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In this paper we present analytical breather solutions of the three-dimensional nonlinear generalized Gross-
Pitaevskii equation. We use an Ansatz to reduce the three-dimensional equation with space- and time-
dependent coefficients into a one-dimensional equation with constant coefficients. The key point is to show that
both the space- and time-dependent coefficients of the nonlinear equation can contribute to modulate the
breather excitations. We briefly discuss the experimental feasibility of the results in Bose-Einstein condensates.
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Breathers or breathing solutions are nonlinear excitations
which concentrate energy in a localized and oscillatory man-
ner. In various physical systems, such as in Josephson junc-
tions �1,2�, charge density wave systems �3�, 4-methyl-
pyridine crystals �4�, metallic nanoparticles �5�, conjugated
polymers �6�, micromechanical oscillator arrays �7�, antifer-
romagnetic Heisenberg chains �8,9�, and semiconductor
quantum wells �10�, the breather excitations play an impor-
tant role, directly affecting the electronic, magnetic, optical,
vibrational and transport properties of the systems.

In the above mentioned studies, one usually considers
genuine breathers, i.e., solutions which oscillate in time
when the nonlinear equation presents constant coefficients
�i.e., without modulation�. However, in a more realistic sce-
nario the several parameters that characterize the physical
systems may depend on both space and time, leading to
breather solutions that can be modulated in space and time.
The presence of nonuniform and time-dependent parameters
opens interesting perspectives not only from the theoretical
point of view, for investigation of nonautonomous nonlinear
equations, but also from the experimental point of view, for
the study of the physical properties of the systems. In this
context, in a recent work we have considered modulation of
genuine breather solutions in cigar-shaped Bose-Einstein
condensates �BECs� with potential and nonlinearity depend-
ing on both space and time, in the one-dimensional �1D� case
�11�.

The study of BECs of dilute gases of weakly interacting
bosons, realized for the first time in 1995 on vapors of ru-
bidium �12� and sodium �13�, constitutes a very interesting
scenario to modulate breathers, since they are well described
by a three-dimensional �3D� Gross-Pitaevskii �GP� equation
arising from a mean-field dynamics �14�. In the BEC context,
one finds high experimental flexibility to control nonlinearity
via Feshbach resonance, and confinement profile via optical
lattices and harmonic and dipole traps �15�, and there we can
also investigate the effects of dimensionality reduction on the
soliton solution.

In the case of a strong trapping in two spatial directions,
the 3D GP equation reduces to the simpler one-dimensional
�1D� form, giving rise to the so-called cigar-shaped configu-
ration. The 1D GP equation is a nonlinear Schrödinger equa-
tion, which can also be used to investigate pulse propagation
in bulk crystals or optical fibers �16�. In a former work, how-
ever, the search for analytical solutions of the 1D GP equa-

tion with stationary inhomogeneous coefficients has been
implemented via similarity transformation �17�. More re-
cently, however, the case of space- and time-dependent co-
efficients was considered for the cubic �18�, the cubic-quintic
�19�, the quintic �20�, and also the GP equation in higher
dimensions �21�.

The similarity transformation was also used to study self-
similar optical pulses in competing cubic-quintic nonlinear
media with distributed coefficients �22�, nonautonomous
matter-wave solitons near the Feshbach resonance �23�,
bright and dark solitons in a periodically attractive and re-
pulsive potential with nonlinearities modulated in space and
time �24�, solitons of two-component Bose-Einstein conden-
sates modulated in space and time �25�, and quantized quasi-
two-dimensional Bose-Einstein condensates with spatially
modulated nonlinearity �26�.

On the other hand, the search for analytical solutions of
the 3D GP equation has attracted a lot of attention due to the
fact that solutions of higher-dimensional GP equation with
constant coefficients are usually unstable �27�, while the non-
autonomous GP equation can engender conditions which
contribute to stabilize the corresponding solutions �28�. Tak-
ing into account this possibility, exact solutions to 3D GP
equation with varying potential and nonlinearities were pro-
posed in Ref. �29�, while in Ref. �30� the authors studied
analytical 3D bright solitons and soliton pairs in BECs with
time-space modulation.

In this paper, our aim is to show that genuine breather
solutions can be modulated by the 3D GP equation with
space- and time-dependent potential, if one includes time-
dependent coefficient to describe the cubic nonlinearity. In
this way, we extend our recent work �11� to the more realistic
3D case. To this end, we use an Ansatz that changes the 3D
GP equation into specific 1D equation with constant coeffi-
cients, which is easier to solve. As a consequence, however,
we have to deal with a set of coupled equations, to ensure
validity of the similarity transformation. Below we present
explicit results for three distinct choices of potential and non-
linearity.

We start with the 3D GP equation given by

i����/��t� = − 1
2�2� + v�r,t�� + g�t����2� , �1�

where �=��r , t�, r�R3, ����x ,�y ,�z�, and v�r , t� and g�t�
are real functions representing the potential and the cubic
nonlinearity, respectively.
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Our goal is to find breather solutions which obey the
above Eq. �1�. Using the Ansatz

� = ��t�ei��r,t�����r,t�,��t�� , �2�

we can transform the above equation into the 1D GP equa-
tion

i�� = − 1
2��� + G���2� , �3�

where ����� /��, �����2� /��2, and G is a constant fac-
tor. Using Eq. �2� into Eq. �1� leads to Eq. �3�, for �, �, �,
and � obeying the following equations

�t = ����2, �4a�

�t + ���� · ���� = 0, �4b�

2�t + ��2� = 0. �4c�

Here the potential and the nonlinearity assume the form

v�r,t� = − �t − ����2, �5�

and

g�t� = �G����2�/��2� . �6�

Note that the potential �Eq. �5�� and the nonlinearity �Eq. �6��
are functions which in general depends on the real phase
��r , t� and the amplitude ��r , t�. In this way, one can use the
Eq. �4a� to obtain the general form of �, given by

��r,t� = c1�t�x + c2�t�y + c3�t�z + c4�t� , �7�

where the coefficients cj �j=1,2 ,3 ,4� are time-dependent
functions, obeying the relationship

�t = c1
2 + c2

2 + c3
2. �8�

Now, substituting Eq. �7� into Eq. �4b� leads to � in the
general form

��r,t� = d1x2 + d2y2 + d3z2 + d4xy + d5xz + d6yz + d7x + d8y

+ d9z + d10, �9�

where the dj are time-dependent coefficients which obey the
equations

c1̇ + 2c1d1 + c2d4 + c3d5 = 0, �10a�

c2̇ + c1d4 + 2c2d2 + c3d6 = 0, �10b�

c3̇ + c1d5 + c2d6 + 2c3d3 = 0, �10c�

c4̇ + c1d7 + c2d8 + c3d9 = 0, �10d�

where cj˙ �dcj /dt. Next, from Eqs. �4c� and �9� we obtain

��t� = exp�−� �d1 + d2 + d3�dt	 . �11�

Inserting Eq. �9� into Eq. �5� leads to the potential

v�r,t� = �1x2 + �2y2 + �3z2 + �4xy + �5xz + �6yz + �7x

+ �8y + �9z + �10, �12�

where �=��t�, with

�1 = ḋ1 + 4d1
2 + d4

2 + d5
2, �13a�

�2 = ḋ2 + 4d2
2 + d4

2 + d6
2, �13b�

�3 = ḋ3 + 4d3
2 + d5

2 + d6
2, �13c�

�4 = ḋ4 + 4d1d4 + 4d2d4 + 2d5d6, �13d�

�5 = ḋ5 + 4d1d5 + 4d3d5 + 2d4d6, �13e�

�6 = ḋ6 + 4d2d6 + 4d3d6 + 2d4d5, �13f�

�7 = ḋ7, �8 = ḋ8, �9 = ḋ9, �10 = ḋ10. �13g�

Finally, we substitute Eqs. �7� and �11� into Eq. �6� to get

g�t� = G�t exp�� �d1 + d2 + d3�dt	 . �14�

Here we note that one can get solutions through the cj
coefficients, that is, for specific choices of potential and non-
linearity, one can construct the cj functions, or, for specific
choices of cj, one can get the corresponding potential and
nonlinearity. We illustrate the general situation with the ex-
amples below.

To demonstrate the power of the method, we start consid-
ering a breather solution of the Eq. �3�. A specific form of the
two-soliton breather solution is obtained for G=−1, which
corresponds to the explicit solution �31�

���,�� =
4�cosh�3�� + 3e4i� cosh����ei�/2

�cosh�4�� + 4 cosh�2�� + 3 cos�4���
. �15�

The binding potential of the two soliton is equal to zero,
corresponding to the unstable breather solution. Due to the
vanishing binding potential, there is a splitting of the solu-
tion �15� into two independent solitons at some point in time
�32�. On the other hand, the spatial and temporal modulation
of the nonlinearity and the potential allows that we get stable
breather solutions, since the solution given by Eq. �2� pre-

FIG. 1. �Color online� Plots of the 3D breather solution ���2 for
v�r , t�=0 and g=−1, in the �x , t� plane, considering y=z=0. We
display the cases �a� c1=c2=c3=1 /
3, �b� c1=c2=c3=1, �c� c1

=c2=c3=1.5, and �d� c1=c2=c3=2.
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sents non vanishing binding potential. Indeed, as we have
recently shown �11�, the modulation of the trapping potential
gives support to the coexistence of the two soliton in the
breather solution, without splitting. With this in mind, in the
following we study the modulation of the breather �Eq. �15��
in 3D spatial dimensions.

First, we consider the free evolution of the solution �15�
in the BEC, i.e., we take v�r , t�=0. In this way, we can get
the free evolution if we set dj =0 for j=4,5 , . . . ,10 and dj
=−cj˙ /2cj for j=1,2 ,3. So, we will have � j =−cj¨ /2cj

+3cj
2̇ /2cj

2 with j=1,2 ,3. As an example, one gets � j =0 set-
ting cj =1 /
3 �and c4=0�, corresponding to the following
choice of the nonlinearity g=−1, with �=1. In this case, the
Eqs. �7�–�9� change to �= �x+y+z� /
3, �= t, and �=0, re-
spectively. Thus, we obtain the breather solution of the Eq.
�2� in the form

��r,t�

=
4�cosh�3�x + y + z�� + 3e12it cosh�x + y + z��e3it/2

�cosh�4�x + y + z��+4 cosh�2�x + y + z��+3 cos�12t��
.

�16�

In Fig. 1 we depict the breather solution �16� in the �x , t�
plane, considering y=z=0, for �a� c1=c2=c3=1 /
3, �b� c1
=c2=c3=1, �c� c1=c2=c3=1.5, and �d� c1=c2=c3=2. Simi-
lar behavior is obtained in the �y , t� or �z , t� plane. There we
clearly see that the oscillatory frequency increases with the
increasing of the values of cj. We further illustrate this fact in
Fig. 2, displaying ���2 at the spatial origin, considering c1

=0.3, 0.6, and 1, respectively, with c2=c3=1 /
3.
In this second example we consider the case of harmonic

potential. First, we look for solutions satisfying dj =−cj˙ /2cj
for j=1,2 ,3 and dj =0 for j=4,5 , . . .10. As before, adjusting
appropriately the values of cj one can obtain the harmonic
potential. We will analyze two cases: �i� harmonic potential
in a single spatial direction, say x, which is obtained with
c1=1+0.5cos�t� and c2=c3=1 /
3; �ii� harmonic potential in
the three spatial directions, which is obtained with cj =1
+0.5 cos�t� for j=1,2 ,3.

In the case �i�, let us have �=1.79t+sin�t�
+cos�t�sin�t� /8, �= �1+0.5 cos�t��x+
3y /3+
3z /3, �
=
1+0.5 cos�t�, �=sin�t�x2 /4�1+0.5 cos�t��, and v�x , t�=
−cos�t�x2 /4�1+0.5 cos�t��−0.375 sin�t�2x2 / �1+0.5 cos�t��2,
which is physically implemented by a time-dependent har-
monic potential plus an optical superlattice �33�. The nonlin-
earity and potential are displayed in Figs. 3�a� and 3�b�, re-
spectively. Also, in Fig. 4 we depict the breather solution for
the case �i�, in the plane �a� �x , t�, �b� �y , t�, and �c� �z , t�,
respectively. Moreover, in Fig. 5�a� we plot the breather pro-
file at the origin.

Next, we consider the case �ii�. Here we have �=3.375t
+3 sin�t�+0.375 cos�t�sin�t�, �= �1+0.5 cos�t��x+ �1
+0.5 cos�t��y+ �1+0.5 cos�t��z, �= �1+0.5 cos�t���3/2�/2, �
=sin�t��x2+y2+z2� /4�1+0.5 cos�t��, g=−3 / �1+0.5 cos�t��,
and v�r , t�= �cos�t�2−cos�t�−3 /2��x2+y2+z2� / �4+4 cos�t�
+cos�t�2�. This nonlinearity can be obtained experimentally
in BEC by time modulated Feshbach resonance, but an opti-
cal trapping switching from red-detuned to blue-detuned
laser-beam, and vice versa, in a periodic fashion will be re-
quired for implementation of the time-dependent potential.

FIG. 2. �Color online� Plots of ���2 for v�r , t�=0 and g=−1, at
the spatial origin �0,0,0�. We use c2=c3=1 /
3 to show the time
behavior for c1=0.3 in dash-dot line �yellow�, c1=0.6 in dashed line
�green�, and c1=1 in solid line �red�.

FIG. 3. �Color online� Plots of the nonlinearity �a� and potential
�b� for the case with c1=1+0.5 cos�t� and c2=c3=1 /
3.

FIG. 4. �Color online� Plots of the profile of the breather solu-
tion in the �a� �x , t�, �b� �y , t�, and �c� �z , t� plane, in the harmonic
potential for the case i. Similar behavior appears in the case ii.

FIG. 5. �Color online� Profile of the breather solution for the
cases �a� i and �b� ii, at the spatial origin �0,0,0�.
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In Figs. 4�a� and 5�b� we depict the profile of breather solu-
tion in the �x , t� plane and at the spatial origin, respectively.

As a third example, let us consider the case in which the
BEC is trapped by a specific linear potential. Here we search
for solutions of the Eq. �12� with � j =0 for j=1,2 , . . . ,6. For
simplicity, we also consider �10=0. To this end, we choose
dj =0 for j=1,2 , . . . ,6, d10=0, c1=c2=c3=1 /
3, c4=sin�t�,
and dj =−c4̇ /3cj for j=1,2 ,3 to satisfy the Eq. �10d�. In this
case, we get �= t, �= �x+y+z� /
3+sin�t�, �=1, �=
−cos�t��x+y+z� /
3, g=−1, and v�r , t�=−sin�t��x+y+z� /
3
−cos2�t�.

In Fig. 6 we depict the breather solution in the �x , t� plane,
in the presence of a linear potential. The solution presents
similar behavior in the other �y , t� and in the �z , t� planes.
Here we note that the choice c4=c4�t��0 makes the center
of mass of the solution to move, as expected.

In this work we have studied the presence of breather
solutions in the 3D GP equation, in the case of space- and
time-dependent potential, with cubic nonlinearity described
by time-dependent coefficient. We have obtained analytical
solutions through an Ansatz which changes the 3D equation
into specific 1D equation. The results show that the breather
solution can be nicely modulated in space and time. We have
considered three distinct examples of potential and nonlin-

earity: the free evolution of the breather, the case of the
presence of harmonic potential and another one, in which the
system is driven by linear potential. The breather solutions
can be controlled through the presence of external apparatus,
and this may motivate new research in the field since the
modulation can generate stable excitations.
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FUNAPE/GO for partial financial support.
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