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Human blood flow is a multiscale problem: in first approximation, blood is a dense suspension of plasma and
deformable red cells. Physiological vessel diameters range from about one to thousands of cell radii. Current
computational models either involve a homogeneous fluid and cannot track particulate effects or describe a
relatively small number of cells with high resolution but are incapable to reach relevant time and length scales.
Our approach is to simplify much further than existing particulate models. We combine well-established
methods from other areas of physics in order to find the essential ingredients for a minimalist description that
still recovers hemorheology. These ingredients are a lattice Boltzmann method describing rigid particle sus-
pensions to account for hydrodynamic long-range interactions and—in order to describe the more complex
short-range behavior of cells—anisotropic model potentials known from molecular-dynamics simulations.
Paying detailedness, we achieve an efficient and scalable implementation which is crucial for our ultimate goal:
establishing a link between the collective behavior of millions of cells and the macroscopic properties of blood
in realistic flow situations. In this paper we present our model and demonstrate its applicability to conditions
typical for the microvasculature.
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I. INTRODUCTION

Human blood is not a homogeneous substance but can be
approximated as a suspension of deformable red blood cells
�RBCs� �also called erythrocytes� in a Newtonian liquid, the
blood plasma. Under physiological conditions the volume
concentration of RBCs typically amounts to 40–50 % in
larger blood vessels. We neglect the other constituents such
as leukocytes and thrombocytes in this work due to their far
lower volume concentrations �1�. In the absence of external
stresses, erythrocytes assume the shape of biconcave disks
with a diameter of approximately 8 �m �2�. Their main bio-
logical task is the transport of oxygen in the body, but due to
the high volume fraction they also strongly affect the rheol-
ogy of blood and its clotting behavior �3�. An understanding
of these effects is necessary in order to study and to cure
pathologically deviating phenomena in the body and to de-
sign microfluidic devices for improved blood analysis. In
both cases, blood often has to be studied within complex
geometries that elude an analytical description. However,
also the computational treatment of blood is demanding. On
large scales like in arteries with diameters in the order of
millimeters, blood can be modeled as a continuous and even
Newtonian fluid �4�. Even then, the computational effort and
the complexity of the model can be significant if realistic
geometries show features which stretch over different length
scales.

For modeling flow in the microvascular network, there is
need for a description that accounts for the presence of dis-

crete cells �5�. Recently, models of deformable cells were
presented among others by Dupin et al. �6�, in the group of
Gompper �7�, and by Wu and Aidun �8�. Here, the cell mem-
brane is simplified to a deformable mesh and coupled to a
mesoscopic simulation method for the plasma such as mul-
tiparticle collision dynamics �7� or lattice Boltzmann �LB�
�6,8�. However, mainly because of the high resolution that is
necessary for the elaborate description of the cells, these
models are computationally too demanding for the applica-
tion to considerably larger three-dimensional �3D� systems.

Our motivation is to bridge the scales that are accessible
with both classes of existing models by an intermediate ap-
proach: we keep the particulate nature of blood but try to find
a minimal description of each single cell. We thus deliber-
ately simplify much further than the authors of the particu-
late models cited above in order to gain the potential for a
computationally efficient and scalable implementation. Re-
sorting to well-established methods from other areas of phys-
ics, we explore the ingredients necessary to recover the rheo-
logical behavior of blood. It is not our motivation to account
for subcell effects in more than a coarse-grained way. In this
work we aim at the description and validation of such a
model while presenting possible applications in the range
from approximately 10 �m upward. Our ultimate goal is to
develop a quantitative method that allows to study the flow
in realistic geometries but also to link bulk properties, for
example, the apparent viscosity, to phenomena at the level of
single erythrocytes. In the case of cell deformation and ag-
gregation in plane shear flow, this link has been established
already in experiment and theory �9�. Numerical simulations
enable us to extend this knowledge to the case of arbitrary
geometries and time-dependent flows. Further microscopic
properties of interest are the alignment of cells or local
changes of the cell concentration. The improved understand-
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ing of the dynamic behavior of blood might be used for the
optimization of macroscopic simulation methods. Only a
computationally efficient description allows the accumula-
tion of firm statistical data that is necessary for this task.

The main idea of our model is to distinguish between the
long-range hydrodynamic coupling of cells and the short-
range interactions that are related to the complex mechanics,
electrostatics, and the chemistry of the membranes. Long-
range hydrodynamic interactions are considered by means of
the LB method �10�. This mesoscopic simulation method al-
lows a relatively easy implementation of complex boundary
conditions which are needed for the simulation of realistic
geometries. Moreover, an efficient parallelization is straight-
forward which even with our simplified model is crucial for
the accumulation of statistically relevant data or for the de-
scription of realistic systems such as branching vessels. Re-
search on a parallel and efficient implementation of the LB
method for the simulation of flow in sparse vessel networks
was published by various authors �11–13�. Consequently, the
LB method was applied to blood flow already in earlier
works though they differ from our approach in the accuracy
with which cells are resolved. For example, Boyd et al. �4�
model blood either as a Newtonian fluid or a homogeneous
fluid with a shear rate-dependent viscosity. Further, the stud-
ies by Dupin et al. �6�, Wu and Aidun �8�, Migliorini et al.
�14�, and by Sun and Munn �15� involve LB solvers but
describe each RBC as either deformable or equipped with an
elaborate cell adhesion model.

In contrast to those, we are interested in a minimal reso-
lution of RBCs since reducing the resolution generally is the
most effective way to enhance the efficiency of a fluid dy-
namics solver. Ahlrichs and Dünweg implement a dissipative
coupling of point particles to an LB fluid �16�. However, the
description of RBCs as point particles would involve a res-
olution which is so low that hydrodynamics in the smallest
vessels becomes inaccessible. Concerning hydrodynamics, it
is questionable whether the resolution of cell deformation
has a benefit compared to a rigid particle model if each RBC
is resolved with only a few lattice spacings. In consequence
we decide for a method for suspensions of rigid particles of
finite size that is similar to the one described in �17�. As will
be explained below, not volume-conserving cell deforma-
tions of the order of one lattice spacing occur as an artifact of
the method already but do not show significant influence on
the flow behavior. Ding and Aidun simulated rigid particles
with the biconcave shape of unstressed red blood cells using
an LB method �18�. It is known, however, that RBCs aban-
don this equilibrium shape and instead resemble elongated
ellipsoids when exposed to shear flow �19�. Thus, taking into
account the limited lattice resolution, we decide for dis-
cretized ellipsoidal model cells with rotational symmetry as
an approximation of the shapes actually assumed by real
erythrocytes in many flow situations. Differently from
�18,20,21�, our implementation does not enforce rigid par-
ticle surfaces since this would be in contradiction with the
nature of deformable erythrocytes. Especially in bulk flow at
high volume concentrations but also in capillaries due to the
influence of walls, the flow is not dominated by long-range
hydrodynamics but by short-range cell-cell and cell-wall ef-
fects. Thus, a coarse-grained description using effective cell

and wall interactions is appropriate. We account for the com-
plex short-range behavior of RBCs on a phenomenological
level by means of model potentials. Our potentials serve to
provide a softly repulsive core that follows the approximated
ellipsoidal RBC shape. For this purpose, the method of
Berne and Pechukas �22� is applied in order to anisotropi-
cally rescale a Hookian spring potential.

In the following Sec. II we provide an introduction to the
application of the LB method to suspensions of rigid par-
ticles and discuss how our model differs from other imple-
mentations. In Sec. III we develop phenomenological poten-
tials for the anisotropic interaction of two cells and of cells
and walls. Section IV opens with the search for a parametri-
zation which fits to experimental literature data. This set of
parameters is then used to demonstrate the applicability of
the model to confined systems. We further discuss the per-
formance of our implementation for large systems and con-
clude with a summary in Sec. V.

II. HYDRODYNAMIC PART OF THE MODEL

To model the blood plasma that surrounds the cells the LB
method is applied. For a comprehensive introduction we re-
fer to �10�. The fluid traveling with one of r discrete veloci-
ties cr at the three-dimensional lattice position x and discrete
time t is resembled by the single particle distribution func-
tion nr�x , t�. Its evolution in time is determined by collision

nr
��x,t� = nr�x,t� − � �1�

and the successive advection

nr�x + cr,t + 1� = nr
��x,t� �2�

of the postcollision distribution nr
��x , t�. Equations �1� and

�2� together can be written as the lattice Boltzmann equation

nr�x + cr,t + 1� = nr�x,t� − � . �3�

For the sake of simplicity and computational efficiency we
follow a D3Q19 approach with a single relaxation time �
�23�. We thus have 19 discrete velocities and the Bhatnagar-
Gross-Krook �BGK�-collision term �24�

� =
nr�x,t� − nr

eq���x,t�,u�x,t��
�

, �4�

where the equilibrium distribution function

nr
eq��,u� = ��cr�1 +

cru

cs
2 +

�cru�2

2cs
4 −

u2

2cs
2 +

�cru�3

6cs
6 −

u2cru

2cs
4 �

�5�

is an expansion of the Maxwell-Boltzmann distribution of
third order in velocity u �25�. The value of the speed of
sound cs=1 /�3 depends on the choice of the lattice. The
same holds for the lattice weights

�cr
= �1/3 for cr = 0

1/18 for cr = 1

1/36 for cr = �2
	 , �6�

which differ for lattice velocities cr according to their abso-
lute value cr. The local density
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��x,t� = 

r

nr�x,t� �7�

and velocity

u�x,t� =



r

nr�x,t�cr

��x,t�
�8�

are calculated as moments of the fluid distribution with
respect to the set of discrete velocities. Both are invariants of
the BGK collision rule Eq. �1�. This method is well
established for the simulation of the liquid phase of suspen-
sions �17,20�, namely, blood �6,8�. It can be shown that in the
limit of small velocities and lattice spacings the Navier-
Stokes equations are recovered with a kinematic viscosity
�= �2�−1� /6.

For a coarse-grained description of the hydrodynamic in-
teraction of cells and blood plasma, a method similar to the
ones explained in �17,20� modeling rigid particles of finite
size is applied. Starting point is the midlink bounce-back
boundary condition that implements no-slip boundaries for
the fluid: arbitrarily shaped geometries are discretized on the
lattice by turning the lattice nodes on the solid side of the
theoretical solid-fluid interface into fluidless wall nodes. If x
is such a node the updated distribution at x+cr is not deter-
mined by the advection rule Eq. �2� but according to

nr�x + cr,t + 1� = nr̄
��x + cr,t� , �9�

which means replacing the local distribution with the post-
collision distribution of the opposite direction r̄ �defined by
cr̄�−cr�. We make use of this boundary condition to imple-
ment �rigid� vessel walls.

To model boundaries moving with velocity v, Eq. �9� can
be complemented with a correction term

C =
2�cr

cs
2 ��x + cr,t�crv , �10�

which is of first order in velocity. Inserting Eqs. �5� and �10�,
one can easily prove that the update rule

nr�x + cr,t + 1� = nr̄
��x + cr,t� + C �11�

is up to second order consistent with the equilibrium distri-
bution function Eq. �5� for the general case u=v�0.

When used to implement freely moving particles, it is
necessary to keep track of the momentum

�pfp = �2nr̄ + C�cr̄, �12�

which is transferred during each time step by each single
bounce-back process. According to the choice of unit time
steps it is equal to the resulting force on the particle. The
equations of motion of the particles are integrated like in
classical molecular-dynamics �MD� simulations to achieve
the time evolution of the system. We implement a combined
LB/MD code in which both the time step and the spatial
decomposition scheme are shared between the two methods.
A leap-frog integrator that is adapted to the internal repre-
sentation of the cell orientations based on unit quaternions is
applied �26�.

Due to discretization errors the representation of a particle
on the lattice slightly changes its shape and volume during
movement. When new lattice sites are covered, the fluid at
those is deleted. When a site formerly occupied by a particle
is freed, new fluid is created according to Eq. �5�. In doing
so, the initial density �̄ of the simulation is utilized as �. The
velocity u is estimated according to the translational and
rotational velocity of the particle and the no-slip assumption.
In both cases the change in total fluid momentum is balanced
by an additional force on the respective particle.

Physiological RBCs, however, are deformable and assume
the shape of biconcave disks in the absence of external
stresses �2�. Despite the coarse-graining in our model, we do
not want to give up the anisotropy of RBCs. Obviously, an-
isotropic model cells are able to display a much richer be-
havior than radially symmetric particles. We thus choose a
simplified ellipsoidal geometry that is defined by two distinct
half-axes R� and R� parallel and perpendicular to the unit
vector ôi which points along the direction of the axis of
rotational symmetry of each particle i.

Closely approaching particles are modeled as follows:
when there are still fluid nodes between both discretized vol-
umes the LB method is able to keep track of the emerging
lubrication forces apart from discretization errors. As soon as
there is a direct particle-particle interface without intermedi-
ate fluid nodes, the lubrication forces cannot be covered by a
lattice-based method anymore. Moreover, an effective attrac-
tion becomes visible because of the missing fluid pressure in
between the particles. Typical applications of this simulation
method to the case of dense suspensions additionally feature
analytical short-range lubrication corrections to overcome
this problem �20,21�. These are implemented as pair forces
that depend on the relative velocity and diverge for vanishing
gap widths. However, this procedure is inappropriate for a
model for suspensions of deformable cells. Since the theo-
retical particle shapes defined by R� and R� are fixed, our
application even requires tolerance for the overlap of the
discretized volumes in order to account for the case where
two cells strongly deform while approaching each other. Due
to the complexity of the emerging forces that include elec-
trostatic repulsion and van der Waals forces but also the me-
chanics and chemistry of the cell membranes and the rheol-
ogy of the cell plasma, we cover them on a purely
phenomenological level in the next section. Here, we support
the LB method with additional rules which result in forces
for the case of two particles in direct contact with each other
that are neither divergent nor excessively attractive. Wher-
ever a direct particle-particle interface is encountered, we
apply a pair of mutual forces

Fpp
+ = 2nr

eq��̄,u = 0�cr �13�

and

Fpp
− = 2nr̄

eq��̄,u = 0�cr̄ = − Fpp
+ �14�

at each link across the interface which are directed toward
each respective particle. Comparison with Eq. �12� shows
that this is exactly the momentum transfer during one time
step due to the rigid-particle algorithm for a resting particle
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and an adjacent site with resting fluid at equilibrium and
initial density �̄. The fluid in our simulation is to good ap-
proximation incompressible and the velocities are small. The
forces arising from those regions of the particle surfaces that
are in contact with the fluid therefore are largely compen-
sated and do not cause an artificial attraction. In conse-
quence, the self-induced collapse of particles in contact is
prevented without the need for divergent lubrication correc-
tions as in rigid-particle models. Moreover, for a given sys-
tem, Eqs. �13� and �14� depend only on cr=−cr̄. For symme-
try reasons, nr

eq��̄ ,0�=nr̄
eq��̄ ,0� holds. Thus, the momentum

balance is kept since the two forces emerging from any
particle-particle link compensate each other. However, since
Eqs. �13� and �14� do not depend on the relative velocity
they cannot cover dissipative forces between particles. This
limitation needs to be kept in mind when deciding about
phenomenological cell-cell forces and their parametrization
later in this paper.

For the sake of simplicity we do not allow a lattice node
to be occupied by more than one cell. Occupation instead is
determined by the order in which cells arrive at a node. From
the point of view of the surrounding fluid this behavior is
physically consistent with two particles that compressibly
deform upon contact. The compressibility, however, can lead
to an artificial increase in the total mass since the number of
fluid nodes increases temporarily and we do not adjust the
particle mass dynamically according to the volume occupied
momentarily. Thus, in an ensemble of many cells, there are
fluctuations of the total mass due to the introduction of the
correction term C in Eq. �11� and due to the change in total
volume of the solid phase which fluctuates when cells move
and increases when they overlap. However, even during mil-
lions of time steps we find no drift of the total mass for the
systems we simulate here.

In case of close contact of cells with the confining geom-
etry we proceed in a similar manner as for two cells. The
only difference is that the forces on the system walls are
ignored since they are assumed to be rigid and fixed.

III. MODEL POTENTIALS FOR CELL-CELL
AND CELL-WALL INTERACTIONS

In order to account for the complex behavior of real RBCs
at small distances we add phenomenological pair potentials.
For simplicity, we restrict ourselves to repulsive forces. This
can be justified because in many physiological situations of
interest, for example, close to the walls of large parts of the
arterial system, high shear rates render aggregative effects
negligible �9,27�. The task of the potential therefore lies in
establishing an excluded volume for each cell. Due to the
mild increase in the potential, an overlap of these volumes
will be unfavorable yet possible to some degree. Thus, the
deformation of cells upon contact is modeled in a phenom-
enological way. A simplified potential also is beneficial to the
efficiency of the model since it can be evaluated with less
numerical effort and is less likely to demand small time steps
or high order integrators. We start with the repulsive branch
of a Hookian spring potential

	�rij� = 

�1 − rij/��2 rij � �

0 rij 
 �
� �15�

for the scalar displacement rij of two particles i and j. This is
probably the simplest way to describe �elastic� deformability.
The energy at zero displacement and the distance at which
the repulsive potential force sets in can be directly controlled
by means of the parameters 
 and �. With respect to the
disklike shape of RBCs, we follow the approach of Berne
and Pechukas �22� and choose the stiffness parameter


�ôi, ô j� =

̄

�1 − �2�ôiô j�2
�16�

and the size parameter

��ôi, ô j, r̂ij� =
�̄

�1 −
�

2
� �r̂ijôi + r̂ijô j�2

1 + �ôiô j

+
�r̂ijôi − r̂ijô j�2

1 − �ôiô j
�
�17�

as functions of the orientations ôi and ô j of the cells and their
normalized center displacement r̂ij. We achieve an aniso-
tropic potential with a zero-energy surface that is approxi-
mately that of ellipsoidal disks. Their half-axes �� and ��

parallel and perpendicular to the symmetry axis enter Eqs.
�16� and �17� via

�̄ = 2�� and � =
��

2 − ��
2

��
2 + ��

2 , �18�

whereas 
̄ determines the potential strength. The above ap-
proach for anisotropic rescaling of radial symmetric poten-
tials and its later improvement by Gay and Berne �28� were
intended for modeling liquid crystal systems. Particularly the
method by Gay and Berne is applied almost exclusively to a
Lennard-Jones potential featuring a short-range repulsion
and an attraction on moderate distances. This is referred to as
“Gay-Berne potential” in the literature. The model potential
presented by us lacks the attractive tail but is equipped only
with a softly repulsive core. In consequence, there is no force
acting on particles separated by more than the respective
core diameter and at physiological volume concentrations we
cannot expect to observe spontaneous ordering of the system.
Compared to typical liquid crystal applications, the role of
our potential lies rather in providing a soft repulsion within
an anisotropic discoid volume than in making specific cell
alignments more favorable compared to others. Figure 1 dis-
plays in dimensionless form the magnitude of the resultant
repulsive pair force F as a function of rij for ��=3�� and
three simple sets of relative orientations: ôi � ô j � r̂ij,
ôi � ô j � r̂ij, and ôi� ô j � r̂ij. Depending on the orientations, the
repulsive force sets in at different rij. Aiming at the presen-
tation of a model potential which is simplified to the greatest
possible extent, we chose the Berne-Pechukas approach
which is slightly less complex than the more popular one by
Gay and Berne. In this approach, it is not possible to inde-
pendently adjust the interaction strength for different mo-
lecular orientations. That the potential is considerably stiffer
in the case where the flat sides of both cells are aligned
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toward each other is, however, consistent with the fact that
for this orientation, the same linear approach creates a sig-
nificantly larger overlap volume than in the other two cases.
In the following section, we will find values for 
̄, ��, and ��

that reproduce the rheological behavior of blood.
For modeling the cell-wall interaction we assume a sphere

with radius �w=1 /2 at every lattice node on the surface of a
vessel wall and implement similar potential forces as for the
cell-cell interaction based on the repulsive spring potential
Eq. �15�. Berne and Pechukas show that using

��ôi, r̂ix� =
�̄w

�1 − �w�r̂ixôi�2
�19�

instead of Eq. �17� as a size parameter with

�̄w = ���
2 + �w

2 and �w =
��

2 − ��
2

��
2 + �w

2 �20�

allows to scale a potential with radial symmetry to fit for the
description of the interaction of a sphere and an ellipsoidal
disk �22�. r̂ix is the normalized center displacement of par-
ticle i and a wall node x. It is not necessary to scale the
stiffness parameter anisotropically, instead we set 
�ôi , ô j�
= 
̄w fixed and use 
̄w to tune the potential strength. The
values of �� and �� are kept the same as for the cell-cell
interaction.

Figure 2 shows a conclusive outline of the model. Two
cells i and j surrounded by blood plasma and a section of a
vessel wall are displayed. To enhance the explanatory power
of the drawing we choose to restrict ourselves to the presen-
tation of a cut parallel to the axes of rotational symmetry of
the cells. Thus, the RBCs are visualized as two-dimensional
�2D� ellipses instead of three-dimensional ellipsoids. De-
picted are the cell shapes defined by the zero-energy surface
of the cell-cell potential Eq. �15� with Eq. �17� that can be
approximated by ellipsoids with the size parameters �� and
�� as half axes. Also shown are the spheres with radius �w
defined accordingly by the cell-wall interaction Eqs. �15� and
�19� which are assumed at all wall nodes that are linked to a
fluid node by one of the lattice directions cr. While these
spheres are centered on the respective wall nodes, the cells
are free to assume continuous positions and orientations oi

and o j. In consequence, also the center displacement vectors
rij and rix between the cells and between cell i and an arbi-
trary wall node x are continuous. Still, for the cell-plasma
interaction an ellipsoidal volume with half axes R� and R� is
discretized on the underlying lattice. For clarity, this is drawn
only for cell j.

IV. RESULTS

As a convention in this work, primed variables are used to
distinguish quantities given in physical units from the corre-
sponding unprimed variable measured in lattice units. The
maximum extent of physiological RBCs at their equilibrium
shape amounts to about 8 and 2.6 �m perpendicular and
parallel to the axis of rotational symmetry �2�. We find that
an ellipsoid of revolution with the same numbers as axes has
a volume of 87 �m3 which fits with the RBC volume mea-
sured in �2�. We therefore choose the size parameters of the
cell-cell potential to be

��� = 4 �m and ��� = 4/3 �m �21�

and achieve that both the magnitude and the maximum ex-
tents of the volume defined by the cell-cell interaction match
typical values for physiological erythrocytes.

All quantities that are of interest in our simulations can be
converted from simulation units to physical units by multi-
plication with products of integer powers of the conversion
factors �x, �t, and �m for space, time, and mass that thus
completely define a scale. We determine the mean deviations
of the Stokes drag coefficients of a single spherical particle
from the theoretical values in the laminar regime to be in the
order of 10−2 for a radius of 2.5 lattice units. This is in
agreement with equivalent tests done by Ladd �29�. We
therefore restrict ourselves to simulations of particles whose
representation on the lattice is at least as large as that of a
sphere with radius 2.5. When using the same aspect ratio
R� /R� =�� /�� =3 for the cell-fluid as for the cell-cell inter-

0.0

0.5

1.0

1.5

0 1 2 3 4 5 6

F
σ
‖/

ε̄

ri j/σ‖

FIG. 1. Dimensionless repulsive potential force as a function of
the dimensionless center distance for ��=3�� and three sets of
relative orientations ôi � ô j � r̂ij, ôi � ô j � r̂ij, and ôi� ô j � r̂ij. An ap-
proximately ellipsoidal excluded volume can be deducted from the
surface at which the repulsion sets in.

σw

oi

oj

ri j

x
rix

σ⊥
σ‖

R⊥

R‖

plasma

wall

cell i
cell j

FIG. 2. �Color online� Outline of our 3D model by means of a
2D cut. Shown are two cells i and j with their axes of rotational
symmetry oi and o j. The volumes defined by the cell-cell interaction
is approximately ellipsoidal with half axes �� and �� �red, —�. The
ellipsoidal volume of the cell-plasma interaction with half axes R�

and R� is discretized on the underlying lattice. It is shown for only
one cell �blue, - -�. The cell-wall potential assumes spheres with
radius �w on all surface wall nodes �green, —�. Depicted are also
the center displacement vectors rij and rix between both cells and to
an arbitrary surface wall node x.
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action, this requirement results in minimum values for R�

and R� of 3.6 and 1.2 lattice units, respectively.
It can be expected that with cell-fluid volumes that are

significantly smaller than the size parameters of the potential
we cannot achieve realistic coupling strengths which are
needed, for example, to model the clogging of capillaries.
Still, R� and R� should be smaller than the respective size
parameters of the cell-cell potential since limiting the
amount of overlapping cell-fluid interaction volume will im-
prove the modeling of hydrodynamics between cells. Ladd et
al. �30� suggest assisting the particle-fluid coupling method
with lubrication corrections starting at gap widths below 2/3
lattice spacings. Throughout this work, we choose �x
=2 /3 �m as a compromise that both keeps the resolution
and the computational cost low and allows one to combine—
for example—a high ratio of R� /�� =7 /8 with a minimum
gap width of 2��� −R��=0.5 at which the cell-cell potential
starts to set in.

To improve the numerical stability of the LB method and
to easily relate given input radii R� and R� to an effective
particle size �29�, we always set the relaxation time to �=1.
This, together with the constraint

�
�x2

�t
=

2� − 1

6

�x2

�t
= 1.09 � 10−6m2

s
= �� �22�

caused by the fact that the simulated kinematic fluid viscos-
ity � is supposed to match the kinematic viscosity of blood
plasma of ��=1.09�10−6 m2 /s when converted to physical
units, determines the time discretization as �t=6.80
�10−8 s. For convenience, we arbitrarily choose the fluid
density in simulation units to be �̄=1. With �x and the physi-
cal plasma density �̄�=1.03�103 kg /m3, this choice results
in a mass conversion factor of �m=3.05�10−16 kg.

We first investigate the effects of the free model param-
eters by measuring the ratio of the apparent dynamic viscos-
ity �app and the constant plasma viscosity � for a homoge-
neous suspension of cells in plane Couette flow. All
simulations reported here are performed on a system with a
size of lx=128 lattice units in x direction and at least ly = lz
=40 lattice units in y and z directions. This represents 85
�272 �m3 of real blood. Between the two yz-side planes a
constant offset of the local fluid velocities in z direction is
imposed by an adaption of the Lees-Edwards shear boundary
condition to the LB method �31,32�. The other edges are
linked purely periodically. For the cells, we implement a re-
flective boundary condition that negates the normal velocity
component of a cell as soon as its center distance to one of
the sheared side planes becomes less than ��. This proce-
dure surely is inconsistent with respect to the open bound-
aries implemented for the fluid but far easier to achieve than
a common Lees-Edwards implementation for both phases. To
prevent these boundaries from influencing our measure-
ments, we determine the shear rate �̇ only in the central half
of the system where the flow resembles an unbounded Cou-
ette flow. We obtain �̇ from a linear fit of the velocity profile
vz�x�. The apparent viscosity

�app =
�pLE,z

lylz�̇
�23�

is then calculated based on �pLE,z which is the averaged z
momentum transfer across both Lees-Edwards boundaries
during one time step. For each shear rate, we start with rest-
ing and randomly oriented model cells suspended in likewise
resting fluid. We calculate Eq. �23� in intervals during the
simulation and start accumulating the result for temporal av-
eraging as soon as a steady state is achieved. Several samples
prove that neither changing the random seed for the genera-
tion of the initial cell configuration nor stepwise increasing
the system size perpendicular to the velocity gradient up to a
volume of 853 �m3 leads to any significant deviation of the
results. However, we find that the shear causes the cell ori-
entations �ôi� to preferably align in the xz plane.

A proper choice of the ratio R� /�� is not known a priori.
We thus perform simulations at a constant shear rate of �̇
= �2.21�0.08��103 s−1 for different R� /��. The resulting
particle Reynolds numbers ReP are of the order of 10−1. We
arbitrarily choose a cell number density of p�= �6.4�0.3�
�1015 m−3 corresponding to a physiological hematocrit of
56% and a cell stiffness parameter of 
̄�=1.47�10−15 J. The
resulting apparent viscosity �app as a function of the ratio
R� /�� is drawn in Fig. 3. A relatively mild and almost linear
increase is visible for R� /�� �1 which can be related to the
increase in friction in the system. Around 1, the increase
becomes considerably steeper as the minimum gaps of ap-
proaching cells vanish. At even larger ratios, the slope de-
creases again due to large and unphysical amounts of overlap
of the cell-fluid coupling volumes that accordingly to Eqs.
�13� and �14� reduce the effective friction between cells.
Based on our previous considerations and affirmed by Fig. 3,
we choose R� /�� =11 /12�0.92 as a value that is close to
unity but still induces an only moderate amount of overlap
even at high shear rates of the order of 103 s−1. This choice
results in size parameters of the cell-fluid interaction of

R�� = 11/3 �m and R�� = 11/9 �m. �24�

All dimensions in Fig. 2 above were already drawn to scale
with respect to the dimensional parameters in Eqs. �21� and
�24�.
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FIG. 3. Dependence of the apparent dynamic viscosity �app on
the fraction R� /�� of the linear dimensions of the cell-fluid and
cell-cell interaction volumes for a shear rate of �̇�= �2.21�0.08�
�103 s−1, a number density of p�= �6.4�0.3��1015 m−3, a cell
stiffness parameter 
̄�=1.47�10−15 J, and cell-cell size parameters
��� =4 �m and ���=4 /3 �m. All consecutive simulations are per-
formed with R� /�� =11 /12�0.92.
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The parameter 
̄ is of special interest since it controls the
cell stiffness which describes the deformability of the eryth-
rocytes in our model. From experiments it is known that the
shear thinning behavior of blood at high shear rates is related
to the deformability of the RBC membrane and can be dis-
abled by artificial hardening of the cells �9,33�. Our imple-
mentation of the model stays numerically stable only for a
limited range of 
̄. Simulations performed for various shear
rates 1.7�101 s−1��̇�2.3�104 s−1 corresponding to par-
ticle Reynolds numbers 10−3�ReP�1 and 
̄� varying be-
tween 1.47�10−16 J and 1.47�10−12 J at a cell-fluid vol-
ume concentration of 43% still show that for a given shear
rate, larger 
̄ result in higher viscosities yet in a less steep
viscosity decrease. Figure 4 displays this effect which is as-
ymptotically consistent with the experimental results of
Chien �9�. It is interesting to note that by plotting the appar-
ent viscosity over the fraction �̇ / 
̄—as we do in Fig.
4�b�—we can collapse the region of strongest viscosity de-
crease in the curves for different 
̄. This indicates that the
shear thinning is determined by a balance of viscous and
potential forces that scale with �̇ and 
̄, respectively. Com-
parison of Fig. 4 with experimental data taken from the lit-
erature �9� shows best consistency in the case of high shear
rates �̇��103 s−1 for 
̄�=1.47�10−15 J. We keep this value
for all further simulations in the current work.

Having defined values for all parameters of the cell-fluid
and cell-wall interaction, we can now investigate the effect
of varying cell concentrations on the viscosity. For given R�

and R�, the cell-fluid volume concentration �cf is propor-
tional to the number concentration. Figure 5 shows the de-
pendence of the apparent viscosity on �cf for a fixed shear
rate of �̇�= �2.2�0.1��103 s−1. The particle Reynolds num-
ber is of the order of ReP�10−1. For �cf�35% we find a
nearly linear increase in �app. For �cf�35%, the curve is
still linear but the slope is slightly smaller. Compared to the
literature, �app stays clearly below the viscosities known for
hard ellipsoids with a similar aspect ratio of 0.3 �34�. The
lower viscosities of our model, especially at high volume
fractions, are caused by the reduced dissipation between

touching and overlapping cells. This explanation can be sub-
stantiated by considering two neighboring boxes of a peri-
odic arrangement each containing one cell in the center. De-
pending on the orientation and offset relative to the LB grid,
direct cell-cell links start to occur at volume concentrations
between 30% and 50% for the given R� and R�. These num-
bers also match the region in Fig. 5 where the slope of
�app��cf� decreases. As can be seen from Fig. 5, our results
for concentrations up to about 50% fit reasonably well with
the experimental studies of Goldsmith �see �3�� and of Shin
et al. �33�. At higher �cf, touching cell-fluid volumes start to
dominate the rheology of the model suspension. The exact
shear rates applied by Goldsmith and Shin et al. are not
known. We can only infer from the literature that �̇� was
larger than 100 and 250 s−1, respectively. In this range,
blood shows shear thinning behavior �9,33� and so does our
model �see Fig. 4�. It therefore is not possible to determine
whether—as Fig. 5 suggests—the model perfectly matches
with experiments for �cf�40% and underestimates the vis-
cosity between 40% and 50%. However, Fig. 4 demonstrates
that a better consistency at physiologically important concen-
trations around 40% should be easily attainable by tuning the
value of 
̄.

While the previous simulations regard bulk properties we
now turn to examples where confinement and particulate ef-
fects play a crucial role. The cell-wall interaction stiffness 
̄w
can be determined similarly as 
̄ by comparison with experi-
mental data. As an example we choose the sieving experi-
ments performed by Chien et al. who filtered human eryth-
rocytes through polycarbonate sieves with mean pore
diameters of D�=2.2–4.4 �m and mean pore lengths of
13 �m �35�. They analyzed the resulting flow resistance and
damaging of cells in dependence on the pressure drop �P�
across the sieves which was varied between approximately
102 and 105 N /m2. We simulate a single cell in front of a
pore at a small value of �P�=4�102 N /m2 �0.3 cm Hg�
and vary the pore diameter and 
̄w. At this pressure drop, no
significant hemolysis, which—as a subcell effect—is not re-
solved in our model, was found in the experiments �35�.
However, compared to the case of D�=4.4 �m, the flow
resistance was increased by a factor of approximately 4 for
D�=3.7 �m, by about 30 for D�=3.0 �m, and by more
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FIG. 4. �a� shows the shear rate dependent apparent viscosity
�app at a cell-fluid volume concentration of �cf=43%. The different
symbols represent different cell stiffness parameters 
̄�=1.47
�10−k, with k=16,15,14,13,12 from bottom to top. Rescaling the
shear rate �̇� with 
̄� as displayed in �b� leads to a collapse of the
region of steepest viscosity decrease on a single curve which hints
at a concurrence of viscous and potential forces. All further simu-
lations are performed with k=15.
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than 100 for D�=2.2 �m at a hematocrit not higher than of
the order of 1%. In our simulations, we identify the nonpass-
ing of model cells with a high increase in flow resistance in
the experiments. We find that for 
̄w� =1.47�10−16 J, the cell
passes a pore with only D�=3.0 �m while for 
̄w� =1.47
�10−14 J already a diameter of D�=4.4 �m proves an in-
surmountable obstacle. In view of reference �35� these two

̄w are unrealistic but the intermediate value 
̄w� = 
̄�=1.47
�10−15 J is an appropriate choice for this setup which al-
lows the model cell to pass through pores with a diameter of
3.7 �m and more. We now study the flow through a bifur-
cation of cylindrical capillaries with a radius of 4.7 �m. One
of the branches, however, features a stenosis with radius Rs.
A cut through the geometry containing nine RBCs is dis-
played in Fig. 6. It visualizes the cells as the approximated
ellipsoidal volumes defined by the zero-energy surface of the
cell-cell interaction and the vessel walls as midplane between
fluid and wall nodes. The open ends of the system are linked
periodically. We drive the system by means of a body force
acting only on the fluid in the entrance region. As initial
condition, cells are placed randomly in the unconstricted
parts of the system. Both, the tube diameters and Reynolds
numbers Re�4�10−3 match physiological situations �3�. As
above, the cell-wall potential stiffness is chosen to be 
̄w�
= 
̄�=1.47�10−15 J. We average the relative flow rate

through the constricted branch Q̂constr=Qconstr / �Qconstr
+Qunconstr� from 1.7 to 3.0 s measured from system initializa-
tion. This is done for Rs�=2.7, 4.0, and 4.7 �m. As expected,
the results in Fig. 7 are monotonous with Rs. When studying
the volumetric flow rates of plasma and cells separately, it
becomes clear that for Rs�=2.7 �m the cells cannot pass the
constriction at the present body force. This situation is visu-
alized in Fig. 6.

We further study the dynamics of the system for the
present and two lower cell-wall interaction parameters and

plot Q̂constr�t� in Fig. 8. For 
̄w� =1.47�10−15 J, the curve
decreases in two steps due to the successive arrival of two
erythrocytes and stays below 10% as only a small amount of
plasma is able to pass the remaining aperture. In contrast,
there is a continuous flow of plasma and cells for 
̄w� =1.47

�10−17 J. For an intermediate stiffness 
̄w� =1.47�10−16 J
the cells get stuck initially. However, the flow in the nar-
rowed branch is influenced by the time-dependent cell con-
figuration in the other branch. It happens eventually that the
pressure in front of the stenosis rises to a level which lets the
RBC overcome the barrier imposed by the cell-wall poten-
tial. Each restitution of a higher flow level is initiated by a
peak which can be explained by the cell-wall potential that
accelerates the RBC into the flow direction while the cell
leaves the constriction. As another effect, we find 
̄w to affect
the relative flow rates of the two phases since larger values
force the cells into the center of the capillaries where higher
velocities are measured.

Despite the coarse-graining of the model it qualitatively
reproduces some aspects of the behavior observed for blood
flow in capillaries. The fact that cells approaching a bifurca-
tion show a strong preference to choose the faster branch is

FIG. 6. Cut through a capillary bifurcation. Shown are the vol-
umes defined by the cell-cell interaction and the midplane between
wall and fluid nodes. The plasma is not visualized. The flow direc-
tion is from left to right. The vessel radius is Rs�=2.7 �m at a
stenosis in the upper branch and 4.7 �m otherwise. Geometries
with length scales that are not large compared to a cell diameter
require treatment by a method that is able to resolve particulate
effects like the shown clogging of the constricted branch for a cell-
wall potential strength of 
̄w� =1.47�10−15 J.
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cessive arrival of two single erythrocytes at the constriction. With

̄w� =1.47�10−16 J, the reduction in the flow rate is only temporary
since the cells are eventually able to pass. While leaving the con-
striction, the RBCs are accelerated by the cell-wall potential forces
which explains the peaks of the flow rate.
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described in �3�. The last consequence of this effect is visible
in Figs. 6 and 8 where during a considerable amount of time
no further RBCs enter the constricted branch after its closure.
It can be seen that our model is able to describe particulate
effects which could hardly be covered in terms of a continu-
ous fluid. Obviously, reproducing the behavior of single cells
at bifurcations is crucial if the microcirculation and its het-
erogeneous flow properties are to be modeled �5�.

The vessel radii present in the human microvascular sys-
tem approximately cover a range from 2 to 50 �m. Having
demonstrated the applicability of our model to small capil-
laries, we proceed with a study of the steady flow through a
larger vessel with a radius of R�=31 �m corresponding to
an arteriole or venule �5�. In the simulation, the vessel is
closed periodically at a length of 43 �m. We choose �cf
=42% and an intermediate cell-wall interaction stiffness 
̄w�
=1.47�10−16 J. Figure 9 shows a cut through the vessel for
steady flow at Re�1. The flow is driven by a body force
which acts on both plasma and cells in the whole system and
is equivalent to a constant macroscopic pressure gradient.
The system is evolved in time until neither the initial fcc
ordering of the cells nor significant directed changes in the
volumetric flow rate Q are visible. In Fig. 10, the radial
velocity profile in the case of a body force resulting in a
pseudoshear rate of v̄z�=Q / �2�R3�=1.3�103 s−1 or a Rey-
nolds number of Re�10 is shown. The graph deviates from
the parabolic Hagen-Poiseuille profile that could be observed
for a Newtonian fluid. Instead a parabolic core region and a
narrow boundary region with high shear rates can be identi-
fied. The fit in Fig. 10 shows that this profile can be easily
explained by the modified axial-train model as described by
Secomb �36�. The fit parameters are the viscosity ratio of
core and boundary �c /�b and the width of the cell-depleted
boundary layer �. The obtained viscosity ratio of �c /�b
=2.43�0.01 is consistent with the bulk properties in Fig. 5
if we assume �b=� and 0.4��cf�0.5 in the core. Also our
result of ��= �1.47�0.04� �m seems compatible with the
value of 1.8 �m suggested by Secomb �36�. In additional

studies of radial cell-fluid concentration profiles we prove
the existence of a cell-depleted layer and the possibility to
tune its width by the cell-wall potential stiffness 
̄w. We also
find an increased cell concentration of up to around �cf
=60% close to the central axis of the vessel. This must be a
collective effect since in consistency with a 2D study by Qi
et al. �37�, we observe that single cells in Poiseuille flow
migrate to an intermediate lateral position between vessel
wall and center.

The apparent viscosity for a cylindrical vessel is calcu-
lated as

�app =
�R4

8Q

dP

dz
, �25�

with dP /dz being the macroscopic pressure gradient �5�.
Pries et al. �38� present an empirical expression for the de-
pendency of �app on the radius and hematocrit for the case of
high flow rates after combining a variety of experimental
studies for pseudoshear rates v̄z��50 s−1 in a single fit. We
perform a series of simulations at R�=31 �m and three fixed
pseudoshear rates between v̄z�=Q / �2�R3�= �62�1� s−1 and
�563�3� s−1 but varying cell-fluid volume concentrations
�cf. The corresponding Reynolds numbers are Re�1. If we
identify �cf with the hematocrit as we do in Fig. 5, we find
very good agreement with the relationship by Pries et al.
�38�. The comparison is plotted in Fig. 11.

The presence of a cell-depleted layer is closely connected
to the emergence of heterogeneous cell concentrations in dif-
ferent parts of the microvasculature since branching
daughter-vessels first of all drain blood from the boundary
layer �3�. The hematocrit, in turn, influences the flow resis-
tance, the flow rate, and the resulting distribution of erythro-
cytes at branching points �5�. Our simulation approach repro-
duces these aspects at least qualitatively. When implemented
together with an indexed LB scheme as in �11–13�, the
method will be able to simulate flow through digitized vessel
networks covering the whole scale of the microcirculation
with high efficiency. Such simulations are still computation-
ally demanding despite the simplifications of the model.

FIG. 9. Cut through a cylindrical vessel with a radius of 31 �m.
For this geometry we choose a cell-wall interaction strength of 
̄w�
=1.47�10−16 J. Shown are the volumes defined by the cell-cell
interaction at 42% cell-fluid volume concentration and the midplane
between wall and fluid nodes. The flow is pointing into the drawing
plane and has a maximum velocity of 1.08�10−2 m /s at the
center.
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FIG. 10. Radial velocity profile in a cylindrical vessel with 42%
average cell-fluid volume concentration. Apparent slip due to a cell
depletion layer is visible. The profile can be well fitted by a modi-
fied axial-train model as described by Secomb �36�. The parabolic
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Thus even systems that are small in physical units require
parallel supercomputers which makes the scalability of the
code crucial. For a quasihomogeneous chunk of suspension
consisting of 10242�2048 lattice sites and 4.1�106 cells
simulated on a BlueGene/P system, we achieve a parallel
efficiency normalized to the case of 2048-fold parallelism of
95.7% on 16 384 and still 85.2% on 32 768 cores. In com-
parison, the pure LB code without the MD routines that are
responsible for the description of the cells shows a relative
parallel efficiency of 98.1% on 32 768 cores. The parallel
performance of the combined code is mainly limited by the
relation of the interaction range of a cell to the size of the
computational domain dedicated to each task. We are aware
of only one work on simulations of comparably large sys-
tems with a particulate description of hemodynamics. This
work was published by the group of Aidun and models the
deformation of cells explicitly �8,39�. However, owing to the
coarse-graining, our model is easier to parallelize efficiently
and—compared to the resolution given in �39�—allows for
substantially higher cell numbers. Generally, our relatively
low spatial resolution is highly beneficial for the simulation
of large systems since from Eq. �22� it can be derived that
the number of lattice site updates necessary for the simula-
tion of a system with a given physical size for a given physi-
cal time interval scales with the fifth power of 1 /�x. As for
plain LB simulations, this number is a good measure for the
computational cost also in the case of our suspension model.

V. CONCLUSION

We developed a approach for the coarse-grained simula-
tion of suspensions of soft particles. This approach is based
on a well-established method for rigid particle suspensions
�17,30� which covers the hydrodynamic long-range interac-
tions and phenomenological model potentials to account for
the behavior at small particle separations. A parametrization
suitable for the quantitative reproduction of hemorheology at
moderate to high shear rates �3,9,33� was presented. The
cell-wall interaction could be linked to experimental data on
a single-cell level �35�. Afterwards, we demonstrated that the
model shows a complex particulate behavior in bifurcations
of partly constricted capillaries which is an essential feature
also of the flow properties of the microcirculation in vivo �5�.
Using the example of steady flow through larger vessels, we
proved the existence of a cell-depleted layer and obtained
radial velocity profiles that are consistent with an accordant
theoretical model �36�. We could even quantitatively repro-
duce the experimentally observed dependency of the appar-
ent viscosity in this geometry on the hematocrit �38�. These
results suggest that following our approach one can repro-
duce the particulate behavior of blood on a range of spatial
scales that up to this moment was not covered by a single
existing simulation method with comparable efficiency.
Clearly, our motivation is not to replace models with higher
resolution like the ones presented in �6–8,15�, but to bridge
the gap to continuous descriptions of blood. We believe that
this method can prove both an efficient tool for coarse
grained yet particulate simulations of flow in microvascular
vessel networks and a valuable contribution to the improve-
ment of macroscopic blood modeling.
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