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The Lagrange-mesh method is an approximate variational calculation which has the simplicity of a mesh
calculation. Combined with the imaginary-time method, it is applied to the iterative resolution of the Gross-
Pitaevskii equation. Two variants of a fourth-order factorization of the exponential of the Hamiltonian and two
types of mesh �Lagrange-Hermite and Lagrange-sinc� are employed and compared. The accuracy is checked
with the help of these comparisons and of the virial theorem. The Lagrange-Hermite mesh provides very
accurate results with short computing times for values of the dimensionless parameter of the nonlinear term up
to 104. For higher values up to 107, the Lagrange-sinc mesh is more efficient. Examples are given for aniso-
tropic and nonseparable trapping potentials.
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I. INTRODUCTION

The Gross-Pitaevskii equation describes the behavior of a
Bose-Einstein condensate at zero temperature within the
mean-field approximation �1�. This nonlinear Schrödinger
equation involves an external trapping potential and a non-
linear term due to the interactions between atoms. The atom-
atom interaction within the dilute condensate is modeled
only by its scattering length. The common individual wave
function of each boson of the condensate is a self-consistent
solution of this equation.

Accurate numerical techniques for the resolution of the
three-dimensional Gross-Pitaevskii equation have been pro-
posed in a number of papers �2–10�. The goal of the present
study is to derive an approach which is both fast and very
accurate. This approach is based on several well established
ingredients, i.e., the imaginary-time method, a fourth-order
factorization algorithm of the imaginary-time propagator �8�,
and the Lagrange-mesh method �11–13�.

The imaginary-time method is used in many subfields of
quantum physics and in particular to solve the Gross-
Pitaevskii equation �4,8�. This method has been made very
efficient with the use of high-order factorizations of the ex-
ponential imaginary-time propagator. This factorization has
been the subject of many theoretical �8,14–18� and numeri-
cal works �18,19�. A fourth-order factorization algorithm is
well adapted to an accurate resolution of the Gross-Pitaevskii
equation �8�. Higher-order algorithms are more accurate but
their additional complication and computer-time cost do not
make them optimal �19�.

The Lagrange-mesh method is an approximate variational
method which resembles a mesh calculation because of the
use of a consistent Gauss quadrature �11–13�. The numerical
calculation is similar to the one obtained within the discrete-
variable representation �DVR� employed in Ref. �2�. The dif-
ference lies in the use of variational functions vanishing at
all points but one of a mesh. In its simplest variant, the

Lagrange-mesh method is equivalent to the DVR �and a little
simpler� when the mesh points are zeros of orthogonal poly-
nomials. The Lagrange-mesh method allows very accurate
calculations in various problems of nuclear and atomic phys-
ics. In particular, it provides in a simple way very accurate
energies and wave functions for three-body atoms and mol-
ecules and for simple atomic and molecular systems in
strong magnetic fields �20–24�. All these applications in-
volve linear operators. Here we extend this technique to a
nonlinear equation.

The originality of the present approach lies in the com-
bined use of known ingredients to obtain a simple technique
of resolution of the three-dimensional nonlinear Gross-
Pitaevskii equation. We employ two different Lagrange
meshes based on Hermite polynomials and on sinc functions
with two variants of fourth-order factorization algorithm. In
Ref. �2�, a DVR based on Hermite polynomials is also em-
ployed, but leads to less accurate results in spite of larger
numbers of basis functions. In Ref. �4�, Hermite polynomials
are employed analytically with a second-order factorization
algorithm. The efficiency of a fourth-order algorithm is es-
tablished in Ref. �8� with a finite-difference technique. The
factorization algorithm of the propagation operator takes a
very simple form when adapted to Lagrange functions with
the consistent Gauss approximation �18,19� and leads to a
fast and accurate method.

In Sec. II, we recall the Gross-Pitaevskii equation in re-
duced units and summarize some of its properties. The
Lagrange-mesh method is presented and details are given
about the Lagrange-Hermite and Lagrange-sinc meshes.
Variants of the imaginary-time method are then discussed in
the context of the Lagrange-mesh method. In Sec. III, the
conditions of the calculations and the accuracy of the results
are discussed. The method is applied to isotropic and aniso-
tropic harmonic-oscillator potentials and to a nonseparable
potential. Concluding remarks are presented in Sec. IV.

II. THEORY

A. Gross-Pitaevskii equation

In the absence of interaction between the bosons, their
wave function is an eigenfunction of the “external” Hamil-
tonian
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Hext = −
1

2
� + Vext �1�

with �=m=1. In this expression, Vext is the external trapping
potential. In most descriptions of experiments, this potential
is well approximated by an oscillator trap

Vext
HO =

1

2
��x

2x2 + �y
2y2 + �z

2z2� . �2�

The angular frequencies �x, �y, �z are expressed as a func-
tion of some additional unit �=1. Hence the length and en-
ergy units are the harmonic-oscillator units, �� /m��1/2 and
��, respectively.

Under the assumption of a dilute system, the behavior of
a condensate containing n bosons is described with the wave
function � which is the normed ground-state solution of the
Gross-Pitaevskii equation �1�,

�Hext + ����x,y,z��2���x,y,z� = ���x,y,z� . �3�

The dimensionless parameter in the nonlinear term is defined
as

� = 4�na�m�

�
�4�

where a is the scattering length. Parameter � can be positive
or negative according to whether the interaction is repulsive
or attractive. For example, in a spherical condensate of so-
dium atoms �2�, this parameter reads

� � 6.6 	 10−5n�� , �5�

where � is expressed in s−1.
The eigenvalue � in Eq. �3� is the chemical potential. It is

also given by the expression

� = �Hext	 + �����2	 , �6�

which is useful when Eq. �3� is not solved directly. The en-
ergy per boson is given by the expression

E = �Hext	 +
1

2
�����2	 . �7�

The kinetic, external and interaction energies satisfy a
virial theorem which is conveniently written under the form

E + � − 2�Vext	 − �r · �Vext	 = 0. �8�

It will serve as a test of the accuracy of the numerical calcu-
lations. The last term is easily computed within the
Lagrange-mesh method. For the harmonic confinement
�Eq. �2��, this theorem becomes �1�

E + � − 4�Vext
HO	 = 0. �9�

When the kinetic energy term can be neglected in Eq. �3�,
one obtains the Thomas-Fermi approximation which gives
for a triaxial harmonic-oscillator trap �5�

�TF =
1

2

15��x�y�z

4�
�2/5

�10�

and

ETF =
5

7
�TF. �11�

The validity of this approximation will also be tested in the
following.

B. Lagrange-mesh method

1. Generalities

The Lagrange-mesh method is an approximate variational
method displaying the simplicity of a calculation on a grid.
Its ingredients are a set of N mesh points uj, a Gauss quadra-
ture approximation consistent with this mesh

�
−





g�u�du � 

j=1

N

� jg�uj� �12�

with weights � j, and N infinitely differentiable functions
f i�u� associated with each mesh point satisfying the
Lagrange conditions

f i�uj� = �i
−1/2�ij �13�

�see Eqs. �17� and �22� below�. The crucial property of the
Lagrange functions is that Eqs. �12� and �13� imply

�
−





f i�u�f i��u�du � �ii� �14�

and

�
−





f i�u�V�u�f i��u�du � V�ui��ii�. �15�

The Lagrange basis can thus be treated as orthonormal �the
bases used below are in fact strictly orthonormal� and the
potential matrix is approximated by a diagonal expression. In
spite of the Gauss approximation, the method is very accu-
rate with small numbers of mesh points when V�u� and its
derivatives have no singularity �12,13�.

The Lagrange functions are used to determine the kinetic-
energy matrix elements associated with the mesh. The ex-
pressions of these matrix elements are simple �11,13� �see
Eqs. �19� and �23� below�. The explicit expression of the
Lagrange functions is mainly needed to compute the varia-
tional wave functions. Otherwise, because of the Lagrange
property �Eq. �13��, they do not appear in calculations of
eigenvalues and of mean values of observables which can be
calculated with the Gauss quadrature �Eq. �12��.

The number of simple Lagrange functions and associated
meshes satisfying the Lagrange condition �13� and for which
the orthogonality �Eq. �14�� is exact is rather limited �13�.
The choice of Lagrange basis is first determined by the in-
terval of definition. Since we work here on �−
 ,
�, only two
simple meshes are available: the Lagrange-Hermite mesh
�11,13� constructed from the Hermite orthogonal polynomi-
als and the Lagrange-sinc mesh �13� based on sinc interpo-
lation functions. Another possibility would be the Lagrange
mesh based on shifted Gaussian functions �25� but it is con-
structed from non standard orthogonal polynomials and thus
more complicated to use.
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2. Lagrange-Hermite mesh

As mentioned above, several Lagrange meshes are avail-
able on the interval �−
 ,
� �13�. The choice can be fixed
with some physical property. For a weak nonlinearity, the
oscillator confinement suggests to use the Lagrange-Hermite
mesh �11,13� defined by

HN�uj� = 0 �16�

with the N index values j=− 1
2 �N−1� , . . . , 1

2 �N−1�. The cor-
responding quadrature is thus Gauss-Hermite which defines
the weights � j �26�. Like Lagrange functions, these weights
are only necessary to evaluate values of wave functions but
they disappear from matrix elements. The corresponding
Lagrange functions read �11�

f i�u� = �− 1�N+i���2N+1N!�−1/2HN�u�
u − ui

e−u2/2. �17�

They are exactly orthogonal since the Gauss quadrature is
exact for Eq. �14�. The matrix elements of the operator
−d2 /du2 are given at the Gauss-Hermite approximation by

Tii� = − �
0




f i�u�f i�
� �u�du � − �i

1/2f i�
� �ui� , �18�

i.e.,

Ti�i� = �− 1�i−i� 2

�ui − ui��
2 ,

Tii =
1

3
�2N + 1 − ui

2� . �19�

These expressions only depend on the mesh points ui.

3. Lagrange-sinc mesh

For a strong nonlinearity, the condensate wave functions
may be rather different from harmonic-oscillator functions.
Hence we also choose the Lagrange-sinc mesh �13� involv-
ing equidistant mesh points

uj = j, j = −
1

2
�N − 1�, . . . ,

1

2
�N − 1� , �20�

with the same labels as for the Hermite mesh. Switching the
meshes is thus very easy. The corresponding weights are

� j = 1/N . �21�

The Lagrange-sinc functions are defined by �13�

f i�u� = sinc�u − ui� =
sin ��u − ui�

��u − ui�
. �22�

Here also, they are exactly orthogonal and the Gauss ap-
proximation �14� is exact. The matrix elements of −d2 /du2

are also given by Eq. �18� as

Ti�i� = �− 1�i−i� 2

�ui − ui��
2 ,

Tii =
�2

3
. �23�

4. Parity projection and scaling

We assume that the potential is even with respect to
u→−u. Choosing N even for simplicity, we perform a parity
projection of the Lagrange functions

f i
p�u� = 2−1/2�f i�u� + pf−i�u�� �24�

with p= �1 and i= 1
2 , . . . , 1

2 �N−1�. For parity p, the matrix
elements of −d2 /du2 are simply given for i , i�
0 by

Tii�
p = Tii� + pTi−i�. �25�

The potential matrix elements are unchanged,

�
−





f i
p�u�V�u�f i�

p��u�du � V�ui��ii��pp�. �26�

It is useful to consider the scaled mesh huj involving the
scaling parameter h which allows fitting the mesh to the
physical extension of the wave function. The normed
Lagrange functions become h−1/2f i

p�x /h�. They satisfy the
Lagrange property

h−1/2f i
p�uj� = �2h�i�−1/2�ij . �27�

For parity p, the Hamiltonian matrix reads

Hii�
p =

1

2
h−2Tii�

p + V�hui��ii�. �28�

5. Three-dimensional mesh

Let us now turn to the three-dimensional problem
�Eq. �3��. The potential is assumed to be even with respect to
r→−r. Let us consider three sets of Nx, Ny, Nz Lagrange
functions f i

px�u�, gj
py�v�, hk

pz�w� with parities px, py, pz, re-
spectively. The corresponding weights are �i, � j, �k. Intro-
ducing three scaling parameters hx, hy, hz, one obtains the
three-dimensional mesh �hxui ,hyv j ,hzwk�. Normed three-
dimensional Lagrange functions can be defined as the prod-
ucts

Fijk
pxpypz�x,y,z� = �hxhyhz�−1/2f i

px�x/hx�gj
py�y/hy�hk

pz�z/hz� .

�29�

They verify the Lagrange property

Fijk
pxpypz�hxui�,hyv j�,hzwk�� = �8hxhyhz�i� j�k�−1/2�ii�� j j��kk�.

�30�

The wave function of the condensate with parities px, py, pz
is then approximated as
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�pxpypz�x,y,z� = 

i=1/2

1/2�Nx−1�



j=1/2

1/2�Ny−1�



k=1/2

1/2�Nz−1�

cijkFijk
pxpypz�x,y,z� .

�31�

With Eq. �30�, the values of the wave functions at mesh
points are

�pxpypz�hxui,hyv j,hzwk� = �8hxhyhz�i� j�k�−1/2cijk �32�

and provide a simple physical interpretation of the coeffi-
cients cijk.

The matrix elements of Hamiltonian �1� are given by

Hijk,i�j�k�
pxpypz =

1

2
hx

−2Tii�
px� j j��kk� +

1

2
hy

−2�ii�Tjj�
py �kk�

+
1

2
hz

−2�ii�� j j�Tkk�
pz

+ Vext�hxui,hyv j,hzwk��ii�� j j��kk�, �33�

where Tii�
px , Tjj�

py , and Tkk�
pz are given by expression �25�. The

matrix representing the external potential is diagonal. The
nonlinear term is also diagonal,

�Fijk
pxpypz����pxpypz�2�Fi�j�k�

pxpypz	 =
�cijk

2

8hxhyhz�i� j�k
�ii�� j j��kk�.

�34�

The simple structures of Eqs. �33� and �34� are the main
causes of the simplicity of the numerical algorithm described
below.

C. Imaginary-time method

In order to solve the nonlinear Eq. �3�, it is convenient to
use the imaginary-time method which allows searching the
lowest eigenvalue and looking for self-consistency in the
same iterations. This algorithm is based on a separation of
the linear or nonlinear operator into two parts,

H = Hext + ��2 = H0 + V , �35�

where we assume that the wave function is real. We consider
two cases in the following. In case a, H0 is the operator Hext
defined in Eq. �1� and V is then the nonlinear term in Eq. �3�,

H0 = Hext, V = ��2. �36�

In case b, H0 is the kinetic energy operator and V is the sum
of the external potential and of the nonlinear term,

H0 = −
1

2
�, V = Vext + ��2. �37�

Intermediate choices are also possible.
The imaginary time �� appears as a parameter in an ex-

ponential of the Hamiltonian, e−��H which progressively ex-
tracts the ground-state component from an initial function
��0� when the procedure is repeated. After normalization,
the function

����� = e−��H��0� , �38�

where H depends on �, is closer to the ground-state wave
function than ��0�. If one uses small time steps ��, one can
modify the nonlinear term consistently and so approach self-
consistency.

The exponential of H is not simple to compute. It is thus
useful to resort to factorization algorithms, i.e., to approxi-
mations involving products of exponentials of simpler opera-
tors. At first order, i.e., with an error of order ��, one obtains
the algorithm

����� = e−��H0e−��V�0���0� . �39�

The exponential of H0 is calculated only once. The potential
represented by V depends on the initial wave function. For
example, in case a, it reads

V�0� = ���0�2. �40�

A second-order algorithm denoted as 2A in Ref. �8� reads

����� = e−1/2��V����e−��H0e−1/2��V�0���0� . �41�

In principle, the potential in the left factor should be V����.
When it is replaced by V�0�, one obtains the algorithm 2A0
of Ref. �8� with an error of order ��2. Its implementation is
not more difficult than at first order. Notice that we have
tested the suggestion of Ref. �8� to use a Lambert function in
version 2A of the algorithm to better approximate V����. We
have found some enlargement of the range of �� values for
which the algorithm converges but only for not too strong
nonlinear terms. The simpler algorithm 2A0 seems thus pref-
erable in view of the fact that computation times are very
short.

As suggested in Ref. �8�, the fourth-order algorithm

����� = e−�1/6���V����e−�1/2���H0e−�2/3���Ṽ���/2�

	e−�1/2���H0e−�1/6���V�0���0� �42�

might be optimal by providing an error of order ��4 with
reasonable computing times. This algorithm involves the
modified potential

Ṽ = V +
��2

48
�V,�H0,V�� = V +

��2

48
��V�2. �43�

In case b, �V reads

�V = �Vext + 2�� � � . �44�

The first term is calculated analytically and the second one
requires the calculation of ��. Type a only involves the sec-
ond term. We show in the Appendix that �� can be obtained
easily and accurately on a Lagrange mesh. In practice, we
replace the potential evaluations at �� and �� /2 by evalua-
tions at zero as in Eq. �40�. This leads to algorithm 4A00 of
Ref. �8�.

The algorithm involves exponentials of two types of ma-
trices. On a Lagrange mesh, matrix V is diagonal. This is the
case for any combination of the external potential �see Eqs.
�26� or �33�� and of the non local term �see Eq. �34��. The
exponential is thus easily obtained and its multiplication with
the vector representing the wave function is fast. On the
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other hand, matrix H0 is nondiagonal. Since its expression
does not depend on �, its exponential can be obtained with a
single diagonalization performed at the beginning of the al-
gorithm. However, its multiplication with a vector would
take �N /2�6 multiplications which may be quite long �we
assume Nx=Ny =Nz=N to simplify the presentation�. Fortu-
nately the structure of this matrix �Eq. �33�� allows a signifi-
cant simplification. The exponential operator can be written
as

e−��H0 = e−��H0xe−��H0ye−��H0z. �45�

Each operator H0x, H0y, H0z acts on a single coordinate. Its
matrix representation is an N /2	N /2 matrix which is diago-
nalized only once. The multiplication by the three matrices
corresponding to the operators in the right-hand side of Eq.
�45� requires only 3�N /2�4 multiplications per iteration. The
calculation of the gradient takes about the same time as the
application of one exponential in Eq. �45� and leads to a total
of about 4�N /2�4 multiplications per iteration. This algorithm
is thus very fast. It remains fast when the trapping potential
is non separable if H0 is chosen as the kinetic energy
�case b�.

To illustrate the difference between the algorithms at vari-
ous orders, we display in Fig. 1 the dependence of their
results on the choice of ��. The calculations are performed
for �=1000 in case a. The first, second, and fourth-order
behaviors are confirmed. Similar behaviors can be observed
in Figs. 1–3 of Ref. �8�.

III. RESULTS

A. Conditions of the calculation

First, we describe the procedure. Let us start with the
spherical case. The three directions are described with the
same number N of mesh points and the same scaling param-
eter h. Switching to an anisotropic confinement is rather easy
as discussed below. We use the fourth-order algorithm
throughout.

For each value of �, we have various options. For H0 we
can use the oscillator Hamiltonian �case a� or the kinetic
energy �case b�. And we can use either the Hermite or the

sinc mesh. The starting point of the iteration is the harmonic-
oscillator wave function for ��103 and the Thomas-Fermi
approximation for �
103.

In each case, there are three parameters to choose: the
common number N of mesh points and scaling parameter h
in each direction, and the imaginary-time step ��. Except for
h, which must be rather roughly optimized, the choice of the
other parameters depends on the searched for accuracy. Since
we are testing a method, we shall try to obtain the best ac-
curacy for reasonable computing times. Since this accuracy
will often exceed physical needs, the practical computing
will in general be even shorter.

The choice of h is illustrated for the Hermite mesh in Fig.
2. The calculation is performed for �=1000 with ��=0.05
for N=30 �full line� and N=40 �dashed line�. One observes
that for given N and ��, the results are very stable over a
plateau of h values: about six digits between 0.78 and 1 for
N=30 and about eight digits between 0.72 and 0.98 for
N=40. However the fact that, because of the Gauss quadra-
ture approximation, the method is not really variational
clearly appears in the oscillations and in the drop for high h.
The virial theorem is a good indicator of the accuracy �see
below�. For N=30, it suggests that h=0.8 is optimal, a fact
confirmed by the comparison with N=40 in Fig. 2. A similar
figure is obtained for the energy per boson E with, however,
a smaller extension of the oscillations �by more than an order
of magnitude�.

The convergence with respect to the number N of mesh
points is illustrated for the Hermite mesh in Fig. 3. The cal-
culations are performed for �=1000 with ��=0.01 and the
optimal parameter h=0.8. The error ��= ��−�exact� on the
chemical potential, where the exact value �exact is approxi-
mated by a calculation with N=50, i.e., 8.670 315 355 7, is
depicted with squares as a function of N. The convergence is
approximately exponential from N=10 to about 26–30. Be-
yond N=30, the accuracy still improves but more slowly and
the sign of the error starts varying. The absolute value of the
virial residue, i.e., the left-hand member of Eq. �9�, is repre-
sented by triangles in the same figure. Its decrease is also
slower beyond about N=30 where the sign of this residue
also starts changing. Strikingly, its behavior is qualitatively
similar to the behavior of the error �� so that this residue can

8.67

8.6702

8.6704

8.6706

8.6708

8.671

0 0.02 0.04 0.06 0.08 0.1

∆τ

µ

4th order

2nd order

1st order
λ = 1000

FIG. 1. Chemical potential as a function of �� for �=1000 with
the first-order, second-order 2A0, and fourth-order 4A00
algorithms.

8.670305

8.67031

8.670315

8.67032

8.670325

0.7 0.8 0.9 1 1.1 1.2

h

µ

FIG. 2. �Color online� Dependence on the scaling parameter h
for the Hermite mesh at �=1000 with N=30 �full line� and N=40
�dashed line� mesh points ���=0.05�.
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be considered as a good indicator of an improvement of ac-
curacy. The additional computational cost of N values be-
yond about 30 does not lead to a significant enough improve-
ment of the accuracy. In this sense, values close to N=30 can
be considered as optimal.

Optimal choices of N and h are summarized as a function
of � for both meshes in Table I. Smaller values of N provide
less accuracy but may of course be sufficient for physical
applications while higher value of N do not lead to a much
better accuracy. Since h weakly depends on �, its choice can
easily be obtained by interpolation between the values dis-
played in the table. Small variations around these values still
lead to results of excellent accuracy except for the highest �
values considered.

The accuracy can also be tested as a function of ��. An
example is given in Table II where the chemical potential �
calculated with Eq. �6� and the energy per particle calculated
with Eq. �7� are displayed for �=1000 in case a with the
Hermite mesh for N=30 and 40. The longest calculation �last
line� took a few seconds on a 3.6 GHz personal computer.
For this reason, we did not try to optimize the parameters
further. The fact that the algorithm does not converge for
larger �� values such as 0.2 is not a serious drawback.

One observes that the energy per particle converges faster
than the chemical potential and is more accurate. We assume
that this property is related to the variational origin of Eq. �7�
for E. The energy per boson is already converged with

��=0.1. With N=30, the error is of the order of 10−8 for E
and four times larger for � �we have checked that, with
N=40, all displayed digits are converged�. Another indica-
tion about the accuracy is given by the virial theorem �Eq.
�9�� presented in the last column. The smallness of the virial
residue is used as a guide for finding optimal conditions for
the calculation. When this residue cannot be made small, it
gives a rough estimate of the accuracy on the chemical po-
tential.

B. Comparison of the different calculations

We compare in Table III calculations with reasonable
numbers of mesh points as given in Table I for the four
considered cases as a function of positive values of param-
eter �. We could not obtain a convergence with the Hermite-
mesh calculations for �
105 with N�80. The Thomas-
Fermi approximation �TF� is also displayed for high �.

For each � value, four calculations are compared, i.e.,
factorizations a and b with either the Hermite or sinc mesh.
The value of �� and the number of iterations Niter are given.
No attempt has been made to optimize them. The values of
the virial expression �9� are also given. As expected conver-
gence becomes more difficult when � is very large because
the nonlinear term becomes strongly dominant. Smaller ��
values must be used. At �=107, the error is still slightly
smaller than the difference with the Thomas-Fermi approxi-
mation. The longest calculation �last lines� took less than two
minutes. Other computation times can be estimated from the
scaling law N4Niter.

A first general remark is that there is little difference be-
tween the two types of factorization. At small �, type a is
faster but computation times are negligible. In the whole
range, the difference between the a and b results is smaller
than the accuracy on these results. In other words, the a and
b calculations provide the same accuracy but this accuracy
cannot be derived from a comparison between them.

The difference between both types of Lagrange mesh is
more significant. At small �, the Hermite mesh is more ac-
curate, especially in case a, as expected from the fact that
this mesh is related to the harmonic oscillator �11� �for �
=0, it gives exact results with N=2 and h=1!�. Around 103,

TABLE I. Values of N and h leading to highly accurate results
�see Table III� as a function of �.

�

Lagrange-Hermite Lagrange-sinc

N h N h

1 20 0.9 20 0.5

10 20 0.8 30 0.4

102 26 0.8 30 0.4

103 30 0.8 40 0.35

104 50 1.0 50 0.45

105 70 1.15 60 0.45

106 70 0.5

107 80 0.7

TABLE II. Variation of accuracy for various choices of param-
eters for the fourth-order algorithm at �=1000 with h=0.8 in case a
with the Hermite mesh. The third column gives the number Niter of
iterations.

N �� Niter E � Virial

30 0.1 71 6.308834870 8.670315218 0.000000221

40 0.1 71 6.308834862 8.670315182 0.000000244

30 0.05 153 6.308834870 8.670315379 −0.000000012

40 0.05 154 6.308834862 8.670315346 0.000000018

30 0.02 372 6.308834870 8.670315388 −0.000000030

40 0.02 372 6.308834862 8.670315356 0.000000001

30 0.01 732 6.308834870 8.670315389 −0.000000031

40 0.01 730 6.308834862 8.670315356 0.000000001

10 20 30 40

N

ε µ

1

10-2

10-4

10-6

10-8

10-10

FIG. 3. Error ��= ��−�exact� on the chemical potential �squares�
and absolute value of the virial residue �E+�−4�Vext

HO	� �triangles�
for the Hermite mesh at �=1000 as a function of the number N of
mesh points with h=0.8 and ��=0.01.
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the accuracies are comparable. Beyond 104, the sinc mesh
becomes progressively more accurate. The Hermite mesh
does not converge any more beyond 105.

The radial behavior of the corresponding spherical wave
functions is displayed in Fig. 4. They are calculated with
Eqs. �31�, �29�, and �17� or �22� for x=y=0. There is no
visible difference between the four variants of calculation. At
this scale, there is also essentially no difference with the
Thomas-Fermi approximation beyond �=103. For �=1 and
10, the wave functions still resemble the harmonic-oscillator
ground-state one. When � increases, they become progres-
sively flatter and more extended.

C. Attractive case

The condensate is still metastable in the attractive
case when ��� is not too large �1,27�. Beyond the limit
��−7.226, the condensate collapses within the present
Gross-Pitaevskii approximation �27�. Results with case a for
different values close to this limit are presented in Table IV.

We have rather arbitrarily stopped calculations after 25 000
iterations.

When approaching the critical value, the convergence be-
comes very slow and requires many iterations. We were not

TABLE III. Chemical potential � and energy E with optimal Hermite and sinc meshes �see Table I for N
and h� for �x=�y =�z=1. Cases a and b correspond to separations of H in Eqs. �36� and �37�, respectively.

� Case Mesh �� Niter E � Virial

1 a Her. 0.05 106 1.530891280 1.560971500 −0.000000001
b Her. 0.05 287 1.530891280 1.560971500 0.000000020
a Sinc 0.05 265 1.530891280 1.560971499 −0.000000023
b Sinc 0.05 289 1.530891280 1.560971499 −0.000000002

10 a Her. 0.05 213 1.757545057 1.973794544 0.000000006
b Her. 0.05 261 1.757545057 1.973794546 0.000000024
a Sinc 0.05 268 1.757545057 1.973794545 0.000000008
b Sinc 0.05 269 1.757545057 1.973794546 0.000000026

102 a Her. 0.05 183 2.867920410 3.713215597 0.000000016
b Her. 0.05 220 2.867920410 3.713215601 0.000000037
a Sinc 0.05 218 2.867920410 3.713215590 −0.000000013
b Sinc 0.05 210 2.867920410 3.713215593 0.000000008

103 a Her. 0.05 153 6.308834870 8.670315379 −0.000000012
b Her. 0.05 176 6.308834870 8.670315391 0.000000049
a Sinc 0.05 176 6.308834862 8.670315346 0.000000031
b Sinc 0.05 165 6.308834862 8.670315358 0.000000090

104 a Her. 0.02 299 15.37747175 21.44602932 −0.00000105
b Her. 0.02 293 15.37747175 21.44602932 −0.00000105
a Sinc 0.02 299 15.37747165 21.44602901 −0.00000036
b Sinc 0.02 309 15.37747165 21.44602901 −0.00000037

TF 15.2614 21.3660
105 a Her. 0.01 477 38.3909216 53.7068351 0.0000044

b Her. 0.01 410 38.3909216 53.7068351 0.0000044
a Sinc 0.01 457 38.3909220 53.7068354 −0.0000012
b Sinc 0.01 431 38.3909220 53.7068354 −0.0000012

TF 38.339 53.6689
106 a Sinc 0.005 570 96.3193038 134.82776 0.00012

b Sinc 0.005 577 96.3193038 134.82776 0.00012
TF 96.2930 134.8101

107 a Sinc 0.002 1130 241.8890989 338.6354 −0.0018
b Sinc 0.002 1134 241.8890989 338.6354 −0.0018

TF 241.8770 338.6278

0.0001

0.001

0.01
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1

0 5 10 15 20

z

ψ

106103102

λ = 1

10 104 105

FIG. 4. Wave functions ��0,0 ,z� for �=1 and �=1 to 106.
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able to find significant results beyond −7.2254. Even this
value is probably not a very accurate limit. We have used the
virial expression to select the supposed optimal values of h.
The comparison of the two meshes however shows that the
accuracy on the chemical potential is less good than expected
from the values of the virial expression. Anyway, one sees
that the chemical potential drops rapidly.

The accuracy on the average energy per boson is again
much better than for the chemical potential. This energy
tends to a finite limit of about 1.1681.

D. Anisotropic-oscillator potential

As a trap, we now consider the anisotropic oscillator po-
tential studied in Ref. �5�, i.e., �x

2=0.3, �y
2=0.6, and

�z
2=0.5 after conversion into the present notation. Results

with case a for various nonlinear parameters are presented in
Table V. The conditions of the calculation are roughly inter-
polated from Table I �we keep Nx=Ny =Nz�. Notice that since
��1, the interpolation must be based on the effective value
� /�� with �2�0.5. The values of the scaling parameters hi

are taken as h /��i for i=x, y, z with h given by Table I for
the effective value. In the units of Ref. �5�, the dimensionless
parameter is represented by 2� and the chemical potential by
2�. These values are converted into the present notation in
Table V.

The convergence and accuracy are very similar to the
spherical case. The computation times remain as short as in
the isotropic case. The agreement with Ref. �5� is excellent
up to �=5000 �an obvious misprint has been corrected for
�=50�. On the contrary, the results at 15 000 and 25 000
disagree at the 0.001 level. Since our results are stable with
respect to variations of N, h, and �� and since the virial test

TABLE IV. Chemical potential � and energy E in the attractive case with optimal Hermite and sinc
meshes for �x=�y =�z=1.

� Mesh N h �� Niter E � Virial

−7 Her. 40 0.55 0.01 4166 1.188408484 0.620438938 0.000000002

Sinc 40 0.22 0.01 3997 1.188408502 0.620439934 −0.000000282

−7.1 Her. 40 0.55 0.01 5000 1.180003036 0.559434087 −0.000000021

Sinc 40 0.22 0.01 5075 1.180003081 0.559437733 −0.000000900

−7.2 Her. 40 0.51 0.01 9950 1.170760551 0.45516550 −0.000000011

Sinc 40 0.22 0.01 10004 1.170760620 0.4551696 0.000000774

−7.22 Her. 40 0.50 0.01 19745 1.168719451 0.40629052 0.000000018

Sinc 40 0.20 0.01 19898 1.168719546 0.4063140 −0.000000102

−7.225 Her. 40 0.46 0.01 25000 1.16818287 0.3730864 0.00000008

Sinc 40 0.20 0.01 25000 1.16818299 0.3731851 0.00000074

−7.2252 Her. 40 0.43 0.01 25000 1.16816093 0.368002 −0.0000003

Sinc 40 0.19 0.01 25000 1.16816099 0.368127 −0.0000002

−7.2253 Her. 40 0.40 0.01 25000 1.1681508 0.36118 −0.000007

Sinc 40 0.18 0.01 25000 1.1681505 0.36202 −0.000010

−7.2254 Her. 50 0.43 0.01 25000 1.1681372 0.3446 −0.0004

Sinc 40 0.19 0.01 25000 1.1681375 0.3451 −0.0004

TABLE V. Chemical potential �, energy E, and virial residue with the Hermite mesh for �x
2=0.3, �y

2

=0.6, and �z
2=0.5. The last column displays chemical potentials of Ref. �5� converted to the present units.

� �� Niter E � Virial � �Ref. �5��

1 0.05 394 1.031710720 1.048334727 0.000000000

10 0.05 446 1.159916767 1.284404840 0.000000000

50 0.05 432 1.522757628 1.876928940 0.000000003 1.8769285

500 0.05 348 3.053321507 4.131516887 0.000000004 4.1315165

1500 0.05 275 4.566073050 6.287095396 0.000000015 6.2870955

5000 0.02 533 7.251147655 10.07722612 −0.000000074 10.0772255

15000 0.01 890 11.16406435 15.57610963 −0.00000017 15.575140

25000 0.02 848 13.66678924 19.08763399 0.00000015 19.088632

100000 0.01 691 23.7247465 33.184802 0.000017

TF 23.6833 33.1567
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�Eq. �9�� is well satisfied, we think that the results of Ref. �5�
are less accurate.

E. Nonseparable external potential

The present technique with factorization b does not de-
pend on the use of oscillator external potentials. To illustrate
this fact, we now consider the external potential

Vext = V0�1 − exp�−
1

2V0
��x

2x2 + �y
2y2 + �z

2z2��� , �46�

with �x=�y =�z=1. A Taylor expansion shows that this po-
tential resembles the harmonic-oscillator trap around its
minimum. However it does not confine the particles since it
has a threshold at V0.

The results for various nonlinear parameters are presented
in Table VI. The virial theorem is given by Eq. �8�. The
conditions of the calculation are roughly interpolated from
Table I.

For V0→
, one recovers the oscillator case from Table
III. This case is shown in the first two lines of the table. Let
us start with V0=100 and the Hermite mesh. The external
potential is still deep. The fact that it tends to a finite limit
should not play a significant role. Indeed, the energy and
chemical potential are close to the oscillator values. They are
slightly below because the potential is broader. The differ-
ence is larger for �=1000 since there are more bosons. The
accuracy is slightly less good under the same conditions.

For V0=10, the effect of the absence of confinement be-
comes more significant. At �=1000, the number of points
and the scale parameter must be increased to keep the same
level of accuracy. The condensate starts to be sensitive to the
region where the potential is flat. For V0=1, the convergence
becomes very slow at �=1 in spite of a significant
adjustment of the conditions of the calculation indicating
an expansion of the condensate. The calculation was stopped
after 5000 iterations. Both E and � are now smaller.
Their values are confirmed by a calculation with the sinc
mesh. We could not obtain a significant result for �=1000.
The trap is not deep enough to contain the increased number
of bosons.

IV. CONCLUSION

The combination of the imaginary-time and Lagrange-
mesh methods provides a simple, fast, and accurate way of
solving the three-dimensional Gross-Pitaevskii equation.
This is realized here with a fourth-order factorization of the
exponential operator appearing in the imaginary-time
method. The algorithm is not restricted to harmonic-
oscillator trapping potentials. The virial theorem offers an
efficient way of choosing the conditions of calculations
adapted to the required accuracy. In general, it also provides
an evaluation of the accuracy reached on the chemical po-
tential. This accuracy is less good than the accuracy on the
energy per boson which arises from a variational principle.

Calculations have been performed for � ranging from 1 to
107. The calculation time increases with � but remains quite
short up to the highest values. The accuracy becomes less
good at high � values where the Thomas-Fermi approxima-
tion becomes accurate.

It will be interesting to extend the present approach to the
time evolution of a condensate. The same ingredients should
allow to accurately treat a number of such applications.
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APPENDIX

The calculation of �� is needed in the fourth-order algo-
rithm. To this end, one calculates values of the first deriva-
tive of the Lagrange functions at the mesh points,

� j
1/2f i��uj� = �− 1�i−j 1

uj − ui
,

�i
1/2f i��ui� = 0. �A1�

TABLE VI. Chemical potential � and energy E with Hermite mesh �except at the last line� for the
nonseparable external potential defined in Eq. �46�.

V0 � N h �� Niter E � Virial


 1 20 0.8 0.05 287 1.530891280 1.560971500 0.000000020

1000 30 0.8 0.05 176 6.308834870 8.670315391 0.000000049

100 1 20 0.8 0.05 275 1.525944363 1.555775730 0.000000019

1000 30 0.8 0.05 161 6.214757020 8.506122662 0.000000137

10 1 20 0.8 0.05 303 1.480952622 1.508530825 0.000000095

1000 40 1.0 0.05 316 5.345812523 6.979115000 0.000000024

1 1 30 2.1 0.05 5000 0.96601 0.96944 −0.00009

1 �sinc� 1 30 0.8 0.05 5000 0.96600 0.96944 0.00008
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Notice that these expressions are common for the Hermite
and sinc meshes �but the zeros uj are different�. After parity
projection they read

� j
1/2f i

p��uj� = �− 1�i−j
 1

uj − ui
−

p

uj + ui
� ,

�i
1/2f i

p��ui� = −
p

2ui
. �A2�

Hence the components of the gradient are approximated by

��

�x
�hxui,hyv j,hzwk� = hx

−1 

i�=1/2

1/2�Nx−1�

ci�jk�i
1/2f i�

px��ui� ,

��

�y
�hxui,hyv j,hzwk� = hy

−1 

j�=1/2

1/2�Ny−1�

cij�k� j
1/2gj�

py��v j� ,

��

�z
�hxui,hyv j,hzwk� = hz

−1 

k�=1/2

1/2�Nz−1�

cijk��k
1/2hk�

pz��wk� . �A3�
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