
�-expansion method for nonlinear stochastic differential equations
describing wave propagation in a random medium

Robert A. Van Gorder*
Department of Mathematics, University of Central Florida, P.O. Box 161364, Orlando, Florida 32816-1364, USA

�Received 18 June 2010; revised manuscript received 20 September 2010; published 19 November 2010�

We apply the �-expansion method to nonlinear stochastic differential equations describing wave propagation
in a random medium. In particular, we focus our attention on a model describing a nonlinear wave propagating
in a turbulent atmosphere which has random variations in the refractive index �we take these variations to be
stochastic�. The method allows us to construct much more reasonable perturbation solutions with relatively few
terms �compared to standard “small-parameter” perturbation methods� due to more accurate linearization used
in constructing the initial approximation. We demonstrate that the method allows one to compute effective
wave numbers more precisely than other methods applied to the problem in the literature. The method also
picks up on the stochastic damping of the solutions quickly, holding all of the relevant data in the initial term.
These properties allow for both a qualitative and a quantitative construction of physically meaningful solutions.
In particular, we show that the method allows one to retain higher-order harmonics which are hard to capture
with standard perturbation methods based on small parameters.
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I. INTRODUCTION

When studying differential equations which are both �i�
nonlinear and �ii� stochastic, obtaining closed form exact so-
lutions is typically difficult if not impossible. Furthermore,
specific numerical methods may work only in some cases
and even then perhaps only for certain parameter regimes.
This leads one to consider methods of obtaining analytical
solutions via methods such as perturbation methods. How-
ever, even for deterministic equations, many perturbation so-
lutions yield solutions valid only over restricted domain or
for small values of some model parameter. Even then, one
may be faced with solving an infinite number of linear sto-
chastic differential equations so as to construct the perturba-
tion solution.

In the late 1980s, Bender and colleagues introduced a type
of perturbation technique, the �-expansion method �see, for
instance, �1–17��, in which one expands in powers of a non-
linearity present in a nonlinear differential equation. At first
applied to problems in quantum field theory, the method
found plenty of application to nonlinear differential equa-
tions in many areas of science �see, for example, �7� and the
references therein�. Such a method allows us to preserve
more of the original nonlinear equation, which in turn allows
for our perturbation solutions to converge more rapidly to the
true solution �which, in the absence of exact solutions, we
take to be numerical solutions�.

In the present paper, we shall apply this method in order
to study the propagation of nonlinear waves in a random
medium; in particular, we focus our attention on a model
describing a nonlinear wave propagating in a turbulent atmo-
sphere which has random variations in the refractive index.
Such variations are taken to be stochastic. We obtain results
for the one-dimensional case for both the mean electric field
and the general stochastic problem. The corresponding three-

dimensional problem is also discussed, and the general
method of linearization via the �-expansion method is con-
sidered. We show that there are certain pros and cons in-
volved in employing the method, and one must weigh these
when choosing an appropriate perturbation method to use.
In order to effectively understand the benefits of the method,
we compare our results with the available “small-parameter”
results present in the literature. In one case, we offer a fix
which involves deformation of the original equation into a
simpler, yet still nonlinear, equation. This modification al-
lows us to capture behaviors due to the higher-order har-
monics, which may be overlooked in the small-parameter
perturbation solutions. Here, the zeroth-order term in the per-
turbation expansion is governed by a �simpler� nonlinear
equation, which makes computation of the higher order iter-
ates in the perturbation expansion a bit more complicated.

In the model describing a nonlinear wave propagating in a
turbulent atmosphere which has random variations in the re-
fractive index, both nonlinear and stochastic contributions
are taken to be �relatively� small due the addition of a small
parameter �. One benefit to considering a perturbation
method which does not rely on small model parameters, such
as the �-expansion method, is that we are free to consider
�relatively� large values for model parameters. However, in
doing so, one must be mindful of the physical behavior of
obtained solutions under such parameter regimes. As such,
we show that for sufficiently large values of some of the
model parameters, solutions become nonphysical �they blow
up as opposed to decaying�. This does not mean that such
model parameters are nonphysical, but, rather, that the model
we employ is not valid for such parameter values.

Via a comparison of the �-expansion method solutions to
perturbation solutions present in the literature, we show that
the �-expansion method allows one to compute effective
wave numbers more precisely than the other methods applied
to the problem in the literature. Additionally, the method also
picks up on the stochastic damping of the solutions quickly,
holding all of the relevant data in the initial term. These*rav@knights.ucf.edu
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properties allow for both a qualitative and a quantitative con-
struction of physically meaningful solutions. In particular,
we show that the method allows one to retain higher-order
harmonics which are hard to capture with standard perturba-
tion methods based on small parameters.

II. PROPAGATION OF NONLINEAR WAVES
IN A RANDOM MEDIUM

Propagation of waves in a turbulent medium includes a
number of applications, such as propagation of starlight
through the atmosphere, propagation of radio waves through
the ionosphere, and sound wave propagation in the ocean
�18,19�. Although variations in the refractive index from its
mean value in a turbulent medium are very small, the wave
typically propagates through a large number of refractive in-
dex inhomogeneities; thus, the cumulative effect can be very
significant. Wave propagation in a random medium is usually
described by stochastic differential equations and the charac-
teristics of the medium are typically represented by stochas-
tic coefficients �see �20–22��. A random medium is a family
of media, each labeled by one value of parameter � which
ranges over a space A in which a probability density p���
determines the probability of a given value of � and there-
fore represents the source of the waves �which, in some
cases, may be random�.

Shivamoggi et al. �29� considered a mathematical ap-
proach to the problem of wave propagation in a random me-
dium using a perturbation method to treat nonlinear stochas-
tic differential equations modeling the electric field of a
monochromatic nonlinear wave �see Eq. �1� below�. They
noted that, for the linear problem, their procedure also yields
a treatment that is mathematically rigorous while giving
physically correct results.

When a propagating wave is strong enough, such as in the
case of a high-power laser, it can significantly change the
properties of the medium. For example, the heating of the
medium by the wave causes changes in the refractive index
of the medium and hence alters the propagation characteris-
tics �see �23–25��. The wave propagation under such condi-
tions becomes nonlinear. As in �29�, we consider the electric
field of such a monochromatic nonlinear wave which satis-
fies the restrictive one-dimensional equation,

d2E

dz2 + k0
2�1 + ���z��E + �aE2 + �2bE3 = 0, �1�

where k0 is the wave number of the wave and the refractive
index of the medium n is related to the parameters �, a, and
b �which need not be positive� by

n2 = 1 + ���z� + �
a

k0
2E + �2 b

k0
2E2. �2�

The depolarization effects in the medium are ignored. Equa-
tion �1� describes a nonlinear wave propagating in a turbu-
lent atmosphere which has small random variations in the
refractive index. Here, the random variations are due to ��z�,
which is taken to be a stochastic function.

The three-dimensional counterpart to Eq. �1� is given by
�29� as

�2E + k0
2�1 + ��x,y,z��E + ��E�2E = 0, �3�

and this equation was analyzed in several simplified forms
by Shivamoggi et al. �29�.

We first obtain perturbation solutions to Eq. �1� by use of
the �-expansion method. We then construct the relevant so-
lution for the mean value of E, �E�. We construct both
�-expansion solutions and standard perturbation solutions in
this special case. Note that we keep the parameter � present
in the formulation. We shall compute perturbation solutions
about � for small values of � and show that these solutions
break down for large values of �. Meanwhile, we show that
upon applying the �-expansion method, one obtains pertur-
bation solutions valid for arbitrary values of ��0. While we
compare that the two results in the mean value case as the
resulting equations are deterministic, we expect that the
�-expansion approximations will perform better than stan-
dard perturbation in all cases for sufficiently small noise
terms �. In addition to considering the one-dimensional
problems, we provide a method to solve the fully three-
dimensional problem. The equations are, in general, too hard
to solve analytically, so the �-expansion method can be used
to linearize the nonlinear equations, and the resulting system
of linear equations may be solved successively up to a de-
sired order via a numerical method.

Perturbation solution about � for the one-dimensional
problem: The mean value case

In �29�, the mean electric field �E� was shown to satisfy
the nonlinear ordinary differential equation,

d2

dz2 �E� + �2k0c2

2

d

dz
�E� + k0

2�1 − �2c1

2
	�E� + �a�E�2 + �2b�E�3

= 0, �4�

where c1 and c2 are constants determined by the probability
distribution associated to �. In general,

c1 = 

0

�

���	/k0����	 − 
�/k0��sin�2
�d
 �5�

and

c2 = 

0

�

���	/k0����	 − 
�/k0���1 − cos�2
��d
 . �6�

It is worth mentioning that in their derivation, Shivamoggi et
al. �29� treated � as a formal parameter at this juncture and
only later relied on it being “small;” this is important, as it
allows for the extension of Eq. �4� for larger values of �.
However, we later show that for certain model parameters,
this approximation breaks down. As mentioned in �29�, when
the wave propagation in a random medium is stationary,
Gaussian, and a Markov process, then it is a Uhlenbeck-
Ornstein process so that

���	/k0����	 − 
�/k0�� = e−
/k0, �7�

and, hence,
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c1 =
2k0

2

1 + 4k0
2 , c2 =

4k0
2

1 + 4k0
2 . �8�

Meanwhile, if we assume the commonly used Gaussian dis-
tribution,

���	/k0����	 − 
�/k0�� = e−
2/2k0
2
, �9�

we obtain

c1 = 0, c2 =��

2
k0�1 − �2k0e−2k0

2
� . �10�

In order to obtain a perturbation solution about �, one
would consider a solution of the form

�E� = E0�z� + E1�z�� + E2�z��2 + ¯ . �11�

Unfortunately, such a solution yields a complicated expres-
sion which is slow to converge. The higher-order corrections
will be yet more complicated. Note that, due to secular
terms, there are factors of z sin�k0z� and z cos�k0z� present in
the second-order approximation, F2�z�. So, for large z, solu-
tions will blow up. It is clear to see that the leading trigono-
metric terms in the nth approximant Fn�z� will be sin��n
+1�k0z� and cos��n+1�k0z�, so we generate an expansion in
those modes in addition to secular contributions. Hence, our
perturbation solution suffers from the fact that k0 is a crude
approximation of the true wave number keff due to the non-
linearity, valid only for very small �.

For the above reasons, in �29�, a solution of the form

�E� = 1
2 �eikeffzE + e−ikeffzE�� , �12�

is assumed, where � denotes complex conjugation; we find
that Eq. �4� gives

keff
2 = k0

2�1 −
c1

2
�	 +

3b

4
�2�E�2 + i

k0
2c2

2
�2 + O��3� . �13�

In ansatz �12�, Shivamoggi et al. �29� constructed the solu-
tion

�E� =
E
2

exp�ik01 +
1

4
�− c1 +

3b

2k0
2	�2�E�2�z�

�exp�−
k0c2

4
�2z	 + c.c., �14�

where c.c. denotes the complex conjugate of the preceding
term. Note the absence of the parameter a—its influence is
hidden inside of E. Still, for small a and small �, such an
expansion is valid and, indeed, is shown to be useful, in a
qualitative sense, in �29�. However, in cases where � is no
longer small, such a solution tends to break down. Further-
more, due to the implicit appearance of the amplitude E in
the expression, the usefulness of expression �14� for actually
constructing solutions numerically is limited. Later, when we
compare this result to both solutions obtained via
�-expansion and numerical simulations, we shall set E=1, as
we observe from the numerics that the amplitude for the
mean value of the field is bounded in magnitude like

��E��  exp�−
k0c2

4
�2z	 , �15�

which gives the strength of the damping due to the stochastic
term. Note that the parameter c2 influences such damping,
while the parameter c1 enters only into the oscillatory part of
the solution. Thus, the parameter c1 shall influence the effec-
tive wave number and thus the higher-order harmonics.

III. PERTURBATION SOLUTION FOR THE ONE-
DIMENSIONAL PROBLEM VIA � EXPANSION

In this section, we shall apply the �-expansion method in
order to obtain perturbation solutions to the models describ-
ing a nonlinear wave propagating in a turbulent atmosphere
which has stochastic variations in the refractive index. In
particular, we first consider the one-dimensional model in
Eq. �1�, and we obtain the general perturbation solution
which is shown to split into a deterministic part �which holds
the contribution due to the nonlinearity� and a stochastic
part. In order to better compare our results to those in the
literature �in particular, Shivamoggi et al. �29�, who em-
ployed the most advanced treatment to date�, we restrict to
the mean value case and obtain the �-expansion solutions
which are in analogy to the small-� solutions given by Eq.
�14�; these solutions are later compared for set values of the
model parameters. Finally, we discuss the general solution
method for the fully three-dimensional model. For brevity,
we omit many of the computational details and derivations.
For details of the method, we refer the reader to the Appen-
dix; many of the results provided here fall out of the general
derivations given in the Appendix.

To apply the �-expansion method to one-dimensional
model �1�, let us consider the related nonlinear ordinary dif-
ferential equation,

d2E

dz2 + k0
2�1 + ����z��E + �aE1+� + �2b�E�2�E = 0. �16�

When �=1, this equation becomes Eq. �1�, while when �
=0, the equation becomes linear and deterministic �nonsto-
chastic�. Let us consider a solution expansion of the form

E�z� = E0�z� + E1�z�� + E2�z��2 + ¯ . �17�

Defining the linear operator L by

L�U� =
d2U

dz2 + �k0
2 + �a + �2b�U , �18�

we find that E0�z� is determined by L�E0�=0, and hence,
thus,

E0�z� = A1 sin�Kz� + A2 cos�Kz� , �19�

where

K � �k0
2 + �a + �2b �20�

and A1 and A2 are constants of integration. Again, notice that
E0�z� is completely deterministic, as we have pushed all sto-
chastic contributions due to � into higher-order terms. Fur-
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thermore, observe that K depends on both b �as does the
corresponding result of Shivamoggi et al. �29�� and
a—hence, in our solution both the cubic and quadratic terms
in Eq. �1� are taken into account in the very first approxima-
tion. Note that the standard small-� method �which Shiva-
moggi et al. �29� improved on� would actually omit both
parameters and would have taken K=k0 quite incorrect for
��0.

In general, for k�1, the higher-order terms are governed
by linear inhomogeneous ordinary differential equations of
the form

L�Ek� = − Bk�E0�z�,E1�z�, . . . ,Ek−1�z�� − �k0
2��z�Ek−1�z�

= − Bk
��z� − �k0

2��z�Ek−1�z� . �21�

Assuming that E0 holds all relevant information at z=0, we
may take Ek�0�=0 and �dEk /dz��0�=0. Then, inverting L, we
find that

Ek�z� =
1

K



0

z

sin�K�� − z��Bk
����d�

+
�k0

2

K



0

z

sin�K�� − z������Ek−1���d� . �22�

Note that both integrals are, in general, stochastic: the former
integral due to the dependence on the stochastic approxi-
mants E1 ,E2 , . . . ,Ek−1 and the latter integral explicitly so.
We then have the solution

E�z� = A1 sin�Kz� + A2 cos�Kz�

+
1

K
�
k=1

�

�k

0

z

sin�K�� − z��Bk
����d�

+
�k0

2

K
�
k=1

�

�k

0

z

sin�K�� − z������Ek−1���d� . �23�

Observe that we may always partition the terms in E�z� as

E�z� = Edet�z� + Estoch�z� , �24�

where Edet�z� is the deterministic contribution and Estoch�z� is
the stochastic contribution. Now, to order �2, we find that
�keeping all expressions in terms of the nonstochastic E0�z�
for sake of simplicity�

Edet�z� = E0�z� +
�

K



0

z

sin�K�� − z���a� + b�2E0����

�ln��E0�����d� +
2�2

K



0

z

sin�K�� − z���a�

+ b�2E0����ln��E0�����d� +
2�2

K2 

0

z

sin�K�� − z��

�b�2�1 + �E0����� +
a�

E0����
0

�

sin�K�� − ���

��a� + b�2E0����ln��E0�����d�d� �25�

and

Estoch�z� =
�k0

2

K
�


0

z

sin�K�� − z��E0�������d�

+
2�k0

2�2

K2 

0

z

sin�K�� − z��b�2�1 + �E0�����

+
a�

E0����
0

�

sin�K�� − ���E0�������d�d�

+
�k0

2

K2 �2

0

z

sin�K�� − z������

0

�

sin�K�� − ���

��a� + b�2E0����ln�E0����d�d�

+
�k0

2

K2 �2

0

z

sin�K�� − z������

�

0

�

sin�K�� − ���E0�������d�d� . �26�

Setting �=1, we recover the �-expansion approximation to
Eq. �1�. Notice the appearance of natural logarithms in these
expressions. These will serve to complicate the solution pro-
cess when we attempt to obtain the iterates in the perturba-
tion expansion about �. The trade-off, we find, is that the
iterates tend to converge more rapidly to the solution when
we apply the �-expansion method, compared to traditional
perturbation about a small parameter.

A. Perturbation solution via � expansion for the one-
dimensional problem: The mean value case reconsidered

Let us now restrict the expression obtained in Eq. �23� to
the mean value case �that is, apply the �-expansion method
to mean value �4��, so that we may more easily compare our
solutions to those in the literature. Note that for us � serves
as a general model parameter and not a perturbation param-
eter, so we are free to take ��0 large. Solving the first of
these linear equations for F0�z�, we obtain

F0�z� = A1 sin�keffz�exp�−
k0c2

4
�2z	 + A2 cos�keffz�

�exp�−
k0c2

4
�2z	 , �27�

where the effective wave number, keff, is given by

keff =�k0
2 + �a − � k0

2c1

2
− b	�2 − � k0c2

4
	2

�4. �28�

There are a few points to note here. First of all, note that this
zeroth-order term is of a similar �although more compli-
cated� form to solution �14� obtained when we perturb the
effective wave number, keff, and the additional perturbations
are effectively in the amplitude. Furthermore, the exponen-
tial factor is identical in both the perturbation solution of
Shivamoggi et al. �29� and the zeroth-order �-expansion so-
lution presented here. Thus, the very first approximate al-
ready recovers the important qualitative features of the per-
turbation solution of Shivamoggi et al. �29�, namely, the
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damping due to the stochastic parameter. The addition of
higher-order terms will then allow one to better account for
the quadratic and cubic nonlinearities present in the problem.

B. Some comments on the perturbation method
for the fully three-dimensional problem

In the literature, solutions for mutual coherence functions
�MCFs� exist for a number of special cases �24,26,27�. How-
ever, when a nonlinear wave has traveled a long distance
compared with the correlation range in the medium, it suffers
a large number of independent random scatterings, each of
which produces a slight random contribution and, hence, can
be considered to be a Markov process, which suggests the
use of a Fokker-Planck equation �19,28� to describe the wave
propagation in a random medium. In �29�, a general formu-
lation for the MCF for Eq. �3� through a Fokker-Planck
equation approach applied to the parabolic equation approxi-
mation was considered. The authors then proceeded to inves-
tigate the effects of the various nonlinear aspects of the wave
propagation. The authors then considered a ponderomotive-
force-driven model. In such a model, the ponderomotive
force exerted by the electric field of the wave digs density
cavities into the medium, which leads to local changes in the
refractive index of the medium �which then alters the wave
propagation characteristics�.

Applying the �-expansion method, we are able to linear-
ize the nonlinear partial differential equation governing the
electric field associated to the nonlinear wave. As we shall
see, even the process of solving the linear problem is com-
putationally involved. Thus, this serves as an instance where
it is useful to use a perturbation method along with numeri-
cal methods in order to fully obtain the approximate solu-
tions. The perturbation method allows one to linearize the
nonlinear partial differential equation, while the numerical
method would then allow one to successively solve the re-
sulting linear boundary value problems, which take the form
of the inhomogeneous Helmholtz problems.

To this end, consider the related nonlinear partial differ-
ential equation,

�2E + k0
2�1 + ���x,y,z��E + ��E�2�E = 0. �29�

Clearly, when �=1 we recover the original Eq. �3�, while
when �=0 we have a linear equation. Thus, we assume a
perturbation solution about �=0 or the form

E�x,y,z� = E0�x,y,z� + E1�x,y,z�� + E2�x,y,z��2 + ¯ .

�30�

Provided solution �30� converges at �=1, then Eq. �30� is a
solution to the original nonlinear Eq. �3�. Defining the linear
partial differential operator,

LH�u� = �2U + �k0
2 + ��U , �31�

which is just the Helmholtz operator over R3, we find that

LH�E0� = 0, �32�

LH�E1� = − 2� ln��E0��E0 − k0
2��z�E0, �33�

LH�E2� = − 2� ln��E0��E1 − 2E1�

− 2��ln��E0���2E0 − k0
2��z�E1, �34�

etc. We take the zero order term E0�x ,y ,z� to hold the rel-
evant boundary or far field conditions and the remaining
approximants Ek�x ,y ,z� �k�1� to take into account the in-
homogeneous contributions due to the nonlinearity and sto-
chasticity of the original nonlinear problem. Note that
E0�x ,y ,z� may be obtained via the Fourier analysis for rea-
sonable boundary or far field conditions. In particular, one
solves the homogeneous Helmholtz equation for the given
boundary or far field data. However, computing the higher-
order approximates, in which the inhomogeneous contribu-
tions involve ln�E0�, will be a nightmare. To make the pro-
cess more tractable, we can consider a finite term
approximation to E0�x ,y ,z� �in effect, we would truncate the
Fourier series to include only so many terms that are needed
to provide the desired accuracy�. We must be careful here, as
any errors obtained in approximating E0�x ,y ,z� will propa-
gate through to E1�x ,y ,z� and so on. One would then pro-
ceed to solve for the higher-order approximants in expansion
�30�. Obviously, this would need to be done numerically, as
the governing equations, while linear, are simply too compli-
cated. For each approximant Ek�x ,y ,z�, one solves in the
inhomogeneous Helmholtz equation for which the inhomo-
geneity is rather complicated �it will involve the natural loga-
rithm of the approximate Fourier series solution to
E0�x ,y ,z��.

IV. DISCUSSION

Here we shall discuss certain physical properties of the
solutions. We show that the �-expansion method allows us to
recover the salient features of the solution to some of the
nonlinear stochastic models governing wave propagation in a
random medium and is in strong agreement with numerical
simulations. We first obtain perturbation solutions to the one-
dimensional problem �Eq. �1�� by the use of the �-expansion
method and then construct the relevant solution for the mean
value of the field E, �E�. In particular, we consider both
�-expansion solutions and standard perturbation solutions in
the mean-field case. We find that, upon applying the
�-expansion method, one obtains perturbation solutions valid
for arbitrary values of ��0. In fact, even the order zero
approximations are quite good for small values of z. While
we compare that the two results in the mean value case as the
resulting equations are deterministic, we expect that the
�-expansion approximations will perform better than stan-
dard perturbation in all cases for sufficiently small variations
in the noise terms �.

A. Damping due to stochastic contributions

The exponential factors present in the perturbation solu-
tions, both those obtained here and those obtained via stan-
dard small-parameter methods, damp the solutions, and the
strength of this damping is directly tied to the properties of
the stochastic function ��z�. In the absence of the stochastic
factor, ��z��0, and thus the constants c1=c2=0. Hence, the
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zeroth-order approximant is not damped. Meanwhile, for
general stochastic functions ��z�, c2 cannot be taken to be
zero, as we see in the examples in Sec. IV. Hence, in general,
for c2�0, the wave undergoes stochastic damping. This in-
cludes the cases for which the wave propagation is an
Uhlenbeck-Ornstein process or a Gaussian process, as dis-
cussed previously.

B. Region of validity for Eq. (1)

Note that we may view � as a parameter measuring the
strength of the combined stochastic and nonlinear contribu-
tions. For relatively large values of the parameter b, a mea-
sure of the strength of the cubic nonlinearity, compared to
the parameters c1 and c2 due to the stochastic contribution,
we maintain the wave form present in Eq. �27�. If, however,
the parameters c1 and c2 are sufficiently large, then there will
exist �c�0, a critical value of � for which if 0��c then
keff is real �corresponding to the standard physical solutions�,
if �=�c then keff is zero �corresponding to a completely
damped mean field which decays to zero�, and if �c�
then keff is purely complex �nonphysical in the case where
the mean field may have unbounded growth, i.e., if �keff�
exceeds k0c2�2 /4�. Let us also denote by �E the � value for
which �keff�=k0c2�2 /4. To illustrate this, we plot sgn�keff��keff�
�the magnitude of keff with sign positive if keff is real and
negative if keff is complex� in Fig. 1 for parametric values
k0=1, c1=2 /5, c2=4 /5, a=0, and b=2. We find that �c

=�18+2�86�6.0454 and �E=�90+10�82�13.437. So,

for this special case, when 0���18+2�86 we maintain
the trigonometric wave form with stochastic decay. Mean-

while, for �=�18+2�86 there is strict exponential decay of

the mean field. For �18+2�86����90+10�82 the base
form of the solutions will be hyperbolic functions, though

they still decay due to the exponential factor. For �

=�90+10�82, we find that the positive power factor in the
hyperbolic factor exactly matches the exponential factor, so
that the mean field decays to a fixed nonzero constant as

z→+�. Finally, when ���90+10�82, the positive power
in the hyperbolic function will dominate, meaning that the
order zero solution can become unbounded.

C. Comparison with the method of Shivamoggi et al.

For sake of demonstration, let us consider Gaussian case
�9� �29�. Then,

keff =�k0
2 + a� + b�2 −

�k0
4

32
�1 − �2k0e−2k0

2
�2�4. �35�

Let us also require that �E��0�=1 and d
dz �E��0�=0 so that we

may determine the values of the constants A1 and A2 in Eq.
�27�. In Fig. 2, we plot the numerical solution �via a Runge-
Kutta method� to the equation for the mean field �Eq. �4��,
along with both the regular perturbation solution and the
solution obtained via the �-expansion method, up to order
zero, under the above conditions. Note that we restrict k0
=1, b=1, a=0, and �=1. Furthermore, we plot both the regu-
lar perturbation solution �of type �11�� and the solution ob-
tained via the �-expansion method up to order zero. Both
perturbation methods yield reasonably good approximations,
even at order zero, for small �. However, as we can see from
Fig. 2, the solution obtained by regular perturbation methods
breaks down for larger values of �, while the solution ob-
tained by the �-expansion method still captures the qualita-
tive features of the numerical solution even at the order zero
approximation.

D. Modification of the method for large a�0

Note that both the small-� type perturbation and the
�-expansion method solutions outlined above become less
accurate as we consider larger values of a�0, which con-
tribute to the higher-order harmonics. Thus, for a�0, we

FIG. 1. �Color online� We consider the case when k0=1, c1

=2 /5, c2=4 /5, a=0, and b=2 and plot the signed magnitude
����= �keff����sgn��keff����2� �which is positive if keff��� is real and
negative if keff��� is complex�. We also plot the function ����=
−k0c2�2 /4, which is the decay rate of the exponential factor. We see
that �c�6.0454 and �E�13.437. For 0���c we have that keff is
real valued, so the wave form solutions in terms of sines and co-
sines are maintained. For �c����E, the solution will be in terms of
a hyperbolic functions which are dominated by the decaying expo-
nential �of decay strength �����. However, for ���E, note that
keff��� strictly dominates ����; hence, there is a possible blowup in
the solutions.

FIG. 2. �Color online� Plotted are the numerical solution �solid
black line�, the perturbation solution of the type obtained by Shiva-
moggi et al. �29� �Eq. �11�� �dashed green line�, and the order zero
�-expansion solution �solid blue �gray� line� to the equation for the
mean field �Eq. �4�� under the above conditions �E��0�=1 and
d
dz �E��0�=0, k0=1, b=1, a=−1, and �=1.
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need to compute further terms in the �-expansion solution in
order to capture the qualitative features of the true solution.
Observe that we can obtain a more accurate order zero ap-
proximation using the �-expansion method if we are willing
to complicate the auxiliary operator L2 a bit more. To this
end, consider the related problem

d2

dz2 �E� + �2k0c2

2

d

dz
�E� + k0

2�1 − �2c1

2
	�E�

+ �a sgn��E���E�2� + �2b��E��2��E� = 0 �36�

and again assume an expansion in �. Here, sgn�x�=1 if x
�0, sgn�x�=−1 if x�0, and sgn�x�=0 if x=0. Then, E0 is
governed by L3�E0�=0, where

L3�U� =
d2U

dz2 + �2� k0c2

2
	dU

dz

+ �k0
21 −

c1

2
�2� + �a sgn�U� + �2b	U �37�

is now an auxiliary nonlinear differential operator due to the
sgn�U� term. Solving for E0, we compare this approximation
method with both the previous �-expansion solution �dis-
cussed in Sec. IV C� and the regular perturbation solution �of
type �11�� in Fig. 3. We see that by employing a nonlinear
auxiliary operator, we are better able to approximate the be-
havior of the numerical solutions in the large-� regime and
large a�0 regime. Thus, in attempting to linearize a nonlin-
ear differential equation, we may still end up throwing out
too much information. Combining the �-expansion method
with numerical methods, we are able to obtain very good
solutions using reasonable nonlinear operators such as L3.
While we were able to solve the nonlinear equation �Eq. �4��
numerically �in a direct manner via a Runge-Kutta method�,
note that this is not always the case. So, in particularly chal-
lenging nonlinear equations, one may attempt to employ both
the �-expansion method and numerical methods to obtain
solutions which might not be possible if only direct numeri-
cal methods are available.

V. CONCLUSIONS

Our results show the attenuation of the coherent wave
solution due to the stochastic inhomogeneities in the me-
dium. Indeed, as the strength of the stochastic term increases
in magnitude �due to the parameter ��, the effect is amplified.
Fixing �=1, in Fig. 2 we plot the numerical solution �via a
Runge-Kutta method� to the equation for the mean field �Eq.
�4��, along with both the small-� perturbation solution and
the solution obtained via the �-expansion method, up to or-
der zero. The solution obtained by the small-� perturbation
method of Shivamoggi et al. �29� breaks down for this larger
value of �, while the solution obtained by the �-expansion
method still captures the qualitative features of the numerical
solution, even at the order zero approximation, for suffi-
ciently small z. However, for larger z, the agreement gradu-
ally breaks down. That said, the �-expansion solution prop-
erly captured the decay rate of the oscillating solutions,
which the regular perturbation expansion in � misses at order
zero. The higher-order corrections for the �-expansion solu-
tion will serve to better account for the change in the period
of oscillation due to the nonlinearity. Furthermore, by em-
ploying a nonlinear auxiliary operator, we are better able to
approximate the behavior of the numerical solutions, in the
large-� regime, even at the order zero term. Combining the
�-expansion method with numerical methods, we are able to
obtain very good solutions via the modified �-expansion ap-
proach �see Fig. 3�.

Regarding the specific example considered in the mean
value case, note also that our method shows that both the
cubic and quadratic terms should influence the effective
wave number, along the lines of Eq. �28�. This is in contrast
to the results of Shivamoggi et al. �29� �e.g., the result listed
in Eq. �14�� as their perturbation results include only the
cubic nonlinearity contribution �due to the structure of their
perturbation solutions�. As we show in the Gaussian ex-
ample, the quadratic contribution should be taken in to ac-
count if one is to more properly deduce the behavior of the
wave solution to the model for � much larger than zero. We
thus view the � expansion results presented here as an exten-
sion to those of Shivamoggi et al. �29�, which themselves
were an improvement over standard perturbation results. The
construction of higher-order harmonics from our results will
provide more realistic solutions to both the mean value �Eq.
�4�� and general one-dimensional �Eq. �1�� models.

As we have shown, the �-expansion method is a promis-
ing tool for the perturbative study of differential equations
which are both nonlinear and stochastic. The primary benefit
to the method is that it involves a linearization that more
closely approximates the original nonlinear equation. The
primary drawback is that the method often involves loga-
rithms of the order zero approximation, rendering the method
difficult to apply for successively higher terms in many cases
and inapplicable in other cases where the order zero approxi-
mation is not properly behaved. However, in cases where the
iterates converge rapidly �so that relatively few higher-order
terms are needed in the construction of an approximate so-
lution�, the method proves useful. Furthermore, when deal-
ing with stochastic differential equations, the method allows
one to shift the stochastic contribution into higher-order

FIG. 3. �Color online� Plotted are the numerical solution �solid
black line�, the perturbation solution of the type obtained in Shiva-
moggi et al. �29� �Eq. �11�� �dotted green line�, the order zero
�-expansion solution �solid blue �gray� line�, and the modified
�-expansion method solution of order zero �dashed blue line� to the
equation for the mean field �Eq. �4��. The modified �-expansion
solution is obtained from solving Eq. �37�, and this method results
in a better fit to the numerical solution at order zero. Here we have
set �E��0�=1 and d

dz �E��0�=0, k0=1, b=1, a=1, and �=0.5.
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terms, allowing one to construct a deterministic order zero
approximation. In the case of linear stochastic contributions,
the first-order correction separates into a term due to the
nonlinearity and a term due to the stochasticity.

In addition to the ability to construct approximate solu-
tions for a nonlinear differential equation, perturbation meth-
ods allow us a “check” to numerical solutions over the pa-
rameter domains for which the respective solutions both
exist. Even more than that, the method may be coupled with
numerical methods, so as to offer an analytic-numerical
method. One would first linearize the original nonlinear
equation via the perturbation method. Then, one would solve
the resulting linear inhomogeneous differential equations �for
as many iterates as are required to obtain a desired accuracy�.
Such a method would be particularly effective here: in em-
ploying the �-expansion method, we observe that the inho-
mogeneities resulting from the manner in which we construct
our expansions is, in many cases, more complicated in struc-
ture than in the standard perturbation methods that employ
some small model parameter. Particularly, in the case of dif-
ferential equations with power-law nonlinearity, logarithms
of the order zero iterate will appear in the inhomogeneities,
rendering direct solution tedious if not impossible. That said,
the �-expansion method often gives fairly accurate solutions
in relatively few iterations �compared to small-parameter
perturbation methods�. Pairing the � expansion with numeri-
cal methods appropriate for the linearized equations allows
one to construct an analytic-numerical solution in cases
where no available numerical methods are useful for the
original nonlinear problem.

Note also that, while we were able to solve the nonlinear
equation �Eq. �4�� numerically �in a direct manner, via a
Runge-Kutta method�, there are many strongly nonlinear
equations which will not yield to standard numerical meth-
ods. Thus, the �-expansion method may be combined with
existing numerical routines, making for an effective tool with
which to study nonlinear phenomenon.
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APPENDIX: � expansion applied to stochastic operators

For sake of demonstration, consider the nonlinear differ-
ential equation

L�u� + N�u� + M����u� = g�x� , �A1�

where L is a linear operator, N is a nonlinear operator, M���
is a stochastic operator with stochastic parameter�s� �
�A�R���A�Rn�, x�D �the problem domain�, and
u :D→R. Introduce the related differential equation and op-

erator Ñ�u ;�� such that

L�u� + Ñ�u;�� + �M����u� = g�x� , �A2�

where Ñ�u ;1�=N�u� while Ñ�u ;0�=L1�u�. Consider a pertur-
bation solution

ũ = u0 + u1� + u2�2 + ¯ = u0 + �
k=1

�

uk�
k. �A3�

Observe that u0 is governed by

L̃�u0� = L�u0� + L1�u0� = g�x� �A4�

and thus u0 is deterministic �nonstochastic�. The higher-order
corrections are determined by solutions to

L̃�uk� = − Fk−1�u0,u1, . . . ,uk−1� − M����uk−1� �A5�

for k�1, where the Fk’s appear as coefficients in the expan-
sion

N�ũ;�� = �
k=0

�

Fk�u0,u1, . . . ,uk��k. �A6�

Recursively, we find that

uk = Ok�x;���u0� , �A7�

where, in general, the Ok’s are very complicated nonlinear
functions of u0, its derivatives, and its integrals. Then,

ũ = u0 + �
k=1

�

Ok�x;���u0��k. �A8�

In order to deduce the mean behavior of u �so as to average
out the stochastic contribution, resulting in a deterministic
solution� note that

�f� = 

A

f���p���d� , �A9�

where p is the probability density function for the stochastic
parameter ��A. Meanwhile, for an operator J�x ;���f�, we
similarly define

�J�x;���f�� = 

A

J�x;���f�p���d� . �A10�

Then, we arrive at the expression

�ũ� = �u0� + �
k=1

�

�Ok�x;���u0���k = u0 + �
k=1

�

O��x��u0��k

�A11�

for the mean value of the perturbation solution ũ, where

O��x� = �Ok�x;��� . �A12�

Thus, one benefit of the perturbation approach is that it al-
lows one to shift the stochastic contribution into the higher-
order terms and thus, in our notation, into the operators Ok.
Furthermore, we required no small parameters in the original
problem, thanks to the introduction of the book keeping pa-
rameter �.

Note that we may also account for nonlinear operators
M����u� more effectively if we are willing to take on addi-
tional complications in the auxiliary linear operator. What
one would do is to consider the related differential equation,
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L�u� + Ñ�u;�� + M̃����u;�� = g�x� , �A13�

where M̃����u ;1�=M����u� while M̃����u ;0�=L2�u� is a
linear deterministic operator; the construction of a particular
M̃����u ;0� will, of course, depend on the specific application
at hand. The linearized equation for the first term in the
�-expansion approximation would then be governed by

L̃�u0� = L�u0� + L1�u0� + L2�u0� = g�x� . �A14�

Observe that the order zero term u0 is still nonstochastic.
Finally, in order to account for stochastic inhomogeneities,

let us assume that g�x� is stochastic. We introduce the related
differential equation

L�u� + Ñ�u;�� + M̃����u;�� = �g�x� . �A15�

Clearly, when �=1, we recover the original stochastic non-
linear differential equation, while, when �=0, we obtain a
linear nonstochastic differential equation. We have effec-
tively pushed the stochastic inhomogeneity into the higher-
order terms.
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