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The solution-space structure of the three-satisfiability problem �3-SAT� is studied as a function of the control
parameter � �ratio of the number of clauses to the number of variables� using numerical simulations. For this
purpose one has to sample the solution space with uniform weight. It is shown here that standard stochastic
local-search �SLS� algorithms like average satisfiability �ASAT� exhibit a sampling bias, as does “Metropolis-
coupled Markov chain Monte Carlo” �MCMCMC� �also known as “parallel tempering”� when run for feasible
times. Nevertheless, unbiased samples of solutions can be obtained using the “ballistic-networking approach,”
which is introduced here. It is a generalization of “ballistic search” methods and yields also a cluster structure
of the solution space. As application, solutions of 3-SAT instances are generated using ASAT plus ballistic
networking. The numerical results are compatible with a previous analytical prediction of a simple solution-
space structure for small values of � and a transition to a clustered phase at �c�3.86, where the solution space
breaks up into several non-negligible clusters. Furthermore, in the thermodynamic limit there are, even for
�=4.25 close to the SAT-UNSAT transition �s�4.267, always clusters without any frozen variables. This may
explain why some SLS algorithms are able to solve very large 3-SAT instances close to the SAT-UNSAT
transition.
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I. INTRODUCTION

The application of notions, analytical approaches, and nu-
merical algorithms from statistical mechanics has lead to a
better understanding �1–3� of NP-hard �NP: nondeterministic
polynomial� optimization problems �4,5�. One main underly-
ing question is why these optimization problems are compu-
tationally hard, which means no fast algorithms are avail-
able, where the running times increase only polynomially
with the problem size. The progress of gaining insight into
this phenomenon has been considerable in particular for the
typical-case complexity, where ensembles of random in-
stances are studied as a function of control parameters. These
ensembles often exhibit phase transitions where changes in
the effective “hardness” of the problem can be observed.
Often, these transitions are connected to changes in the struc-
ture of the solution space, comparable to energy landscapes
in physics. In particular, one is interested in the question of
how the change in the solution-space structures influences
the performance of exact and stochastic algorithms. For ex-
ample, for the vertex-cover problem, which is defined on
graphs, a clustering transition has been found analytically �6�
and numerically �7,8� when increasing the edge density of
Erdős-Rényi random graphs. This transition coincides with a
change of the typical-case complexity from polynomial to
exponential �9�. For other optimization problems, the situa-
tion is less clear, as for the satisfiability (SAT) problem,
which we study in this work.

As we will explain, exact enumeration of solutions works
well in one region of the phase diagram, close to the SAT-

UNSAT phase transition �see below�, whereas Monte Carlo
�MC� approaches perform well in the opposite part of the
phase diagram, away from the SAT-UNSAT transitions. Un-
fortunately, the clustering transition is located right between
these extreme parts, hence numerically difficult to study. We
use a stochastic algorithm in combination with a correction
of the sampling bias introduced by the stochastic algorithm
to study the clustering phenomena.

The outline of the paper is as follows. In the second sec-
tion, we give the necessary background on SAT and on clus-
tering of solution landscapes. In the third section, we briefly
explain the algorithms we use to sample solutions and show
that they exhibit a bias. Next, we introduce ballistic network-
ing and related methods, which we use to correct for the bias.
In Sec. V, we show the results we have obtained for random
three-satisfiability problem �3-SAT�. Finally, we provide a
conclusion and an outlook.

II. BACKGROUND

A. Satisfiability

Satisfiability is one of the fundamental problems of com-
puter science and has attracted a lot of attention over the past
years, also by physicists, due to its similarity to spin-glass
problems. It is the first problem proven to belong to the class
of NP-complete problems �10�, a class of problems for which
no algorithm has been found yet that exhibits a polynomial
worst-case running time as a function of the problem size.
Therefore, it is still a challenge to find algorithms which
perform well on typical instances and to understand the un-
derlying structure of the solution space which may hinder the
performance of algorithms.
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Satisfiability belongs to the class of constraint satisfaction
problems �11�: given N Boolean variables xi� �0,1� and a
Boolean formula F describing a set of constraints, each of
which forbids a certain assignment of values to some of the
variables, one is to decide whether F can be satisfied, i.e.,
whether there is an assignment x� = �x1 , . . . ,xN� such that all
constraints are fulfilled simultaneously. In the K-SAT formu-
lation, F is given in conjunctive normal form,

F = ∧
m=1

M

�l1
m ∨ l2

m ∨ ¯ ∨ lK
m� ,

which describes a logical conjunction of M constraints
�clauses� Cm each containing a disjunction of K literals lk

m

�m=1, . . . ,M ; k=1, . . . ,K�, which are either a variable xi or
a logically negated variable xi.

A certain assignment of values to the variables is called a
configuration in the following. If a configuration satisfies all
clauses in F, it is called a solution. In the random K-SAT
ensemble each clause is chosen randomly and uniformly
among the 2K� N

K � possible combinations in which no variable
appears twice.

One defines a control parameter �=M /N which is the
number of clauses M divided by the number of variables N.
For low � the problem is typically satisfiable, whereas for
high values of � there typically is no solution �12,13�. The
existence of such a threshold �s between a satisfiable and an
unsatisfiable phase for N→� has been proven �14� for all K,
but this still allows for �s not converging to a certain value.
While the position of the threshold for K=2 is known exactly
�15�, for larger K there are only numerical estimates. In this
paper we will stick to the case of K=3, where every clause
contains exactly three literals. The satisfiability transition is
located in this case at �s�K=3�=4.267 �16�.

B. Cluster phenomena

In addition to the SAT-UNSAT transition, analytical cal-
culations �17,18� give rise to evidence that there are further
�“structural”� phase transitions which refer to the formation
of disconnected clusters of solutions for high values of the
control parameter � in the satisfiable phase. Formally, clus-
ters in constraint satisfaction problems can be defined as ex-
tremal Gibbs measures which give the following picture for
satisfiability: for small values of � all solutions are contained
in one connected component �cluster�. When � grows, more
and more solutions disappear, so that at some point the clus-
ter decomposes into smaller clusters which initially, up to a
threshold �d, make up only an exponentially small fraction
of all solutions, whereas above �d many clusters contribute
to the statistical behavior. Above a higher critical value �c
we enter another type of clustered phase which is dominated
by a small number of large clusters. The case of 3-SAT is
special, as here �d=�c, i.e., we directly enter the phase
dominated by a few clusters. The position of the dynamical
threshold to the clustered phase is predicted to be at �c�K
=3��3.86 �19�.

This value is compatible with recent numerical results
�20�, where the cluster structure was investigated using the
detection of community structures. Unfortunately, the sam-

pling was performed using an algorithm, which does not ex-
hibit uniform sampling of the solutions �see below�. Anyway,
there is no general rule on how to translate the formal defi-
nition of clusters, which holds in the thermodynamic limit, to
finite system sizes; hence, other approaches besides commu-
nity structures are possible.

For numerical studies often a very appealing approach is
used, where a cluster is defined as the connected components
in a graph where each solution is represented by a vertex and
edges connect solutions differing in only one variable. This
definition of a cluster will be used in this work as well. For
every two solutions belonging to the same cluster there is
therefore a “path” of configurations which all solve the SAT
instance at hand. Unfortunately, this path can be long and
peppered with many dead ends or loops, which makes it very
difficult to decide whether two configurations belong to the
same cluster. The main problem when discussing clusters in
high-dimensional discrete solution spaces like that of satisfi-
ability is that one is tempted to think of clusters as bloblike,
well-separated, and homogeneous structures in configuration
phase like, e.g., nanoclusters formed by agglomeration of
atoms. The clusters which occur in high-dimensional discrete
solution spaces are yet of a completely different nature in
that they are more like fragmented and interweaved struc-
tures with lots of dead ends, loops, and holes, which makes it
difficult to speak of spatially separated clusters.

The existence of a clustered phase has been proven for
K�8 �17�. In the language of statistical physics this cluster-
ing corresponds to one-step replica-symmetry breaking
�1-RSB� �21,22�. A further substructure in terms of another
clustering of solutions taken from one cluster, giving a hier-
archical structure of clusters, is suspected where 1-RSB be-
comes instable and higher steps of replica-symmetry break-
ing occur �23�.

What makes cluster phenomena interesting from the algo-
rithmic point of view is the question if �and if so in what
way� clustering has an influence on the performance of local-
search heuristics. Usually it is assumed that the existence of
many clusters is an indication for a complicated “rugged”
energy landscape, which then also gives rise to many local
minima, hindering the performance of local-search heuristics
�23�. Reference �24� argues that the assumption that cluster-
ing is directly responsible for the bad performance of local-
search algorithms does not hold, but instead it is the size of
the domains of attraction of different clusters. In the same
way, but with a slightly different focus, Krząkała and co-
workers �25,26� proposed that the appearance of locally fro-
zen variables in clusters is responsible for the slowdown of
heuristic algorithms close to the SAT-UNSAT threshold. A
locally frozen variable is a variable which takes the same
value over all solutions belonging to one cluster. A cluster
containing at least one frozen variable is called frozen. One
defines the freezing transition � f as the smallest value of �
above which all solutions belong to frozen clusters. Hard to
solve problems can be designed by creating instances exhib-
iting a maximum number of frozen variables �27�.

To clarify the influence of phase transitions on the average
computational hardness, one can study the performance of
stochastic algorithms as a function of the control parameter
�. Of particular interest is the algorithm-dependent value of
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� up to which an algorithm shows linear-time performance,
and compare this to threshold values of � �28�. Studies of
stochastic algorithms such as average satisfiability �ASAT�
�28�, WalkSat �29� and ChainSat �30� have shown however
that those algorithms have linear behavior up to values con-
siderably beyond the clustering transition. This suggests that
the cluster transition has no impact on the performance of
local-search algorithms, as long as the algorithms can access
large regions of the configuration space. This is in particular
the case for algorithms which also allow for local steps
which increase the number of unsatisfied clauses with a suit-
ably chosen probability. It is remarkable that ChainSat ex-
hibits this behavior although it is greedy “in a weak sense” as
it never allows steps which increase the number of unsatis-
fied clauses. Naively, one would therefore expect it to get
trapped in local minima very easily. The authors of �30� in-
terpreted this as evidence for the belief that true local minima
are very rare in high-dimensional search spaces. These re-
sults could also indicate that indeed it is more the �non�ex-
istence of frozen clusters which is responsible for the perfor-
mance of local-search algorithms.

For small instances there are always some frozen vari-
ables. Therefore in �31� a different notion of frozen clusters
via the whitening core is used. There one looks, for each
solution, iteratively for variables which can be flipped since
they appear only in clauses satisfied by other variables or
which contain variables already detected in the whitening
core. The position of this freezing transition was then calcu-
lated by exact enumeration and clustering of all solutions for
sufficiently small system sizes and is expected to lie at
� f�K=3�=4.254 close to but below the satisfiability transi-
tion.

Furthermore, Ref. �32� finds a cluster condensation tran-
sition in the solutions generated by ASAT very close to �s;
again these results rely on a nonuniform sampling of the
solutions. Anyway, these results are compatible with the ob-
servation of a good performance of local-search algorithms
close to the threshold �s.

C. Algorithmic treatment of SAT

Algorithms for SAT include a broad spectrum, both sto-
chastic and exact, from simple and straightforward algo-
rithms such as RandomWalksat �33� and WalkSat �34,35� to
complex algorithms like Davis-Putnam-Logemann-Loveland
�DPLL� �36� and message-passing algorithms such as belief
propagation and survey propagation �22�. For small systems
exact enumeration of all solutions is possible using one of
the numerous standard algorithms �37,38� such as the afore-
mentioned DPLL. It can be shown �39� that deterministic
algorithms have longest average run times close to �s, re-
flecting the difficulty of deciding whether a given SAT for-
mula is satisfiable or not. The problem with exact enumera-
tion is that it is limited to small systems due to hardware
restrictions, especially because of the memory needed to
store the huge number of configurations, as the number of
solutions grows exponentially with the system size. Further-
more the number of solutions is not a continuous function
when crossing the satisfiability threshold, but it drops from a

finite value to zero. This corresponds to a nonzero entropy at
the phase transition. The entropy per variable grows approxi-
mately linearly with decreasing � �40,41�. In turn this means
that even very close to the satisfiability threshold the number
of solution grows exponentially and quickly becomes so
large that it is not feasible to enumerate all solutions even in
this regime. From counting all solutions using DPLL for sys-
tems up to N=144 we can estimate the solution entropy per
variable near the phase boundary at �=4.25 to be roughly
between 0.07 and 0.08 �averaging the logarithm only over
satisfiable instances�, which is in agreement with the 1-RSB
prediction �23�. The average number of solutions turns out to
be about 1.5�109 for N=144 and �=4.1, i.e., already stor-
ing all solutions becomes very difficult due to memory con-
straints.

To overcome these limitations one can turn to stochastic
algorithms which, starting at an arbitrary configuration, do
successive changes either completely randomly or based on a
heuristic evaluating information about the local configura-
tional neighborhood. Stochastic algorithms are not guaran-
teed to find a solution, even if solutions do exist, but they
may be able to find solutions significantly faster than deter-
ministic algorithms. It is thus possible to obtain solutions for
much larger systems, but on the other hand stochastic algo-
rithms can never prove that there is no solution, i.e., tests for
unsolvability can only be done by using deterministic algo-
rithms.

In this paper we study the cluster structure numerically
for K=3, which requires unbiased sampling of the solution
space. Different types of sampling algorithms are studied and
shown to be biased. We therefore present an algorithm that
uses a different approach to create a survey of the cluster
structure of satisfiability instances from which it is then pos-
sible to derive unbiased samples. It is an improvement on the
ballistic search algorithm which has originally been applied
to spin glasses �42–44�. The main advantage of the algorithm
is that it is able to provide an overview of the cluster struc-
ture of the solution space without having to enumerate all
solutions, which is no longer possible already for moderate
numbers of variables.

III. SAMPLING ALGORITHMS

A. Bias in stochastic local-search algorithms

If stochastic local-search �SLS� algorithms found all solu-
tions with the same probability, one could use them directly
to probe the solution space. Unfortunately, this is not the case
as has been shown earlier for WalkSAT �45�. Using a com-
bination with simulated annealing, the sampling could be
improved, but uniform sampling could not fully be restored.
Later on in this paper we will use ASAT as solution genera-
tor, so we use it here for an exemplary presentation of the
bias in SLS algorithms.

ASAT is a simplified variant of Focused Metropolis
Search �29� and was first described in 2006 �28�. It starts at a
random configuration and in each step picks a variable from
an unsatisfied clause. This variable is flipped if either this
decreases the number of unsatisfied clauses or otherwise with
a constant probability wASAT which is a tuning parameter of
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the algorithm. ASAT has run times linear in the system size
at least up to �=4.21 on 3-SAT. For instances of moderate
size like those we study here, it can well be used beyond this
point �32�. The tuning parameter of ASAT is chosen to be
wASAT=0.21, which is the optimal value as given in �28�.

The test procedure is very simple: for a randomly chosen
small instance we run ASAT again and again starting each
time from a different randomly chosen configuration and
count how often each solution returned by ASAT is found. If
there were no bias we would expect the histogram of solu-
tion multiplicities to be flat except for statistical fluctuations
around a plateau value.

Figure 1 shows the resulting histogram, in comparison to
a histogram filled with the same number of random integers
drawn from a truly flat distribution over the range corre-
sponding to the number of solutions of the SAT instance,
showing what the distribution should look like as if there
were no bias. Clearly there is a strong bias favoring some
solutions over others. To quantify the deviations we use a �2

test and calculate the p value giving the probability that an
unbiased sampling process yielded a sample deviating at
least as much as the one at hand. The p values numerically
are smaller than 10−323 �i.e., the resolution of our double
numbers�.

To test whether this bias can be corrected in a simple way,
we did a further check, where instead of using the solutions
returned by ASAT directly, for each solution found by ASAT
a solution from the same cluster was generated using a T
=0 MC search starting at the ASAT result. The outcome of
this modification is shown in the inset of Fig. 1 for the same
SAT instance as before. The distribution now clearly has five
plateaus corresponding to the five clusters of the solution
space and looks much flatter but exhibits still some bias. One
sees that most of the ASAT solutions stem from the smallest
cluster; hence, the sampling does not respect the cluster size.
Hence, the bias can be decreased by additional T=0 MC
simulations, but not completely. Further checks showed that
the bias persists independently of the system size.

Since we want to study clustering properties of the solu-
tion ensemble we need to remove the bias completely and

sample solutions in proportion to the cluster sizes. To ensure
this, we will perform reweighing using the ballistic search
algorithm as described in Sec. IV. Before we go to the bal-
listic search, we will show in the next section that
Metropolis-coupled Markov chain Monte Carlo �MCM-
CMC�, another important sampling method, fails on sam-
pling SAT solutions uniformly as well.

B. Bias in MCMCMC

The MCMCMC method, first proposed in 1991 by Geyer
�46�, also known as parallel tempering �47,48�, is a powerful
and versatile tool, commonly used in biophysics and statisti-
cal physics to perform equilibrium simulations and to gener-
ate unbiased samples in large configuration spaces. MCM-
CMC uses a set of replicas of single instances, simulated in
parallel at different temperatures and linked by global up-
dates in which replicas are swapped pairwise with an accep-
tance probability depending on their energy difference and
temperature spacing �Metropolis-Hastings criterion�, thus fa-
cilitating the tunneling through barriers separating local
minima of the phase space �49�.

To study the performance of MCMCMC on SAT we em-
ploy a histogram test similar to the one described in Sec.
III A for the performance of ASAT. For several values of �
=1.00, . . . ,4.25 scattered over the satisfiable phase, the num-
ber of variables N is chosen such that the expected number of
solutions is 1000. This, e.g., results for the smallest value of
� considered here in a system size N=14, while for the high-
est value of �, N=50 is feasible.

We apply a straightforward implementation of MCM-
CMC to a set of 50 instances for each value of the control
parameter �, where we use 15 temperatures, the lowest, at
which the samples are taken, being initially T0=0.1, the
highest, such that the corresponding energy is found to be
approximately M2−K which is the expected energy of a com-
pletely random configuration. At every 1000 steps the tem-
peratures are adjusted to drive the replica exchange rate be-
tween neighboring temperatures toward 50%, while keeping
the lowest temperature fixed at 0.1. The procedure chosen to
adjust the temperatures leads to a distribution of tempera-
tures where for the lowest temperatures the exchange rates
indeed reach 50% on average, whereas the highest tempera-
tures all gather in the random phase. This can be seen as an
indication that the number of temperatures used is sufficient
to allow the replicas to travel between the constraints, i.e.,
the highest temperatures are indeed located in the “paramag-
netic phase.” We take one sample every second sweep to
generate a total of 106 samples. Only successful sampling
steps are counted, i.e., those where the energy of the configu-
ration at T0 is zero.

The histograms with the resulting distribution look pretty
close to those drawn from a flat distribution �not shown
here�. We again use the p values obtained from a �2 test to
quantify the deviations. This criterion allows to easily detect
even very slight deviations from the nonuniform sampling,
due to the high number of samples generated. Hence, this
test is very demanding. We find that in most cases MCM-
CMC gives reasonably flat distributions; hence, this method
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FIG. 1. �Color online� Multiplicities n of solutions found by
ASAT in 106 runs for a randomly chosen instance with N=50 and
�=4.0, compared to an unbiased distribution. Inset: multiplicities of
the ASAT solutions after an additional T=0 MC step with ten
sweeps.
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appears to exhibit on the first sight a much lower sampling
bias. Nevertheless, there are also a number of histograms
having a significant bias corresponding to very small p val-
ues. The higher is the value of the control parameter � cho-
sen, the larger becomes the spread of the distribution of p
values toward extremely small values. In Fig. 2 the distribu-
tion of p values is shown, integrated over all system sizes
and values of the control parameter. Clearly, there is a bias
toward nonuniform sampling, leading to a large fraction of
small p values. Nevertheless, the situation is much better
than for the application of the pure ASAT shown in Fig. 1,
since a small majority of the instances are treated correctly
by MCMCMC already. We have also investigated the subsets
of instances exhibiting just one cluster. �The number of clus-
ters can easily be calculated exactly for these small in-
stances.� In that case the p-value distribution is flat �not
shown�, proving that MCMCMC works unbiased in this
case. Thus, the presence of clustering leads to a bias or im-
balance in the sampling process resulting in a peak at small p
values.

Since we are interested in particular in those instances
which exhibit many clusters, MCMCMC turns out to be not
suitable as well since all instances have to be sampled cor-
rectly. Note that for larger system sizes, the number of in-
stances having just one cluster, where MCMCMC seems to
work well, will strongly decrease. Hence, for large system
sizes, MCMCMC will exhibit a bias for basically all in-
stances of interest. Note as well that MCMCMC by construc-
tion is able to sample all clusters with correct weights when
run long enough, which can be observed for small instances.
For larger instances, the bias we see comes from the fact that
MCMCMC has not been run long enough. But in practice the
time necessary to achieve a correct sampling is too long for
MCMCMC to be useful in this case. To create an unbiased
sample we need a different method which will be presented
in Sec. IV.

IV. BALLISTIC SEARCH

Here, as mentioned in Sec. II B, we are using the
neighbor-based definition of clusters: two solutions are con-

sidered to belong to the same cluster if there exists a path in
solution space consisting of single-variable flips. We use bal-
listic search, which has been introduced in the year 2000 as a
method for studying ground-state properties of spin glasses
�42�. The approach is able to provide a survey of the cluster
landscape using stochastic algorithms, in particular without
the need to enumerate all ground states as it is usually nec-
essary when one aims at clustering. The sheer number of
ground states forbids exact enumeration when studying spin
glasses, and—as mentioned above—the same holds for SAT.
We therefore use this method which relies on generating a
survey of the most important clusters.

The survey consists of a set A= �Ai�, where each element
Ai= ��cj

�i�� ,��i�� represents one cluster and consists of a
�small� set of solutions �cj

�i�� from the cluster i and an esti-
mate ��i� of the size of cluster i. The survey should cover all
clusters or at least all but those which are negligibly small.
One can then sample the whole solution space with correct
weights by generating the desired number of solution
samples from the representative sets of solutions for each
cluster according to the respective cluster sizes.

Two main ingredients form the basis of the ballistic search
algorithm. First is the above described data structure storing
small sets of representative solutions for each cluster instead
of all solutions. Second, a “ballistic path search” is used to
analyze the cluster space and generate the survey from a
given set of solutions. The basic operation of this procedure
is that we have to determine for any given pair ca ,cb of
solutions, whether they belong to the same cluster. This has
to work under the assumption that for the case of ca ,cb be-
longing to the same cluster, a complete nearest-neighbor path
of solutions between ca and cb is not contained in the set of
already found solutions. Instead, one searches stochastically
for paths between ca and cb by starting at one solution and
subsequently changing a randomly chosen free variable. �A
variable is called free if its value can be changed without
violating any constraint, so that one never leaves the solution
cluster.� This is repeated until either the target solution is
reached or no free variable is left, because as an additional
stop condition every variable shall be touched at most once.
�Because of this additional constraint the path search is
called “ballistic.”� This implies that in a successful ballistic
path search the number of steps taken is always equal to the
Hamming distance of the solutions, i.e., the number of vari-
ables in which the two solutions differ.

Figures 3 and 4 give a graphical description of how the
ballistic search algorithm works. We start with some ran-
domly generated solutions depicted as black circles in Fig. 3,
all of which belong to the same cluster which is drawn in
gray in a two-dimensional cartoon of the N-dimensional con-
figuration space. For the sake of simplicity we assume here
that all solutions belong to the same cluster; the generaliza-
tion to more than one cluster is obvious. Running the ballis-
tic path search we find that some of the solutions can be
connected by paths drawn as lines in the picture, i.e., for
these solutions the algorithms correctly find that they belong
to the same cluster. The problem is that for low solution
densities the average distance between solutions is large, and
the efficiency of the ballistic path search strongly decreases
with larger distances �42�. Therefore, we only find a few
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FIG. 2. Bias of MCMCMC: histogram of p values for 106 con-
figurations sampled using MCMCMC �diamond symbols; lines are
a guide to the eyes only� and for ballistic networking �bar graph; see
Sec. IV B�.
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paths and the apparent number of clusters in this example is
larger than its true value �cf. Fig. 3�. What we need to do is
to increase the number of solutions by rerunning ASAT. For
a few added solutions, the measured number of clusters will
increase since only a few additional paths within clusters are
detected, less than the number of added solutions. When gen-
erating even more solutions, we will find that the apparent
number of clusters at some point no longer increases, but
instead it decreases as more and more paths between solu-
tions are found, until finally all solutions are correctly as-
signed to the same cluster as shown in Fig. 4.

A. Ballistic networking

Our studies have shown that the simple ballistic path
search algorithm has very low efficiency when applied to
satisfiability, which can be attributed to a high complexity of
the solutions space or large sizes of the clusters. We therefore
developed a refinement of the algorithm named “ballistic
networking,” which is a very general extension of the ballis-
tic search, so that it can readily be applied to other problems.

The idea of the algorithmic refinement is to increase the
probability of identifying two solutions, origin ca and target

cb, as belonging to the same cluster using ballistic path
search by again increasing the number of solutions. But in-
stead of using ASAT to generate more solutions we generate
2nadd additional solutions by performing independent T=0
MC simulations starting at ca and cb, respectively. Hence, we
are sure that the additional solutions belong to the same clus-
ter as their respective “parent” solution. We then try to find
connections using the ordinary ballistic path search between
all �nadd+1�2 pairs of solutions, where one solution belongs
to the origin and the other one belongs to the target. If at
least one path is found, it is clear that ca and cb belong to the
same cluster. We apply this test to all pairs of solutions
which have not yet been found to belong to the same cluster.
An artist’s view of this improvement is given in Figs. 5 and
6. Figure 5 shows how the standard ballistic search fails due
to a more complex structure of the cluster, although even
more solutions than before have been used. In Fig. 6 the
solutions found by the T=0 MC search are drawn as circles
connected to their parent solution by arrows. We can see that
the number of successful ballistic path searches �gray lines�
does not have to be very high, but still is enough to correctly
identify the cluster.

Indeed this procedure improves the performance of the
search so much that it outweighs the additional effort of hav-

FIG. 3. Between those six solutions �black circles� from the
same cluster �light gray� ballistic search has found only two paths.
The apparent number of clusters is 4. We need to increase the den-
sity of solutions to make ballistic search more efficient.

FIG. 4. Adding solutions �gray� has yielded a correct identifica-
tion of the cluster, because more paths �gray� have been found, now
connecting all solutions.

FIG. 5. This cluster has a more complex structure than the one
in Fig. 4, illustrated by the additional holes. Here, adding even more
new solutions �gray� than before does not work. Still not all solu-
tions are recognized as belonging to the same cluster.

FIG. 6. Ballistic networking improves the result of ballistic
search by not adding solutions randomly, but adding solutions from
the same cluster using a T=0 MC search �arrows�. Now all solu-
tions are found to belong to one cluster.

ALEXANDER MANN AND A. K. HARTMANN PHYSICAL REVIEW E 82, 056702 �2010�

056702-6



ing to carry out �nadd+1�2 ballistic path searches instead of
one. Figure 7 shows a comparison of the performance of
ballistic path search without and with additional solutions.
The case “+0” corresponds to the bare ballistic path search.
The horizontal axis shows the number of ballistic path
searches which have to be carried out in the worst case, i.e.,
when no connecting path is found. We found 5�nadd�10 to
be a suitable range for the system sizes under study.

When creating the additional solutions to test whether a
pair of solutions ca ,cb belongs to the same cluster, to im-
prove the success probability, one can think of introducing a
bias into the T=0 MC search which pushes the additional
solutions derived from the first solution ca closer to the sec-
ond solution cb, and vice versa. Indeed we found that such a
bias has a positive influence on the success probability of the
ballistic path search. Yet we did not use this bias in the
implementation, because the positive influence comes at a
high cost. For each pair of solutions to be tested a dedicated
biased set of additional solutions has to be generated which
cannot be reused when comparing either ca or cb to a third
solution. The necessary computational effort for generating
each time new biased configurations by far outweighs the
positive effect of the bias.

The second part of the cluster survey A consists of the
sizes ��i� of the clusters. An exact calculation of the cluster
size is possible, but takes too long since it typically grows
exponentially with N. Hence, we restrict the exact calcula-
tion to small clusters exhibiting at most 1000 solutions,
where the cluster enumeration can be done very quickly. For
larger clusters, we estimate the cluster size. We have there-
fore examined several different estimation methods with re-
spect to their reliability in giving a correct estimate for the
cluster size by comparing the estimated cluster size to the
exact cluster size on a random ensemble of clusters for dif-
ferent values of � and small system sizes N. The best method
known to us has been found to be the estimation of the

cluster size using a Monte Carlo integration as it has been
used in �50� in an application to spin glasses.

The basic idea of this method is to define a test Hamil-
tonian Ht=−�i	ci,si

, where 	 is the Kronecker delta, �ci� is a
reference configuration from the cluster C to be estimated in
size, and we restrict �si��C. The size of the cluster then is
given by exp�St�
�� 	
=0, where St is the extensive entropy
and 
 is the inverse temperature. We obtain from the micro-
canonical definition of the temperature T=dEt /dSt

St�0� = St�0� − St���

= �St

= 

Et���

Et�0�


dEt

= 

0

�

�Et − Et����d


= 

0

�

�Et + N�d
 ,

where the last but one equality comes from an integration by
parts and the last equality comes from the uniqueness of the
ground state of Ht with Et���=−N.

The extensive energy Et�
� is obtained from a MC simu-
lation, and a numerical integration using w=exp�−2
�
� �0,1� and �St=�0

1��N+Et� /2w�dw yields an estimate of
the cluster size. For the integration over w, we have chosen
�w=0.05. The number of MC sweeps was chosen automati-
cally such that by doubling the number of sweeps the relative
entropy change is less than a given threshold.

Figure 8 shows a comparison of the actual number of
configurations in one cluster to the number as estimated by
Monte Carlo integration. We used several combinations of N
and � where the total number of solutions �over all clusters�
did not exceed 5�106, such that all clusters could be calcu-
lated exactly, and afterward for each cluster the MC estima-
tion was run.
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FIG. 7. �Color online� Comparison of ballistic path search with-
out and with additional solutions �ballistic networking� for N=128
and �=3.0. We show the probability for finding a path between two
solutions generated from the same cluster, as a function of the total
number of ballistic path searches between all pairs of parent and
children configurations averaged over 1000 runs. The case +0 cor-
responds to the original ballistic path search.
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FIG. 8. Comparison of the actual number of configurations per
cluster to the number estimated by Monte Carlo integration. Each
point corresponds to one cluster.
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B. Implementation

Combining ballistic networking and the cluster-size esti-
mation the full algorithm is comprised of two alternating
steps. The first step is to generate a given number �on the
order of 1000� of solutions of the satisfiability instance at
hand using the ASAT algorithm. In the second step ballistic
networking of the solutions found by ASAT is done as de-
scribed above to create the cluster survey, and then the sizes
of the clusters are estimated. Afterward ASAT is run again
and another set of new solutions is created. The cluster sur-
vey is then updated using ballistic networking on the new
solutions and the solutions representing the so far found clus-
ters in the existing survey. Here new clusters may be found;
and, if so, their sizes are estimated. This is repeated until the
cluster survey is considered complete, i.e., no more relevant
clusters are found.

From the cluster survey for each instance a set U of un-
biased solutions can be generated using the cluster-size esti-
mates. For each solution to be generated for a given instance,
first a cluster from the survey is selected with a probability
proportional to the cluster size. One solution is selected from
the set of representative solutions, and starting from this so-
lution a T=0 MC search is performed finally giving the so-
lution to be used in the analysis.

Defining a good stopping criterion is a crucial point of the
algorithm. As the cluster number in satisfiability can be
rather large, we decided not to generate all clusters, but all
except for those which contain only a negligible number of
solutions. For this purpose we monitor the total cluster
weight �i�

�i�. We run the algorithm until the total cluster
weight has not increased by more than 0.5% over the last
half of solutions included in the clustering process. We store
the order in which the solutions have been generated by
ASAT and label each cluster with a number telling the posi-
tion of the earliest solution which has been found to belong
to this cluster.

When trying to optimize the number of new solutions
added in each round one has to consider two competing ef-
fects: on one hand adding solutions—as in ordinary ballistic
search—may reveal that two clusters actually are parts of the
same cluster, connected maybe by only a narrow path in
solution space which has been too hard to find with a fewer
solutions. On the other hand increasing the number of solu-
tions makes ballistic networking slower and, even worse,
increases the probability of fake new clusters which in turn
can lead to an ongoing increase in the cluster number and
total cluster weight, and thus to a failure of the stopping
criterion.

The system sizes which can be reached using the method
described above depend, of course, on the control parameter
�. For small � all solutions are contained in only one large
cluster where there are many possible paths between con-
figurations, so that ballistic search is very efficient and sys-
tem sizes of a few hundred variables are possible. For high �
values in the solvable phase, the number of solutions is
small, so that in this regime ballistic search still is rather
efficient due to the small extent of the clusters and relatively
large system can be done.

Figure 9 shows the dependence of the success probability
of ballistic path search on the Hamming distance dham be-

tween the configurations for N=128, for different values of
the control parameter �. Up to ��3.5 the probability de-
creases strongly with increasing �, as the clusters develop
more holes. Above this point the curves are approximately
independent of �. We also find that the probability decreases
weakly with increasing system size �not shown�. The fact
that the average distance between solutions decreases with �
makes ballistic networking most difficult in the intermediate
regime around ��3.3. Here, the number of ballistic path
searches needed to find a connection between two solutions
from the same cluster is highest. The cluster structure seems
to be such that there are many “dead ends” in which the
search may get stuck. Together with the high number of clus-
ters, which enters quadratically in the running time, this lim-
its the reachable system sizes. All in all, satisfiability in-
stances of up to N=144 variables were doable in reasonable
time over the whole range of interest 3.0���4.2, while for
smaller intervals of the control parameter, we also studied
N=256.

The behavior of our approach with respect to uniform
sampling is shown in Fig. 2, which indicates that even this
high-demanding criterion is fulfilled. Note that it is much
easier to get the physical quantities right within error bars,
since very often the average physical quantities will not
much change between different clusters. Hence, e.g., using
MCMCMC one could probably achieve in many cases the
correct results by doing longer and longer simulations, even
if the sampling has not converged at that point.

V. RESULTS

We study the behavior of random 3-SAT instances as a
function of the parameter �. This is meant in the sense that
we generate an instance using a given number N of variables
and a set of �arbitrarily ordered� clauses Cm �m
=1, . . . ,Mmax�. We chose Mmax=�maxN, where �max is the
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FIG. 9. �Color online� Dependence of the success probability
ppath of the ballistic path search on � and dham for N=128. As the
typical distance of two solutions depends on �, so do the ranges
shown in the plot. For small distances dham�15, a path is usually
found, while for large distances, the probability depends on the
value of the control parameter �, which can be understood by a
more and more complex structure of the solution clusters.
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largest value of the control parameter we want to consider.
We can study the behavior of each instance as a function of
M �Mmax by considering the clauses Cm for m=1, . . . ,M.
Also, we can average over these distances for each value of
the control parameter.

A. Hierarchical clustering

For the analysis �51� of the behavior of 3-SAT as a func-
tion of the control parameter �, we start by looking at the
hierarchical structure of a set U of solutions sampled for a
typical 3-SAT instance. We have used “Ward’s algorithm”
�52,53�, an agglomerative hierarchical matrix updating algo-
rithm, on the set U to extract a hierarchical clustering from
which we can then draw a visual representation of the solu-
tion space.

Ward’s algorithm has been applied in many different
fields ranging from RNA secondary structures over optimi-
zation problems to spin glasses �8,20,44,54�. It is an iterative
procedure where initially each configuration comprises a
single item cluster. In each step those two clusters are
merged which have minimal distance with respect to an ef-
fective distance measure chosen such that the sum of the
variances in each cluster is minimized. After each merger,
the distances of the remaining clusters to the new cluster
have to be calculated; for details see, e.g., Ref. �53�. Finally,
one reorders the configurations according to the hierarchy
obtained in the iterative merging process and draws a color-
coded visualization of the distance matrix.

Next, we present some results for a typical instance. We
chose one which exhibits its SAT-UNSAT transition close to
the numerical estimate of the ensemble average �s=4.267
given in �16�. Figure 10 shows the color-coded distance ma-
trices and the dendrogram which were generated for three
different values of �. The difference in the solution land-
scape and cluster structure between the phases is clearly vis-
ible. For low � the Ward matrix is featureless and homoge-
neously gray. All solutions belong to one single cluster and
the phase space shows no specific features. In the intermedi-
ate range one sees boxlike structures along the diagonal in a
darker gray. These correspond to clusters, because darker
means smaller Hamming distance and the solutions inside a
cluster are closer to each other than to other solutions. Some
of these boxes show a substructure which can be interpreted
as the solutions from this cluster themselves forming sub-
clusters. This is consistent with the theoretical prediction of
replica-symmetry breaking beyond 1-RSB in the intermedi-
ate � range for the most numerous clusters �23�, which we
expect to be visible for finite sizes, even if indeed the 1-RSB
behavior is dominating. Nevertheless, as mentioned in the
introduction, it is to be expected that most of the clusters are
not relevant in the thermodynamic limit and a small number
of clusters contain almost all solutions. For higher values of
� the substructures inside the clusters become washed out,
whereas the first-level cluster structure becomes more pro-
nounced as the cluster becomes smaller. In the replica-
symmetry breaking framework this would be interpreted as a
vanishing of higher level RSB above a certain threshold, but
this cannot be deduced from looking at single instances, of
course.

B. Averaged quantities

The complexity c= 1
N ln Nc is defined as the logarithm of

the number of clusters normalized to the system size. Figure
11 shows the average complexity as a function of � and for
system sizes up to N=256 variables averaged over 200–500
satisfiable instances for each value of � and each value of N.
The number of clusters was taken directly from the cluster
surveys created using the ballistic-networking method de-
scribed above.

For the “easy” part of the satisfiable phase, where the
value of the control parameter � is small, there is only one

FIG. 10. The hierarchical structure resulting from Ward’s algo-
rithm visualized both as tree structure �dendrogram� and distance
matrix, for N=256 and �=1.00 �top�, 4.00, and 4.25 �bottom�.
Darker gray scales correspond to smaller distances.
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cluster; thus, the complexity is zero. In an intermediate range
the number of clusters grows peaking at a value which is
strongly affected by finite-size effects and then becomes
smaller again. This behavior reflects the theoretical predic-
tion of one single cluster in the low-� regime “crumbling”
into smaller pieces when � is increased and the clustered
phase is reached. For even higher � the vanishing of solu-
tions leads to the disappearance of clusters and the cluster
number decreases again. The peak of the complexity curves
seems to converge with increasing system size toward a
value near �c.

Looking at this plot one has to keep in mind that the
stopping criterion used in the algorithm is based on the num-
ber of solutions covered by the clusters that were found so
far. In a phase with a large number of small clusters we
might miss small clusters if they only comprise a negligible
part of the solutions �in the sense of the stopping criterion�
and therefore might underestimate the number of clusters. It
is therefore natural that the complexity found here is lower
than the one given in �31�. After all the complexity shown in
the graph is only a lower bound for the true complexity
respecting all clusters. Nevertheless, we expect that the true
complexity behaves qualitatively the same as what we have
observed. In the thermodynamic limit, since all clusters con-
tribute to this figure, also the statistically unimportant ones,
the complexity c will also exhibit a peak near �c and may
stay finite for �
�c. From our results, it is not possible for
us to decide whether c will converge to zero for �→�s or
not.

Figure 12 displays the fraction of the solutions contained
in the largest cluster. For ���c this value seems to increase
with growing system size. At �=�c it exhibits a minimum,
while for �
�c it decreases slightly with growing system
size, but it is larger than the value found right at �c. These
results are also compatible with the analytical prediction
�18�, which states that only for a range ���c more than one
cluster is relevant in the thermodynamic limit. Nevertheless,
we cannot deduce from the data, since system sizes we can
reach are rather limited, whether for all values of ���c this
growing fraction converges to one or to a smaller value.

Next, we have a closer look at the average structure of the
solution space. As mentioned in the discussion of the Ward

matrices, solutions belonging to the same cluster are more
similar to each other, i.e., closer in terms of the Hamming
distance, than pairs of solutions which belong to different
clusters. The cluster structure is thus reflected in the set of all
pairwise overlaps, where the overlap rij of two solutions i
and j, for which the Boolean variables take the values given
by xn

�i� and xn
�j�, is defined as rijª�n=1

N 	�xn
�i� ,xn

�j�� /N. Figure
13 shows the overlap distribution for �=4.0 and several val-
ues of N. For each system size 1000 instances have been
processed with the algorithm described in Sec. IV B and 500
solutions have been generated from each cluster survey.

Two peaks are visible. One peak is lying close to �r
=1
and due to the overlap of solutions belonging to the same
cluster. With larger system size it moves slightly to lower �r

values and becomes sharper. The second peak at about �r

=0.7 is not discernible for the smallest system size, but only
evolving with larger system sizes and only visible weakly
against an also growing background. Note that a pure two-
peak structure would correspond to the picture of one-step
replica-symmetry breaking �1-RSB� �55�. Nevertheless, the
result is not fully clear here since in addition to the peaks,
there is also a continuous part between the two peaks. The
overlap converges to zero for values of the overlap smaller

0

0.01

0.02

0.03

0.04

0.05

0.06

2 2.5 3 3.5 4 4.5

av
er
ag
e
co
m
pl
ex
ity

α

αsαd = αc

N = 32
N = 45
N = 64
N = 91
N = 128
N = 144
N = 256
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than 0.5, which means that the number of solutions which
differ in more than half the variables is very small. For q

0.5 the distribution may remain broad in the thermody-
namic limit, which could be compatible with full RSB. Nev-
ertheless, when we look at typical distribution of overlaps of
single instances, we see mainly distributions with one or two
peaks �see Fig. 14�; only a few realizations exhibit three
peaks. This is indeed in favor of a 1-RSB scenario. Thus, the
broad behavior found in Fig. 13 is due to an average over
many peaks at different locations. In any case, one maybe
could somehow label each instance automatically with “RS,”
“1-RSB,” or “f-RSB” depending on the number of peaks and
study these fractions as a function of the system size. Nev-
ertheless, larger systems would be needed for a thorough
quantitative analysis of this kind. Note that we have found
similar results for other values of the control parameter �c
����s �not shown�.

C. Freezing transition

To complete the picture we also studied the freezing tran-
sition, which as mentioned in Sec. II B is defined as the
smallest � above which all solutions belong to frozen clus-
ters and has been found to lie at � f =4.254. To check directly
whether a cluster contains frozen variables, we need to gen-
erate and compare all solutions from this cluster; therefore,
cluster surveys do not help here. Using exact algorithms we
find that for the system sizes we can reach, for all � near the
SAT-UNSAT transition, there are always frozen variables in
all clusters. This is probably due to too small system sizes.

Thus, we followed a different approach. For each in-
stance, taken at �=4.20 and 4.25 and for system sizes up to
N=2048, we generated a solution using ASAT, which be-
longs with high probability to the largest cluster. Since ASAT
is biased, as shown in Sec. III A, we cannot be sure that this
is always the case, but according to our experience for small
systems, larger clusters are found more often than smaller
ones, but less often than proportional to the cluster size. Nev-
ertheless, since our results presented next indicate the pres-
ence of clusters without frozen variables, for the range of the
control parameter � we study, it is not relevant whether we
indeed find the largest cluster. Finding large clusters just

helps. For each solution we found, we performed a very long
T=0 simulation starting from this solution and measured the
fraction pfrozen of variables which have never flipped while
performing this random walk inside the solution cluster. We
extrapolated this fraction to a large number of MC steps,
yielding pfrozen

� �see Fig. 15�. With increasing system size,
pfrozen

� seems to converge to zero �see the inset of Fig. 15�.
Hence, for �=4.20 and �=4.25 the largest clusters seem to
contain no frozen variables in the thermodynamic limit. This
is compatible with � f =4.254, meaning that in the thermody-
namic limit no frozen clusters occur below this value of �.

VI. CONCLUSION

In this work we have shown that stochastic local-search
algorithms cannot be expected to produce correctly weighted
samples of the solution space of satisfiability. The same
holds true for MCMCMC which is widely used to sample
configuration spaces in many fields of application, when the
SAT solutions are spread over several clusters.

Another type of algorithm has been presented and applied
for studying clustering phenomena in the solution landscape
of the satisfiability problem. It is an improved version of the
ballistic search algorithm which has been successfully used
for studying spin glasses. Its guiding principle is to generate
a survey of clusters of solutions represented by small sets of
solutions rather than enumerating and clustering all solu-
tions, which is unfeasible already for moderate system sizes.
By using a different approach, ballistic networking, in the
reconstructing process of the cluster structure the efficiency
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of the ballistic search could be improved, so that its perfor-
mance becomes reasonably high when used on satisfiability.
The method presented here is general enough to be suitable
for many other problems. Of course, it would be natural to
study satisfiability for K
3 using ballistic networking, but
the efficiency for ballistic path search seems to be still much
lower than for the case of K=3, which sets very restricting
limits on the system sizes which can be reached. Neverthe-
less, the approach presented here should be useful for many
disordered systems like other types of combinatorial optimi-
zation problems.

In the case of satisfiability, the range of low values of �
�where many solutions exist but belong to only one cluster�
can be studied by MCMCMC. Furthermore, the case of high
values of � close to the SAT-UNSAT transition �fewer solu-
tions contained in several clusters� can be studied using exact
enumeration of all solutions. In contrast, the algorithm pre-
sented here allows us to study the full satisfiable phase, but it
is limited to moderate system sizes in the intermediate �
range. Nevertheless, it is the only reliable method to generate
unbiased samples in this regime.

Using the method described here the ensemble properties
of satisfiability with moderate system size could be studied
and analytical predictions about the cluster structure could be

tested. To this aim we first did a visual inspection of the
cluster landscape using a graphical representation in terms of
Ward distance matrices. These show the expected structural
differences of the different phases of satisfiability. Further-
more, we had a look at the complexity measure over the
whole � spectrum in the easy phase, the fraction of the so-
lutions contained in the dominating cluster, and the overlap
distribution of the solutions for particular values of �. Our
findings are in good agreement with the theoretical predic-
tions and previous numerical studies using other methods.
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