
Analysis of the exactness of mean-field theory in long-range interacting systems

Takashi Mori*
Department of Physics, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

and CREST, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
�Received 22 April 2010; revised manuscript received 27 September 2010; published 21 December 2010�

Relationships between general long-range interacting classical systems on a lattice and the corresponding
mean-field models �infinitely long-range interacting models� are investigated. We study systems in arbitrary
dimension d for periodic boundary conditions and focus on the free energy for fixed value of the total
magnetization. As a result, it is shown that the equilibrium free energy of the long-range interacting systems are
exactly the same as that of the corresponding mean-field models �exactness of the mean-field theory�. More-
over, the mean-field metastable states can be also preserved in general long-range interacting systems. It is
found that in the case that the magnetization is conserved, the mean-field theory does not give correct property
in some parameter region.
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Long-range interactions appear in several fields �1�: astro-
physics, plasmas, two-dimensional �2D� hydrodynamics, and
so on. Recently, it was reported that a model of spin-
crossover materials has an effective long-range interaction
among molecules due to the coupling to the local lattice
distortion �11�. It has been shown that statistical mechanics
of long-range interacting systems exhibits several peculiar
features: negative specific heat �2�, long-lived metastable
states �3�, and ensemble inequivalence �4�. As simplified
models to study these unfamiliar features, the so called
mean-field models �infinite-range interacting models� have
been often adopted. From the statistical mechanical point of
view, one expects that at least some qualitative features of
systems with slow decaying long-range interactions are cap-
tured by the analysis of corresponding mean-field models
�1�. Indeed, some evidence for the fact that the mean-field
model gives an exact description of equilibrium states �ex-
actness of the mean-field theory� in the models with
1 /r�-type long-range interaction �0���d, where d is the
spatial dimensionality� have been obtained by the studies of
specific models �5–8�. There is a conjecture that the equilib-
rium properties of long-range interacting spin systems are
exactly the same as those of the corresponding mean-field
models �5�. In this Rapid Communication, we address the
question whether exactness of the mean-field theory holds in
general.

We consider a lattice system. Each lattice site i has a
“spin” variable �i. In the Ising model, �i= �1, but we do not
restrict the variables ��i� to the Ising spins. They can also
take continuous or vector variables. For example,
�i= �cos � , sin ��, 0���2	 corresponds to the XY model
and �i=e� ��=1, . . . ,q� corresponds to the q-state Potts
model, where �e�� are unit vectors satisfying e� ·e
=��,
. We
investigate the system of the following type Hamiltonian:

H = −
J

2�
ij

K��ri − r j���i� j − H�
i

�i. �1�

Here, K��ri−r j�� is the interaction potential and J is the inter-
action strength. We consider the ferromagnetic case J�0.
The uniform magnetic field is denoted by H. We define the
distance �ri−r j� between the lattice points i and j as the short-
est distance of these lattice points in periodic boundary con-
ditions. We consider the following two types of long-range
interactions: the power-law interaction K�r�
1 /r�,
0���d, and the Kac interaction �9� K�r�
�d���r�. Here,
��x� is assumed to be non-negative ��x��0 and integrable
	ddx��x��+�. Moreover, we assume that there is a positive
and decreasing function ��x� such that ����x�����x� and
	ddx��x��+�. These assumptions are necessary to justify
the coarse-graining of the Hamiltonian �to be explained be-
low�. A typical example of the Kac interaction is the expo-
nential form, K�r�
�de−�r. In this case, ��x�=��x�=e−x.

We take the limit �→0 in the Kac interaction. We con-
sider the two limiting procedures: the van der Waals limit,
�→0 after L→� �10� and the long-range limit, �→0 with
�L=const. The former limit corresponds to the situation that
the interaction range �−1 is much longer than the microscopic
length scale �the lattice interval� but much shorter than the
system size L. The latter limit corresponds to the situation
that the interaction range is comparable with the system size.
These two limits lead to different kind of behavior.

Note that the thermodynamic limit does not exist for long-
range interactions in the usual sense. To restore the thermo-
dynamic limit, we adopt the Kac prescription �9�,
�ri�0K��ri��=1, where the interaction is normalized and de-
pends on the system size.

We focus on the free energy restricted to a fixed magne-
tization m,

exp�− 
F�m,T,H�� = �
��i�

�
 1

N
�

i

�i,m�e−
H, �2�

which corresponds to the Landau free energy, and we call
F�m ,T ,H� merely “free energy” hereafter. The parameter

=1 /T is the inverse temperature and we set the Boltzmann*mori@spin.phys.s.u-tokyo.ac.jp
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constant to unity. The symbol ��a ,b� is the Kronecker delta.
For conserved systems �i.e., systems whose magnetization is
fixed�, m is a fixed parameter and the term −Hm is just a
constant. Then, F�m ,T ,H� gives the equilibrium free energy.

In nonconserved systems �i.e., systems whose magnetiza-
tion is not fixed�, the equilibrium free energy is given by the
minimum value of F�m ,T ,H� with respect to m. Local but
not global minima are interpreted as metastable states. In
preceding works, exactness of the mean-field theory is inves-
tigated only for nonconserved systems �5–8�. The merit to
consider F�m ,T ,H� is that we can treat both conserved and
nonconserved systems. It should be noted that the ensemble
with fixed magnetization and that with fixed magnetic field
are essentially different in long-range interacting systems.
Moreover, it allows us to discuss metastable states as local
minimum points of the free energy.

In the long-range interacting systems, one expects that
only long wavelength modes play important roles for macro-
scopic behavior. In fact, it is possible to perform coarse-
graining exactly for long-range interacting models �6�. Let us
divide the lattice system into blocks of the linear dimension
l. The number of blocks is �L / l�d, where L denotes the sys-
tem size, and each block has ld sites. We introduce a local
coarse-grained variable mk as mk= 1

ld �i�Bk
�i in each block Bk,

k=1,2 , . . . , �L / l�d. We define the position xk=rk /L, where rk
is the central position of a block Bk. We also define
m�xk��mk. We take the limit L→�, l→� with l /L→0
�continuous limit�. In this limit, xk becomes a continuous
variable x. For long-range interacting models, in a proper
choice of l�L� as a function of the system size L such that
limL→� l�L� /L=0, the Hamiltonian is written only by m�x�
in the thermodynamic limit �6�: H=H̄�m�x��+o�N�, where

H̄�m�x�� = −
NJ

2



0

1

ddx

0

1

ddyU�x − y�m�x�m�y�

− NH

0

1

ddxm�x� . �3�

Here the interaction potential U�x� is given by

U�x� = lim
L→�

LdK�Lx� . �4�

The integration in Eq. �3� means 	a
bddx�	a

bdx1. . .	a
bdxd. The

fact that the Hamiltonian is written only by the coarse-
grained magnetization m�x� means that for a fixed system
size L �it is very large�, there is some length scale l�L� in
which the magnetization is uniform, though the whole sys-
tem may be inhomogeneous. For example, in the case of the
power-law interaction K�r��1 /r�, this length scale is given
by l�L��L1−�/d. While the size of a block l�L� is itself mac-
roscopic when L→�, the blocks are not independent each
other. It means that we cannot divide a macroscopic system
into two macroscopic subsystems without any macroscopic
change.

Performing the Fourier expansion in Eq. �3�, we obtain
the following expression:

H̄ = −
NJ

2 �
n

Un�m̂n�2 − NHm̂0, �5�

where m�x�=�nm̂ne2	in·x and Un=	0
1ddxU�x�cos�2	n ·x�

with n�Zd. Here, the Kac prescription implies that
U0=	0

1ddxU�x�=1. We call �Un� the interaction eigenvalues.
Dividing the Hamiltonian into two parts: the mode of n=0
and the others, we have

H̄ = 
−
NJ

2
m̂0

2 − NHm̂0� −
NJ

2 �
n�0

Un�m̂n�2. �6�

We call the first term of the above equation the mean-field
model corresponding to Eq. �1�.

The form of the coarse-grained potential U�x� is given by
U�x�=A /x� for the power-law interaction, U�x�=��x� for the
Kac interaction with the van der Waals limit, and
U�x�=B�0

d���0x� for the Kac interaction with the long-range
limit. The constants A and B are determined by the normal-
ization condition U0=1. Note that Un=1 for any n for the
Kac interaction with the van der Waals limit. It is known that
the free energy is given by the mean-field theory with the
Maxwell construction in the van der Waals limit �10�. There-
fore, the free energy does not depend on its detailed interac-
tion form in the van der Waals limit. On the other hand, for
the long-range limit or the power-law interaction, whose in-
teraction range is comparable with the system size, the free
energy does depend on the interaction form, as we see below.
The modes with 0�Un�1 play an important role.

Now, we evaluate the free energy F�m ,T ,H�. Since the
coarse graining can be exactly performed, the Hamiltonian

H can be replaced by H̄�m�x��. The summation of Eq. �2� is
divided into two parts, 	m̂0=mDm�x� and ���i�with fixed m�x�,
namely, the profile of m�x� and the configurations inside the
blocks. Note that the Hamiltonian depends only on m�x�.
Writing the number of states with the fixed magnetization m
by W=exp�S�m��, where S�m� is the entropy, we have
���i� with fixed m�x�1=exp�	0

1S(m�x�)ddx�. Therefore, we ob-
tain

e−
F�m,T,H� = 

m̂0=m

Dm�x�e−
F�m�x�,T,H�, �7�

where F�m�x� ,T ,H��H̄�m�x��−T	0
1S(m�x�)ddx is called

the free energy functional. By using the saddle-point method,
the free energy is given by the following minimization prob-
lem:

F�m,T,H� = min
�m�x��m̂0=m�

F�m�x�,T,H� . �8�

The free energy functional is the same as the mean-field
free energy FMF when m�x�=m, therefore, the upper bound
of the free energy is obtained, F�m ,T ,H��FMF�m ,T ,H�.
We also found that F�m ,T ,H��FMF�m ,T ,H� when
�2FMF�m ,T /Umax,H� /�m2�0, that is, F�m ,T ,H� does not
agree with FMF�m ,T ,H�. It is because the uniform magneti-
zation profile m�x�=m gives the local maximum value of the
free energy functional when �2FMF�m ,T /Umax,H� /�m2�0.

TAKASHI MORI PHYSICAL REVIEW E 82, 060103�R� �2010�

RAPID COMMUNICATIONS

060103-2



Here, Umax�1 is the largest interaction eigenvalue except
for U0=1.

Taking into account of the relations �n�0Un�m̂n�2
�Umax�n�0�m̂n�2 and 	0

1m�x�2ddx=m2+�n�0�m̂n�2, the free
energy functional is evaluated as

F�m�x�,T,H� � FMF�m,T,H� − Umax�FMF�m,Teff,H�

− 

0

1

ddxFMF„m�x�,Teff,H…� , �9�

where Teff�T /Umax. Here the following equality holds:

min
�m�x��m̂0=m�

�

0

1

ddxFMF„m�x�,Teff,H…� = FMF
**�m,Teff,H� ,

�10�

where FMF
** denotes the convex envelope of FMF. The con-

vex envelope of a function g�x� is defined as the maximum
convex function not exceeding g�x�. Thus, it is concluded
that F�m ,T ,H��FMF�m ,T ,H�−Umax�FMF�m ,Teff ,H�,
where we define �FMF�FMF−FMF

**. It gives the lower
bound of the free energy. Finally, we obtain

FMF�m,T,H� − Umax�FMF�m,T/Umax,H�

� F�m,T,H� � FMF�m,T,H� . �11�

Only the inequality Un�Umax is used to derive the lower
bound. In the Kac interaction with the van der Waals limit,
Un=1 for any n, and hence the lower bound in Eq. �11� is
realized and thus, F�m ,T ,H�=FMF

**�m ,T ,H�� holds. This
result is consistent with �10�.

According to Eq. �11�, the parameter region �m ,T ,H� is
classified into the following three regions:

Region A. the region where �FMF�m , T
Umax

,H�=0. In this
region, the mean-field model gives the exact free energy,
F�m ,T ,H�=FMF�m ,T ,H�.

Region B. the region where �FMF�m , T
Umax

,H��0 and
�2

�m2 FMF�m , T
Umax

,H��0. In this region, the uniform configu-
ration is locally stable but not necessarily globally stable and
F�m ,T ,H��FMF�m ,T ,H�.

Region C. the region where �2

�m2 FMF�m , T
Umax

,H��0. In this
region, the uniform configuration is unstable and the free
energy is not given by the mean-field free energy,
F�m ,T ,H��FMF�m ,T ,H�.

Notice that this classification is determined only by FMF
and Umax. We can calculate both FMF and Umax for specific
models. Hence, we can specify these three regions explicitly.
In Fig. 1, a typical example of the regions A, B, and C are
depicted. In the case Teff�TC�T where TC is the mean-field
critical temperature �Fig. 1�a��, FMF�m ,Teff ,H� is a convex
function, and thus the whole m is in the region A. On the
other hand, in the case TC�Teff�T �Fig. 1�b��, the region
where FMF�m ,Teff ,H� is concave exists, and it is the region
C. The region between A and C is the region B. In the region
A and a part of B, F�m ,T ,H�=FMF�m ,T ,H� holds. We call

this region “the MF region.” On the other hand, in the region
C and the other part of B, F�m ,T ,H��FMF�m ,T ,H�. This
region is “the non-MF region.”

In conserved systems, Feq�m ,T�=F�m ,T ,H=0� and the
equilibrium property of the long-range interacting system is
exactly the same as that of the corresponding mean-field
model in the MF region, but they are not the same in the
non-MF region. In the MF region, the magnetization is uni-
form �see Fig. 2�a��. In the non-MF region, inhomogeneity
appears, which is demonstrated in Fig. 2�b�, because the de-
viation from the mean-field model is due to the nonzero
wave number components m̂n�0 of the magnetization. In
fact, a kind of phase transition occurs in the boundary of the
MF and the non-MF region, and the cluster is formed at
equilibrium in the non-MF region. However, this clustering
should not be understood by the phase separation. In long-
range interacting systems, a part of the system is not inde-
pendent of the other part of the system, and we cannot sepa-
rate the system into two parts without any macroscopic
change. Anyway, in conserved systems, the long-range inter-
acting model is not fully describable by the mean-field model
even in equilibrium.

In nonconserved systems, the equilibrium magnetization
meq is determined by minm�F�m ,T ,H��=F�meq ,T ,H�. Be-
cause �FMF�meq ,Teff ,H�=0 and all the equilibrium states be-
long to the region A, it is concluded that the equilibrium
property is always equivalent to the mean-field model, which

A A AB BC

(b)(a)

FIG. 1. �Color online� An illustrative explanation of the regions
A, B, and C in the Ising model at H=0. The lower �blue� lines
represent the mean-field free energy at the temperature T. The upper
�red� lines represent the mean-field free energy at the effective tem-
perature T /Umax. �a� The case of T /Umax�TC�T. �b� The case of
TC�T /Umax�T.

(a) (b)

FIG. 2. Typical equilibrium configurations in the 2D lattice gas
model �conserved Ising model� with 1 /r type long-range interac-
tion. The black points correspond to the occupied state �i=+1. The
parameters are set to be m=0.5, J=2, and L=100. �a� The case of
T=0.6. These parameters belong to the MF region. �b� The case of
T=0.4. These parameters belong to the non-MF region.
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was conjectured by Cannas et al. �5�. Moreover, our result
implies that many �but not all� mean-field metastable states
are also preserved in general long-range interacting systems
because local minima of the free energy are in the region A
or B. Indeed, we have checked by numerical calculations that
in the Glauber dynamics, relaxation times from the local
minima of the free energy to the equilibrium states are iden-
tical to those of the corresponding mean-field model �not
shown�. To study some universal dynamical aspects is an
important future problem.

Finally, we comment on boundary conditions. We im-
posed the periodic ones in this Rapid Communication, but
boundary effects will be important for long-range interacting
systems. Let us redefine the interaction eigenvalues for free
boundary. In this case, the interaction eigenvalues are not
given by the Fourier coefficients. In general, we regard
Uij =K��ri−r j�� as a matrix and denote its eigenvalues by
�uk� �u0�u1�u2� . . .�. We call uk as an interaction eigen-
value and normalize the interaction to set u0=1. Regarding
u1 as Umax, we have found by Monte Carlo calculations that
the above redefinition of interaction eigenvalues allow us to
extend our result to the free boundary case. For example, see
Fig. 3. We consider the two-dimensional Ising model
��= �1� on the square lattice with the 1 /r type interaction.

In this case, Umax=0.31 for periodic boundary and
Umax=0.42 for free boundary. In Fig. 3�a�, the equilibrium
magnetizations in nonconserved systems are depicted. Our
result states that the mean-field theory is exact and the phase
transition occurs at T /J=1. In Fig. 3�b�, the equilibrium en-
ergies in conserved systems �we set m=0� are depicted. Our
result states that when T /J�Umax �the region A�, the system
is uniform and the energy is constant, but when T /J�Umax
�the region C�, the inhomogeneity grows. These numerical
results are consistent with our result for both boundary con-
ditions. The boundary effects will be examined in more de-
tail elsewhere.

In conclusion, we have studied the robustness of the re-
sults of the mean-field model against the interaction forms.
We revealed that the results of the mean-field model are fully
reliable in a wide parameter region �the MF region�, but
there is the other region �the non-MF region� where the
mean-field model cannot describe long-range interacting sys-
tems. Properties of states in the non-MF region are not ob-
vious yet. It is a future problem to study them.
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FIG. 3. �Color online� The comparison between periodic and free boundary conditions by the Monte Carlo calculations. The system size
is L=200. �a� Equilibrium magnetizations in nonconserved systems. �b� Equilibrium internal energies in conserved systems at m=0.

TAKASHI MORI PHYSICAL REVIEW E 82, 060103�R� �2010�

RAPID COMMUNICATIONS

060103-4

http://dx.doi.org/10.1007/3-540-45835-2
http://dx.doi.org/10.1007/3-540-45835-2
http://dx.doi.org/10.1103/PhysRev.149.301
http://dx.doi.org/10.1103/PhysRev.149.301
http://dx.doi.org/10.1103/PhysRevLett.87.030601
http://dx.doi.org/10.1103/PhysRevLett.87.030601
http://dx.doi.org/10.1103/PhysRevB.61.11521
http://dx.doi.org/10.1103/PhysRevB.61.11521
http://dx.doi.org/10.1007/s10955-005-3768-8
http://dx.doi.org/10.1007/s10955-005-3768-8
http://dx.doi.org/10.1103/PhysRevE.62.303
http://dx.doi.org/10.1103/PhysRevE.62.303
http://dx.doi.org/10.1088/0305-4470/36/25/301
http://dx.doi.org/10.1103/PhysRevLett.84.208
http://dx.doi.org/10.1063/1.1703946
http://dx.doi.org/10.1063/1.1703946
http://dx.doi.org/10.1063/1.1704821
http://dx.doi.org/10.1103/PhysRevB.80.064414
http://dx.doi.org/10.1103/PhysRevE.81.011135

