting for
�s��0, around the origin the fluctuations develops a narrow
and abrupt peak �see the inset�. The stochastic approach
�black dotted line� also fits this property.

The background behavior and the peak in 		�N2

 can be
read from Eq. �56�. In fact, the crude approximation �64� is

indistinguishable from the contribution �R=A,BP̃R
��s�		�NR

2

.
On the other hand, the narrow peak is fitted by the contribu-
tion proportional to the product of the stationary populations

P̃A
��s�P̃B

��s�=1 / �2 cosh��0+��s���2. Therefore, the maximal
value of the peak occurs at s=sp, Eq. �62�, i.e., the value of

s at which P̃A
��s�= P̃B

��s�=1 /2. The inset of Fig. 2�b� con-
firms this prediction. Furthermore, from Eq. �56� the value of
		�N2

 at sp can be approximated as

		�N2

�s=sp
�

1

2 �
R=A,B

�nR
2 +

�IA − IB�2

2��AB + �BA�
, �65�

�		N

 �s=sp
��IA+ IB� /2�, while the width of the peak, �p, can

be estimated as

�p � 2
��AB + �BA�

�IA − IB�
. �66�

Taking different values of the parameters of the evolution
�25�, we have checked that in the slow modulation limit the
position, height and width of the peak obey the scaling de-
fined by Eqs. �62�, �65�, and �66�, respectively. From these
expressions, one can deduce that in the limit ��AB+�BA�
→0, the peak becomes proportional to a delta Dirac func-
tion. Therefore, asymptotically a first-order transition hap-
pens. The thermodynamic response functions, for all values
of s, are given by Eqs. �63� and �64�, i.e., the grand potential
is ��s�=�A�s� for s�0, ��s�=�B�s� for s�0, with ��0�
=0.

C. Finite-size effects and double-Gaussian approximation

Finite-size effects in first-order transitions �29,30� has
been analyzed for systems such as the Ising �31� and q-state
Pott models �32�. While in these systems the transition is
driven by a magnetic field or temperature, the thermody-
namic functions have similar behaviors to those shown in
Fig. 2. The scaling of the peak in the second derivative of the
thermodynamic potential �32� is similar to those of Eqs. �62�,
�65�, and �66�.

From a theoretical point of view, finite-size effects at first-
order transitions can be characterized over the basis of �equi-
librium� Einstein fluctuation theory �21�, which provides the
probability distribution of the thermodynamic variable fluc-
tuations. For example, for an open �thermal� system, the
probability distribution P�N� of the particle number is a

Gaussian distribution P�N�= �2�kT�� /���N̄�−1/2exp�−�N
− N̄�2 /2kT�� /���N̄�, where T is the temperature, N̄ is the

average particle number and � is the chemical potential.
In the present approach, the transition is driven by the

pseudochemical potential s and the size of the system must
to be inversely proportional to the rate of the bath fluctua-
tions. Consistently with the Einstein fluctuation theory, we
search for a probability distribution P�N�, with �−�

+�P�N�dN
=1, such that the average number can be obtained as

		N

 = �
−�

+�

P�N�NdN , �67�

while the second cumulant follows from

		�N2

 =
1

��s��−�

+�

P�N��N − 		N

�2dN . �68�

Here, the inverse of ��s� measures the “size” of the system
�32�. In an infinite-size limit, P�N� must be a Gaussian dis-
tribution �21�. Nevertheless, when finite-size effects are con-
sidered in a first-order transition, one must to consider a
superposition of Gaussian distributions, each one represent-
ing the coexisting phases �32�. In fact, the different phases
are randomly explored by the system when its size is finite
�32�. This effect is similar to the blinking property of the
slow modulation limit �19,20�.

In our problem, the coexistent phases correspond to the
different intensity regimes defined by 		NR

. Then

P�N� =
P̃A

��s�
�2�		�NA

2

��s�
exp�−

�N − 		NA

�2

2		�NA
2

��s��

+
P̃B

��s�
�2�		�NB

2

��s�
exp�−

�N − 		NB

�2

2		�NB
2

��s�� .

�69�

Here, 		NR

 and 		�NR
2

 follows from Eq. �34� while ��s�

= �̃�s� /2 �Eq. �61��. Furthermore, the weight of each Gauss-
ian distribution is expressed in terms of the thermodynamic
potential of each phase �32�. Therefore, the populations

P̃R
��s� are written as P̃R

��s�exp�−�R−�R�s� / �̃�s�� /Z�s�,
where Z�s� guarantees the normalization P̃A

��s�+ P̃B
��s�=1

�compare with Eq. �57�� and �R�s� is the grand potential of
each phase. For the example shown in Fig. 2, these functions
can be read from Eq. �35� under the replacement �→�R.

Trivially, the populations P̃R
��s� can be rewritten as in Eq.

�58� with �0 defined by Eq. �59� and

��s� �
�A�s� − �B�s�

�̃�s�
� s

IA − IB

��AB + �BA�
+ O�s2� . �70�

This result recovers Eq. �60� and proofs the consistency of
the previous results and scaling. In fact, the double-Gaussian
probability distribution �Eq. �69��, through Eqs. �67� and
�68�, recovers the expressions of the extended stochastic ap-
proach, Eqs. �53� and �56�, respectively.

In Fig. 3 we plot the distribution �69� for different values
of s. The parameters of the underlying evolution are the same
than in Fig. 2. Near of the transition, s�sp�0, the probabil-
ity distribution is a double-Gaussian one. Consistently, the
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higher peaks are centered around the values N� IA �s�0�
and N� IB �s�0�. For �s��sp, the distribution has only one
peak, which is centered around s�		NR

.

The double-Gaussian approximation, and consistently the
stochastic approach, can be extended beyond the slow modu-
lation limit. Nevertheless, parameters such as the position sp
and width �p of the peak must be taken as free parameters.
For example, a reasonable fitting is obtained after replacing
the polynomial function �61� with an hyperbolic one and
introducing a nonlinear function ��s�, both of them defined
with extra free parameters.

VI. SUMMARY AND CONCLUSIONS

The �nonequilibrium� ensemble of measurement realiza-
tions of an open quantum system can be analyzed with the
LD formalism. For fluorescent systems under a direct photon
detection scheme, this approach allows to describe the
asymptotic behavior of the photon counting probabilities
through a thermodynamiclike formalism �22�. In this paper
we have studied the thermodynamic approach associated to a
fluorescent system coupled to a complex self-fluctuating en-
vironment able to modify the characteristic parameters of the
system evolution.

The statistical mechanics underlying the thermodynamic
frame is defined by a set of auxiliary probabilities whose
characteristic events are the unlikely ones of the photon
counting realizations, Eq. �2�. A free energy function, Eq.
�9�, through a Legendre transformation, defines the long time
behavior of the photon counting probabilities. Here, its func-
tional form follows from the trace of a generating function
operator, Eq. �23�, whose evolution, Eq. �25�, takes into ac-
count the parameter fluctuations induced by the environment.

In a fast modulation limit, i.e., when the characteristic
time of the environment fluctuations is much smaller than the
time between consecutive photon emissions, the thermody-
namic frame can be well approximated with that correspond-
ing to a Markovian fluorescent system. Its evolution is de-
fined by a set of parameters that follows from an average
weighted by the stationary populations of each bath state, Eq.
�30�. When the bath only affects the natural decay of the

system and the external laser excitation is in resonance with
the system, the thermodynamic potential can be approxi-
mated by a simple analytical expression, Eq. �35�. In this
limit, the response functions do not display any property re-
lated to a phase transition. Nevertheless, the normalized fluc-
tuations always interpolate between a scale invariant regime
and a Poissonian one �Fig. 1�.

In the slow modulation limit, the fluorescent signal is
characterized by a blinking phenomenon. The scattered in-
tensity randomly changes between a set of values associated
to each bath state, Eq. �29�. The photon counting process can
be approximated by the product of two kind of statistically
independent stochastic variables, one related to the quantum
photon emission process and the other to the bath fluctua-
tions, Eq. �37�. In the thermodynamic frame, each intensity
regime can be read as a different thermodynamic phase. A
natural extension of the stochastic approach provides the ba-
sis for characterizing its statistical properties. After imposing
some consistency relations, the average number is written as
a linear combination of the values corresponding to each
phase, Eq. �53�. The fluctuations around the average number
can be approximated in a similar way, Eq. �56�.

The behavior of the average number and the centered
fluctuations is similar to that found in finite-size systems near
a first-order phase transition. This is the main result of this
contribution. Instead of a discontinuity in the first derivative
of the thermodynamic potential, an abrupt but continuous
change in its slope is observed. Furthermore, the second de-
rivative, instead of a delta Dirac contribution, displays a nar-
row peak �Fig. 2�. These effects are controlled by the size of
the system, which is proportional to the transition rate be-
tween the bath states. The location, height, and width of the
peak obey the scaling properties obtained from the stochastic
approach, i.e., Eqs. �62�, �65�, and �66�, respectively. The
finite-size effects can also be obtained from a generalization
of the Einstein’s fluctuations theory. The probability distribu-
tion of the fluctuations follows from a double-Gaussian dis-
tribution �Eq. �69��, each contribution being related to each
coexisting phase �Fig. 3�.

From our results, we conclude that whenever a �photon�
counting process has an underlying blinking property, the
thermodynamic approach is characterized by finite-size ef-
fects corresponding to a first-order transition. Therefore, the
studied phenomena, for example, must also appear when the
blinking properties depend on the external laser excitation,
i.e., for light assisted processes �19,20�. These and previous
results �22� confirm that diverse thermodynamical properties
of many body �equilibrium� systems are also present in the
statistical properties of �nonequilibrium� quantum measure-
ment trajectories. This mapping raise up fundamental physi-
cal questions such as the possibility of simulating complex
dynamics with simple open quantum systems subjected to a
continuous measurement process.
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FIG. 3. �Color online� Probability distribution �69� for different
values of s. The vertical dotted lines correspond to N /�= IA /�
=0.303, and N /�= IB /�=0.222. The parameters are the same than
in Fig. 2.
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