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In a recent publication �E. Y. Petrov and A. V. Kudrin, Phys. Rev. Lett. 104, 190404 �2010��, a method for
constructing exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium has
been put forward. In this Brief Report, we will use the proposed method to deal with problems of wave
propagation in an inhomogeneous nonlinear and nondispersive medium. The inhomogeneous factor is chosen
in the form as r�, where � is a certain constant. By solving the Maxwell equations an exact axisymmetric
solution is obtained, starting from the corresponding solution of linear field equations, to describe the propa-
gation of cylindrical electromagnetic waves in the medium. In the limit �→0, our solutions go into a nonlinear
but homogeneous case, which is the same as prevenient results. We analyze the initial value problem and
boundary value problem, to compare the differences between homogeneous and inhomogeneous conditions. It
is found that the amplitude and frequency of the electromagnetic wave can be controlled with different �. Our
results can be used for analysis of inhomogeneous ferroelectric resonators.
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Electromagnetic wave propagation in various kinds of
media is a wide-ranging problem in physics �1–19�. For lin-
ear and homogeneous media, the corresponding linear Max-
well equations have been studied and applied extensively.
However, the linear and homogeneous media give only an
approximation of the real media. The real media are usually
nonlinear and inhomogeneous. This makes wave propagation
in nonlinear media to be a fundamental problem in physics
�1–3�. Significant progress has been made by using analytical
and numerical methods �4–6�. Wave propagation in inhomo-
geneous media also attracted wide attention in theory and
applications �7–11�. A lot of achievements have been made
theoretically and experimentally. For instance, suppression of
spiral and turbulence in inhomogeneous media was investi-
gated numerically by Chen et al. �9�. Levy et al. �7� used an
inhomogeneous dielectric metamaterial with space-variant
polarizability to achieve light focusing.

However, electromagnetic wave propagation in a medium
with inhomogeneous and nonlinear simultaneously, as an ex-
tremely complicated problem, remains poorly studied, espe-
cially exact solutions. Recently, a method for constructing
exact axisymmetric solutions of the Maxwell equations in a
nonlinear nondispersive medium has been put forward �1�. It
is very important that this work gives an exact solution for
��E�=�0�1 exp��E� to describe the behavior of nonlinear
waves in a bounded volume which is also an extremely com-
plicated problem. Furthermore, we find that this method
could be extended to solve problems of electromagnetic
wave propagation in an inhomogeneous and nonlinear me-
dium. In what follows, we will employ this method to con-
struct exact axisymmetric solutions of the Maxwell equations
in an inhomogeneous nonlinear and nondispersive medium.

Similar to Ref. �1�, we assume that the medium possesses
an axis of symmetry and taken as the z axis of a cylindrical

coordinate system �r ,� ,z�. If the fields are independent of �
and z, then the Maxwell equations can be written as

�H

�r
+

H

r
= ��E,r�

�E

�t
,

�E

�r
= �0

�H

�t
, �1�

where H�H��r , t�, E�Ez�r , t�, and ��E ,r�=dD /dE. In our
work, the function ��E ,r� will be chosen in the form

��E,r� = �0�1r� exp��E� , �2�

where �1 , � , � are certain constants. It denotes that the
medium considered here is nonlinear, nondispersive, and in-
homogeneous. The nonlinear factor is exp��E�, and the in-
homogeneous factor is r�. We will show below that system
of equations �1� and �2� can be integrated exactly and admits
exact axisymmetric solutions in this case. Before passing to
the process of constructing solutions, we will show the pos-
sibility of using the dielectric susceptibility as formula �2�.
References �1,3� have discussed the possibility of using
��E�=�0�1 exp��E� in detail and reached a conclusion that
��E�=�0�1 exp��E� correctly describes dielectric properties
of media lacking a center of inversion in the case of weak
nonlinearity. For the inhomogeneous factor, the type of the
space-variant polarizability as r� or �r−a�� has been used in
many works �16–19�. For example, Jiang et al. �10� used
��=kr and �r=1 / �kr� to bend electromagnetic waves and
showed that the inhomogeneous factor is realizable. In fact,
the metamaterial opens a door to realize all possible material
properties by designing different cellular architectures and
using different substrate materials �15�. In our work if
��0, the inhomogeneous factor has an evident singularity at
r=0. The singularity is avoidable by excluding this point and
our solutions is effective. For simplicity, we will focus on the
case of ��0.

We use the following ansatz in system of equations �1�
and �2�: E=�−1�u− ��+2�	� , H=g0

−1�v− ��+2�
�, where
g0

−1=�1
1/2�Z0�r /r0�−1, 	=ln�r /r0�, 
= ��0�1�0�−1/2t /r0, and*haoxiong1217@gmail.com
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Z0= ��0 /�0�1/2. r0 is an arbitrary constant with the dimension
of length. In our work we set r0=1. Then system of equa-
tions �1� and �2� can be reduced to

�u

�	
=

�v
�


,
�v
�	

= eu �u

�

. �3�

Based on the application of a hodograph transformation,
for Jacobian D�u ,v� /D�	 ,
� being nonzero �1�, we can use u
and v as independent variables and obtain

�


�v
=

�	

�u
,

�


�u
= eu �	

�v
. �4�

Following Refs. �1,3�, we represent the solution of the
homogeneous and linear problem which records as E0 and
H0 in the form

E0 = E��,��, H0 = �1
1/2Z0

−1H��,�� , �5�

where �=r ·22/��+2�, �= t��0�1�0�−1/2 ·22/��+2�, and E and H
satisfy the linear system:

�H
��

+
H
�

=
�E
��

,
�E
��

=
�H
��

. �6�

We write 	 and 
 as

	 =
− �E�w,v� + u

� + 2
, 
 =

− �wH�w,v�/2 + v

� + 2
, �7�

with w=2 exp�u /2�, then 	 and 
 satisfy Eq. �4�. We can
obtain

E = E��1+�/2e�E/2,2−2/��+2���� + 2�� +
Z0��H

��1
	
 ,

H =
��1e�E/2��/2

Z02�/��+2�

H��1+�/2e�E/2,2−2/��+2���� + 2�� +
Z0��H

��1
	
 .

�8�

These expressions give an exact solution of Maxwell equa-
tions in an inhomogeneous nonlinear and nondispersive me-
dium. For the case �→0, our solution goes into solution of a
nonlinear but homogeneous problem, which is the case in
Ref. �1�. If �→0 and �→0, our solution goes into solution
of a linear and homogeneous problem, which is described by
Eq. �5�. If �→0, our solution goes into solution of a linear
but inhomogeneous problem.

For simplicity we begin discussion by considering �→0.
We obtain

E = E��1+�/2,2−2/��+2��� + 2��� ,

H =
��1��/2

Z02�/��+2�H��1+�/2,2−2/��+2��� + 2��� , �9�

mark 2−2/��+2���+2� as �, �̃=�1+�/2, and �̃=��, the solution
become

E = E��̃, �̃�, H =
��1

Z0
� �̃

2

�/��+2�

H��̃, �̃� . �10�

It means that problems of wave propagation in an
inhomogeneous but linear medium can be easily solved by
use the space-time coordinate system redefined. Consider
the homogeneous and linear solutions E�� ,�� and H�� ,��
are periodic functions and can be written as
E�� ,��= f1���exp�i�0��, H�� ,��= f2���exp�i�0�+��, then
the inhomogeneous solutions are E= f1��̃�exp�i�0���,
H=��1��̃ /2��/��+2�f2��̃�exp�i�0��+�� /Z0, so ��= ����0,
where �� is the frequency of the electromagnetic field in an
inhomogeneous medium. For ��0, the frequency of the
electromagnetic field in an inhomogeneous medium is higher
than in a homogeneous medium.

Now we consider the case ��0. We use the same par-
ticular examples as Ref. �1� and focus on the differences
between homogeneous and inhomogeneous conditions. For
initial value problem, we consider the initial field distribu-
tions are E�� ,0�=��1+�2�−3/2 , H�� ,0�=0, and for boundary
value problem, we consider E�1,��=0 and amplitude factor
of the wave is �, where � is a constant. The solution can be
easily obtained.

Solution of initial value problem:

E = � Re��1 − i����1 − i��2 + �2+�e�E�−3/2 ,

H =
���1e�E/2�1+�/2

Z02�/��+2� Re�i��1 − i��2 + �2+�e�E�−3/2 , �11�

where �=2−2/��+2����+2��+Z0��H /��1�, and initial condi-
tions satisfied the nonlinear and inhomogeneous problem is
E=��1+�2+�e�E�−3/2 , H�0.

Figure 1 shows results of numerical calculations of E and
H by formulas �11� in the case �=1, �=1 and �1=2. The
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FIG. 1. �Color online� Wave propagation in an inhomogeneous
and nonlinear media under the initial field distributions
E�� ,0�= �1+�2�−3/2 , H�0. The electric and magnetic fields as
functions of the coordinate are shown by the solid and dashed
curves, respectively, at various times and �. We use parameters of
�=1 and �1=2.
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electric and magnetic fields as functions of the coordinate �
are shown by the solid and dashed curves, respectively, at
various � and �. It is obvious that amplitude of the electro-
magnetic wave can be controlled by using different �. The
amplitude of the electromagnetic wave in an inhomogeneous
media is smaller than in a homogeneous one. Reference �1�
showed that even for a sufficiently strong nonlinearity, the
difference between the initial conditions is small, which is
also effective for the case when the medium is inhomoge-
neous.

Solution of boundary value problem:

E = �J0��n�1+�/2e�E/2�cos��n�� ,

H =
− ���1e�E/2��/2

Z02�/��+2� J1��n�1+�/2e�E/2�sin��n�� . �12�

Figure 2 shows results of numerical calculations of nor-
malized field E and H by formulas �12� in the lowest mode
with n=1 and �1�2.4048. Other parameters remain the
same as Fig. 1. It is a very interesting phenomenon that the
waveform with different � is entirely different at the same
time while very similar at some specifically different time.
For instance, the waveform of �=0, �=3� / �4�1� is very
similar to the one of �=2, �=1� / �4�1�, the waveform of
�=0, �=4� / �4�1� is very similar to the one of �=1, �
=2� / �4�1�, and the waveform of �=1, �=3� / �4�1� is very
similar to the one of �=2, �=2� / �4�1�. So we surmise that
the dissimilar waveform at the same time may arise from the
frequency of the oscillograms. For the given mode, the fre-
quency of the electromagnetic oscillation is coordinate inde-
pendent. It is a function of �. In case of the incipient wave-
form is similar, the phase position of the electromagnetic
oscillation can be described as �����. The phase position
can be used to describe the waveform of electromagnetic
oscillation. At a given �, �1���1

� is very different from
�2���2

� except ��1−�2�=2k� , �k=0,1 ,2 , . . .� which is

hard to reach. At different �, ��1−�2�=2k� can be achieved
more easily. The simplest way is �1 /�2= ��2 /�1�. Figure 3
shows oscillograms of the fields in the n=1 mode at �=0.7,
as functions of time. The analysis of the frequency of wave
propagation in inhomogeneous but linear media are still ef-
fective for weak nonlinear media. That is ��= ����0. It
shows that our foregoing surmise is right. Similar results will
be obtained from higher modes.

Figure 4 shows results of numerical calculations of nor-
malized field E and H by formulas �12� in n=2 mode with
�2�5.5201. The waveform of �=1, �=3� / �4�2� is very
similar to the one of �=2, �=2� / �4�2�, and the waveform
of �=1, �=4� / �4�2� is very similar to the one of
�=2, �=3� / �4�1�. It implies that the waveform of electro-
magnetic oscillation also can be described by a phase posi-
tion and foregoing discussion remain effective. Nonlinear
and inhomogeneous effects become more pronounced with
increasing n and depend significantly on �, �, and �, which is
in accordance with the result in Ref. �1�. Figure 5 shows
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FIG. 2. �Color online� Wave propagation in a inhomogeneous
and nonlinear media under the boundary value problem consider
E�1,��=0, electric and magnetic fields as functions of � in the
n=1 mode. The parameters are same as in Fig. 1.
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FIG. 3. �Color online� Oscillograms of the fields in the n=1
mode at �=0.7, as functions of time and at various �.
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FIG. 4. �Color online� Wave propagation in a inhomogeneous
and nonlinear media under the boundary value problem E�1,��=0,
electric and magnetic fields as functions of � in the n=2 mode.

BRIEF REPORTS PHYSICAL REVIEW E 82, 057602 �2010�

057602-3



oscillograms of the fields in the n=2 mode at �=0.7, as
functions of time. If �=0, the field E varies at the frequency
�0 while the field H at the second harmonic 2�0. However,
for �=2, the second harmonic is disappeared, and the fields
E and H are all have the same frequency �0.

Propagation of cylindrical and spherical waves in inho-
mogeneous media is of great interest for theory and applica-
tion, however, remain poorly studied �1,14�. It can be used in
fiber optics, geophysical prospecting, radio propagation,
study of radar cross section, and microstrip antenna, as Ref.
�14� have suggested. Our work is an interesting extension of
the recent publication Ref. �1�, which put forward an impor-
tant technique to describe the behavior of nonlinear cylindri-
cal electromagnetic waves in a bounded volume. Electro-
magnetic wave propagation in a medium with
inhomogeneous and nonlinear simultaneously, as an ex-

tremely complicated problem, remains poorly studied, espe-
cially exact solutions. Integrable systems have a significant
impact on both theory and phenomenology �20�. Exact solu-
tions play an important role in understanding the physical
processes and it is very important for the development of
new computational asymptotic methods. Our work shows
that the important technique suggested by Petrov and Kudrin
can be extended to deal with problems of cylindrical electro-
magnetic waves propagation in an inhomogeneous nonlinear
and nondispersive medium. The rigorous solution we ob-
tained is a rigorous solution which describes electromagnetic
wave propagation in a medium with inhomogeneous and
nonlinear simultaneously.

In conclusion, we have used the proposed method in Ref.
�1� to deal with wave propagation in an inhomogeneous non-
linear and nondispersive medium. An exact axisymmetric so-
lution has been obtained, starting from the corresponding
solution of linear field equations. We have analyzed the ini-
tial value problem and boundary value problem and found
that the amplitude and frequency of the electromagnetic
wave can be controlled with different �. Our result has sig-
nificant advantages over the direct numerical solution of that
system and provides a very convenient basis for analysis of
inhomogeneous and nonlinear resonators, e.g., inhomoge-
neous ferroelectric resonators.
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FIG. 5. �Color online� Oscillograms of the fields in the n=2
mode at �=0.7, as functions of time and at various �.
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