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We investigate the long-time behavior of a wave packet initially localized at a single site n0 in translationally
invariant harmonic and anharmonic chains with random interactions. In the harmonic case, the energy profile
�en�t�� averaged on time and disorder decays for large �n−n0� as a power law �en�t���C�n−n0�−�, where �
=5 /2 and 3/2 for initial displacement and momentum excitations, respectively. The prefactor C depends on the
probability distribution of the harmonic coupling constants and diverges in the limit of weak disorder. As a
consequence, the moments �m��t�� of the energy distribution averaged with respect to disorder diverge in time
as t���� for ��2, where �=�+1−� for ���−1. Molecular-dynamics simulations yield good agreement with
these theoretical predictions. Therefore, in this system, the second moment of the wave packet diverges as a
function of time despite the wave packet is not spreading. Thus, this only criterion, often considered earlier as
proving the spreading of a wave packet, cannot be considered as sufficient in any model. The anharmonic case
is investigated numerically. It is found for intermediate disorder that the tail of the energy profile becomes very
close to those of the harmonic case. For weak and strong disorders, our results suggest that the crossover to the
harmonic behavior occurs at much larger �n−n0� and larger time.
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I. INTRODUCTION

There has been large activity for many years in the study
of the temporal evolution of an initially localized energy ex-
citation in various nonlinear systems, e.g., the discrete non-
linear Schrödinger equation �1–4� and the Fermi-Pasta-Ulam
�FPU� �5–8� and Klein-Gordon �KG� �4,9� models with both
uniform and random couplings. In the latter case, the main
interest is in the interplay of anharmonicity �nonlinearity�
and disorder, which is not yet fully understood. For harmonic
one-dimensional disordered systems, all eigenmodes �called
Anderson modes� of the infinite system are known to be
localized and form a complete basis. Then a wave packet at
time t=0 will remain localized at any time as a linear super-
position of Anderson modes of the infinite chain. Whether or
not this behavior changes qualitatively by the introduction of
anharmonicity is highly debated and controversial �see Refs.
�3,4,9� and references therein�.

Since an analytical treatment of the time evolution of an-
harmonic systems with disorder is extremely difficult, most
investigations have been done by molecular-dynamics simu-
lations. In the numerical studies, one typically follows the
wave-packet dynamics by monitoring quantities such as the
participation ratio P�t� �a measure of the localization at time
t� and the time-dependent moments m��t� of the local energy
en�t� �see the definitions below�. All these measurements are
hampered by statistical errors as well as finite-size and finite-
time effects. Even very long calculation times of, say, 108

microscopic time units �of order picoseconds� may not be
entirely conclusive. Indeed, one can never be sure whether
the spreading of a wave packet is complete or only partial in
the infinite-time limit. These issues are intimately related to
the spontaneous self-trapping of energy �for example, in the
form of discrete breathers� which is generic in most nonlin-
ear systems.

Independently on complete or incomplete spreading, one
might expect that the evolution of the wave-packet tails
should yield relevant information on the spreading process
itself. In such regions, the typical displacement becomes
small enough such that linear approximation of the forces
becomes valid. This motivates the investigation of the har-
monic chain as a first necessary step for an insight of the
nonlinear case. Despite the apparent simplicity of such a
case, there are still issues that have not been fully discussed
in the literature. Let us briefly review some of the main re-
sults known for this case. Without disorder all eigenstates are
extended, and it is well known �see, e.g., Ref. �10� and ref-
erences therein� that

m��t� 	 t����, �1�

with ��2�=2, i.e., the energy spreading is ballistic �note that
� is not necessarily an integer�. Introducing disorder and/or
anharmonicities, this energy transport is changed and may be
superdiffusive ���2��1�, diffusive ���2�=1�, or subdiffu-
sive ���2��1�, or it could become logarithmic or disappear
���2�=0�. If the initial excitation is at site zero with ampli-
tude u0�0�, then the disorder averaged propagator �un�t�� is
one of the basic quantities. Although �u0�t�� for t→	 is
known analytically for different classes of disorders �11�,
much less is known for n�0. Approximating the Anderson
modes by plane waves with exponentially decaying ampli-
tudes, it has been shown in Ref. �6� that

�un�t�� 

1

2�
�0�n��1/2exp�−
��n� − ct�2

4�0�n� � , �2�

for �n�→	 and t→	. Here, c is the sound velocity and �0 is
a measure of the localization length. Equation �2� shows for
t→	 that there are two humps which propagate ballistically
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at the sound velocity c, but with an amplitude which decays
as 1 /t. Within its comoving frame, these humps spread as
for normal diffusion. Another approach for calculating
�un�t�� is to use a scaling hypothesis �11�,

�ũn���� = �ũ0����F�n/�����, � → 0, �3�

for the Laplace transform of �un�t�� for �→0. A similar an-
satz can be made for �un�t�� �12–14�. Here, ���� denotes a
localization length.

In this paper we investigate the energy profile �en�t�� av-
eraged on time and disorder of a wave packet originating an
initially localized excitation. We demonstrate that it asymp-
totically decays as a power law in space. Thus, the wave
packet remains localized only weakly, while its moments ap-
pear to diverge in time. This result—which, to the best of our
knowledge, has not been reported previously—must be taken
into account especially when attacking more difficult nonlin-
ear cases. Indeed, some numerical results for the anharmonic
chain �a FPU model� will be critically analyzed on the basis
of the results on the harmonic one.

The outline of our paper is as follows. In Sec. II we will
introduce the harmonic model, rephrase some of its well-
known properties, define the local energy en�t�, and give
some information on our numerical approach. A virial theo-
rem for the time averaged local kinetic and potential energies
will be proven in Sec. III. It will be applied in this section for
the analytical calculation of the time and disorder averages
of en�t�. The corresponding analytical result will be com-
pared with the numerical one. Furthermore we will investi-
gate the moments m��t� of the local energy �en�t��. The in-
fluence of anharmonicity on en�t� will be numerically studied
in Sec. IV, and the final section �Sec. V� contains a summary
and some conclusions.

II. DISORDERED HARMONIC CHAIN

A. Property of the Anderson modes

As motivated above we investigate the classical dynamics
of a disordered harmonic chain with lattice constant a which
is invariant under translations. Its classical Hamiltonian
reads

H = �
n
� pn

2

2m
+

1

2
Kn�un+1 − un�2� . �4�

Here, un is the displacement of the particle at site n, pn is the
corresponding conjugate momentum, m is the particle’s
mass, and Kn is the random coupling constants between near-
est neighbors. Kn’s are independent random variables, iden-
tically distributed with some probability distribution p�K�.
Stability requires all Kn’s to be positive. In our numerical
approach, the system is finite with N particles and with free
ends, i.e., KN/2=0. Otherwise, we shall perform analytical
calculations in the thermodynamic limit N→	 where the
choice of the boundary conditions does not matter. The equa-
tions of motion are

mün = Kn�un+1 − un� − Kn−1�un − un−1� . �5�

The general solution of Eq. �5� with initial conditions
un�0�=un and u̇n�0�= u̇n is given by

un�t� = U0 + U̇0t + �n�t� , �6�

where

�n�t� = �
n�
�un���

��0
Qn

���Qn�
��� cos ��t�

+ u̇n���
��0

1

��

Qn
���Qn�

��� sin ��t�� , �7�

and U0=�nun /N and U̇0=�nu̇n /N are the position and veloc-
ity, respectively, of the center of mass of the whole chain.

The eigenmodes Qn
��� with eigenfrequency �� can be cho-

sen as real with indices � in a countable set. They satisfy

Kn�Qn
��� − Qn+1

��� � + Kn−1�Qn
��� − Qn−1

��� � = m��
2Qn

���, �8�

and they can be normalized, except the uniform eigenmode
Qn

�0�
1 with �0=0 which is extended and cannot be normal-
ized for the infinite system. For any size N of a finite system,
the translation invariance of the model implies that Qn

�0�= 1
N

is an eigenmode with eigenfrequency �0=0. In the limit of
an infinite system, all eigenmodes are localized, except this
single zero-frequency mode which is extended. However,
nothing changes in the problem when choosing the center of

mass of the whole system immobile at U0=0 with U̇0=0.
Although the eigenspectrum is discrete for the infinite sys-
tem, it is dense. The corresponding density of states,

g��� = lim
N→	

1

N �
�=1

N−1

��� − ��� , �9�

is a smooth function which is known �15� to be self-
averaging, i.e., it is independent on the disorder realization
with a probability of 1. Moreover, in the small-frequency
limit, �→0, we have �16,17�

g��� �
m�K−1�



. �10�

The localized eigenmodes decay exponentially with a local-
ization length �16,17�

�� = ����� �
8�K−1�/m

�K−2� − �K−1�2��
−2a, �� → 0, �11�

which diverges at the lower “band” edge at �0=0.
Then, if the chain is finite with length L, there is a fre-

quency �L such that the localization length equals the system
size, i.e., ���L�=L=aN. Consequently, only the eigenmodes
with frequency ����L can be considered as well localized
inside the finite system, while the remaining modes where
����L extend over the whole finite system. Their number
which is on the order of N goes to infinity in the limit of an
infinite system despite their relative weight for N→	 goes to
zero as 1 /N. As a result, they still play a role for transport
quantities, such as the energy diffusion constant �6,10,18� or
the thermal conductivity �19�. Actually, those relatively ex-
tended modes behave like acoustic modes whose effective
sound velocity is
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c =�K−1�−1

m
a . �12�

Although these results were originally proven for a chain
with mass disorder, they also hold for our model. Indeed,
letting yn= �un+1−un� /Kn, Eq. �5� is mapped onto the
eigenequation with mass disorder. This property has already
been used above since the mass average �m� has been re-
placed with �K−1�.

B. Local energy and local virial theorem

We define the local energy

en�t� = en
�kin��t� + en

�pot��t� ,

with kinetic and potential parts,

en
�kin��t� =

m

2
�u̇n�t��2, �13�

en
�pot��t� =

1

2
Kn−1�un�t� − un−1�t��un�t� −

1

2
Kn�un+1�t�

− un�t��un�t� , �14�

respectively. Then, �nen
�pot� equals the total potential energy

in Eq. �4�. We will investigate the energy profile for a dis-
placement excitation:

un�0� = A�n,n0
, pn�0� 
 0 �15�

and a momentum excitation:

un�0� 
 0, pn�0� = B�n,n0
. �16�

For calculating numerically �un�t�� we considered the ex-
ample of a uniform and uncorrelated distribution of random
couplings Kn with probability distribution

p�K� = � 1

k�R − 1�
if k � K � Rk

0 otherwise,
� �17�

where of course R�1.
To explore the role of different disorder strengths we fixed

k=1 and took different R’s. The choice of units is such that
m=1 and a=1. Note that with these particular choices the
effective sound velocity �Eq. �12�� is c=R−1

ln R .
Microcanonical simulations were performed for typically

N=8192 particles with fourth-order symplectic algorithm
�20�, with a typical time step of 5�10−3 or less. Although
the choice of the initial conditions, Eqs. �15� and �16�, im-

plies U0=A /N, U̇0=0 and U0=0, U̇0=B /N, respectively,
these nonzero quantities are rather small since A and B are of
order 1 and N�1.

In our numerical experiments, we avoid that the wave
packet reaches the chain boundaries which may generate
spurious finite-size effects �reflections, etc.�. Thus, one
should restrict the maximum simulation time tsim to be
smaller than tmax	N /c, where c is the sound velocity.

We also fixed n0=−N /2+1 for extending the spatial range
of our system, so that one simulates the wave-packet propa-

gation in a semi-infinite medium �8�. Some runs with n0=0
were also performed, yielding similar results. Figure 1 shows
the numerical profile en�t=2000� for a momentum excitation
with B=2.0. The result for a single realization of the disorder
exhibits on the log-log representation strong fluctuations
around an average, decaying linearly. Averaging over a large
enough number �O�103�� disorder realizations strongly re-
duces these fluctuations and supports the linear dependence
on �n−n0� on the log-log scale. In the next section we dem-
onstrate that this is indeed the case and compute analytically
the exponents associated with such power-lay decay.

The calculation of the time averaged energy profile will
be simplified by means of a local virial theorem that will be
proved below. The well-known virial theorem �21� relates
the time average of the total kinetic energy to the time aver-
age of the virial. The virial �21� involves the gradient of the
total potential energy. If the potential is harmonic this theo-
rem implies equality between the time averaged total kinetic
and total potential energies. In this section we will prove that
this relationship also holds for the time averaged local ki-
netic and local potential energies, defined by Eqs. �13� and
�14�, respectively.

The time average of a function f�t� is defined by

f�t� = lim
T→	

1

T
�

0

T

dtf�t� . �18�

Substitution of the general solution un�t� of Eqs. �6� and �7�
into Eq. �13� and taking into account

cos ��t cos ���t = 1
2����,

sin ��t sin ���t = 1
2����,

sin ��t cos ���t = 0, �19�

yields
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FIG. 1. �Color online� Energy profile en�t� at t=2000 for a mo-
mentum excitation with B=2.0, N=8192 particles, R=4, and for a
single realization of disorder �green line� and averaged over
2�103 realizations �black line�.
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en
�kin��t� =

m

2
U̇0

2 +
m

4 �
��0

�Qn
����2

����
2��

n�

un�Qn�
����2

+ ��
n�

u̇n�Qn�
����2� . �20�

Note that the sum over � remains discrete and cannot be
replaced with an integral in the limit of an infinite system.

With our definition �14� of en
�pot� and using Eq. �5�, we

obtain

en
�pot��t� = −

m

2
ün�t�un�t� . �21�

Substituting un�t� from Eqs. �6� and �7�, and since �n�t� and
�̇n�t� has to remain bounded at all times for any initially
localized wave packet �with finite energy�, yields

en
�pot��t� = en

�kin��t� , �22�

for all n and arbitrary initial conditions with finite energy in
case that the center of mass has been chosen immobile

�U̇0=0�.

III. ENERGY PROFILE: HARMONIC CASE

A. Energy profile

Without restricting generality we choose m=1 and a=1.
Let us discuss first the case of a displacement excitation for a
given disorder realization. In this case, we obtain from Eqs.

�6� and �7� for A=1 and U0=0, U̇0=0

un�t� = �
�

Qn
���Qn0

��� cos ��t ,

u̇n�t� = − �
��0

��Qn
���Qn0

��� sin ��t , �23�

and therefore

en
�kin��t� =

1

2 �
�,���0

�����Qn
���Qn0

���Qn
����Qn0

����sin ��t sin ���t .

�24�

Let us discuss first the qualitative t dependence of en
�kin��t�.

We will explain how the spectral properties govern its time
dependence. Particularly we show that this quantity which is
not averaged over time and/or disorder does not decay for
n→	 and/or t→	. Since the eigenspectrum of the infinite
random system is discrete with a countable basis of localized
eigenstates �Qn

����, un�t� has been expanded in this basis �see
Eqs. �7� and �23��. This expansion is actually an absolutely
convergent series of cosine functions of time because

��
�

Qn0

���Qn
���� � ��

�

Qn0

���2�1/2��
�

Qn
���2�1/2

= 1.

Consequently, un�t� is an almost periodic function in the
sense of H. Bohr �see, e.g., Ref. �22��. An equivalent defini-
tion for such functions is that for any arbitrarily small ��0,
there is a monotone sequence of �p �p�Z� �called pseudo-

periods�, which is relatively dense �that is there exists L such
that �p+1−�p�L for any p�, and such that for all p, f�t�
is periodic with period �p at the accuracy � that is
�f�t+�p�− f�t���� for any p and for all t. As a consequence
of this recurrence property, an almost periodic function can-
not go to zero for t→ 	. The set of almost periodic func-
tions is an algebra, that is, linear combinations and products
of almost periodic functions are almost periodic functions, as
well.

In our case, the set of eigenfrequencies �� is bounded
�since the support of the distribution function p�K� is com-
pact�, and thus it is straightforward to show that the time
derivative u̇n�t� is also an almost periodic function of time,
and the local kinetic energy en

�kin��t� defined by Eq. �13�, as
well as en

�kin��t� from Eq. �24�, can be decomposed into a
time-independent term and remaining time-dependent terms:

en
�kin��t� =

1

4 �
��0

��
2�Qn

���Qn0

����2 −
1

4 �
��0

��
2�Qn

���Qn0

����2cos 2��t

+
1

4 �
����

������Qn
���Qn0

�����Qn
����Qn0

�����

��cos��� − ����t + cos��� + ����t� . �25�

Note that for a finite chain without disorder, i.e., Kn
K, the
first and second terms on the right-hand side of Eq. �25� are
of order 1 /N since the eigenmodes are plane waves where
Qn

����1 /N. Then �Qn
���Qn0

����2�1 /N2, and there are only N
such terms. Consequently, they will not contribute to en

�kin��t�,
in the limit N→	 when the eigenspectrum of the chain be-
comes absolutely continuous. In that case en

�kin��t� can be rep-
resented by an integral which is a Fourier transform of a
smooth function and is obviously not an almost periodic
function. It decays to zero at infinite time as expected from
ballistic diffusion. This is not true in the case of disorder,
because each term in the series keeps a nonvanishing contri-
bution for the infinite system, and en

�kin��t� does not decay to
zero at infinite time because it is almost periodic.

However, in contrast to the ordered chain, Qn
���Qn0

��� is not
a smooth function of ��, in the case of disorder. The reason
is that when the eigenspectrum is discrete, arbitrarily small
variations of �� may change the location of the correspond-
ing localized eigenstate by arbitrarily large distances. Thus,
these eigenstates �Qn

���� are not continuous functions of ��,
but depend on the disorder realization as well as en

�kin��t� and
en�t� �since they are obtained as discrete series explicitly in-
volving these eigenstates�. The consequence is that those
quantities are not self-averaging, as clearly demonstrated in
Fig. 1 for en

�kin��t�.

B. Disorder averaged profile

Since en
�kin��t� is an almost periodic function of time, it is a

stationary solution. Its time average drops all cosine terms in
Eq. �25� and keeps only the constant term, i.e., we get
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en
�kin��t� =

1

4 �
��0

��
2�Qn

���Qn0

����2.

An attempt to justify the use of the time averaged quantity
will be given below. en

�kin��t� and en�t� still depend on the
disorder realization. Therefore, it is reasonable to calculate
the corresponding disorder averaged quantities, as well. De-
spite they cannot be observed for any single disorder realiza-
tion, they give information on the general behavior of the
profiles. Then we arrive at

�en
�kin��t�� =

1

4��
��0

��
2�Qn

���Qn0

����2� , �26�

for the infinite system.
Note that, in the infinite system, the sets of eigenvalues

and eigenvectors are discontinuous functions of the disorder
realization. Yet, according to Wegner �23�, the disorder aver-
age �F��Qn

������ of an arbitrary function F��Qn
����� of the

eigenvectors can be well defined as a smooth function of �
as a limit for finite systems with size N→	,

�F��Qn
������g����� = lim

N→+	
� � 1

N
�

������+��

F��Qn
������

��
n=1

N

p�Kn�dKn.

The sum in the integral is restricted to eigenvalues ��

which belong to an interval �� ,�+��� of small width ��,
and g��� is the density of states defined by Eq. �9�. Then, we
obtain from Eq. �26�

�en
�kin��t�� =

1

4
�

0

	

d� �2g��� lim
N→	

�N��Qn
���Qn0

����2�� . �27�

Since en
�pot��t�=en

�kin��t�, for N=	 and all realizations of
�Kn�, the time and disorder averaged energy profile is given
by

�en�t�� = 2�en
�kin��t�� , �28�

i.e., the calculation of �en�t�� is reduced to that of g��� and
the “quadratic” correlation function ��Qn

���Qn0

����2� for N→	.
�Qn

���� is the solution of the eigenvalue equation �8� with ��

replaced with �.
Before we go to the evaluation of the quadratic correla-

tion function, let us return to Eq. �25�. Making again use of
the self-averaging of the density of states we obtain for the
second term on its right-hand side:

−
1

4
�

0

	

d� �2g��� lim
N→	

�N��Qn
���Qn0

����2��cos 2�t .

Below, it will be shown that limN→	�N��Qn
���Qn0

����2�� is a
finite and smooth function of �. Therefore, the disorder av-
eraged second term will converge to zero, for t→	, due to
g���→g0=const, for �→0. The same property should hold
for the disorder average of the square bracket term in Eq.
�25�. With the density of states g�� ,��� giving the joint dis-
tribution for two eigenfrequencies, the disorder averaged

square bracket term becomes a double integral over �
and ��. Although we do not have a rigorous proof,

limN→	�N2��Qn
���Qn0

�����Qn
����Qn0

�������, which is part of the in-
tegrand, should be a finite and smooth function of � and ��.
Then, taking the limit N→	 first, the square bracket term
should converge to zero for t→	. If this is true the disorder
averaged energy profile converges to an asymptotic profile
for t→	, which is consistent with our numerical result. In-
deed, the disorder averaged profile in Fig. 1 depends on t
only very weakly, for large t. In that case the asymptotic
profile equals the time averaged one.

Now we go back to the quadratic correlation function.
Due to the disorder average it will depend only on �n−n0�.
Since the Anderson modes are exponentially localized one
expects that this correlation function decays exponentially
with �n−n0�. To prove this we first present a crude heuristic
approach by assuming

Qn
��� � N� exp�−

�n − n��
��

� , �29�

where the “center of mass” of the Anderson mode � is at n�,
which is a random variable, depending on �Kn�. N� is a nor-
malization constant. It should be remarked that the envelope
of an Anderson mode Qn

��� decays exponentially, but not Qn
���

itself. Therefore, Eq. �29� is a crude approximation neglect-
ing sign changes of Qn

��� with n. Substituting Qn
��� from Eq.

�29� into the quadratic correlation function and using

�f�n��� �
1

N
�
n�=1

N

f�n�� , �30�

we get

��Qn
���Qn0

����2� �
1

N
N�

4�coth
2

��

+ �n − n0��exp�−
2

��

�n − n0�� ,

�31�

i.e., the quadratic correlation function decays exponentially.
For an analytical calculation of the quadratic correlation

function in Eq. �27� one can use the approach presented in
Refs. �23–25�. These authors proved that the computation of
the correlation functions �Qn

���Qn0

���� and ��Qn
�����Qn0

����� for
�n−n0�→	 is reduced to the solution of an eigenvalue prob-
lem for an integral kernel. As a result, these correlation func-
tions decay exponentially for large �n−n0� with an inverse
localization length given by −ln��max����. ��max���� is the
largest absolute value of the eigenvalues of the kernel. It is
smaller than 1. Applying that approach it follows that for
�n−n0�→	

��Qn
���Qn0

����2� � ����exp�− �n − n0�/�2���� , �32�

with a correlation length �2���. We note that the eigenvalue
problem in form of an integral equation can only be used to
calculate correlation functions of the Anderson modes and
not directly to compute the energy profile itself. But the
former is needed �see Eq. �27�� for the latter.
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The correlation lengths �localization lengths� of the corre-
lation functions calculated in Refs. �23–25� and of the qua-
dratic correlation function �32� are different from each other
and different from ���� �Eq. �11��, for finite �. But
for �→0 they exhibit the same divergence, i.e., it is
�see Eq. �11��

�2��� � c2�−2, � → 0, �33�

with a positive constant c2, depending on p�K�.
The pre-exponential factor ���� can be determined as fol-

lows. Assuming that Eq. �32� is valid for all �n−n0�, summa-
tion of the left- and right-hand sides of that equation and
accounting for the normalization �n�Qn

����2=1 for �=�� �re-
member that Qn

��� has been chosen as real� yields for N→	

���� �
1

N coth�1/�2����
�

�2

Nc2
, � → 0. �34�

In the last line, Eq. �33� has been applied. With Eqs. �32�,
�34�, and �27�, it follows from Eq. �28� that

�en�t�� �
1

2
�

0

	

d�g����2exp�− �n − n0�/�2����
coth�1/�2����

. �35�

The asymptotic �n−n0� dependence is governed by the
small-� behavior of the integrand. From Eq. �10� we get

g��� = dI���/d� � �K−1�/
, � → 0. �36�

Assuming that Eqs. �33� and �36� are valid for all � will
not influence the asymptotic dependence of �en�t�� on
�n−n0�. Then we get from Eq. �35� for the infinite chain and
a displacement excitation

�en�t�� �
3

16
c2

3�K−1�/
�n − n0�−5/2, �n − n0� → 	 ,

�37�

i.e., the time and disorder averaged energy profile decays as
a power law in �n−n0� with an exponent �=5 /2.

So far we have discussed the energy profile for a displace-
ment excitation. The corresponding calculation for a momen-
tum excitation is similar. With the initial condition �16� and
B=1, Eq. �7� leads to

u̇n�t� = �
�=1

N−1

Qn
���Qn0

��� cos ��t . �38�

Besides cos ��t the main difference to u̇n�t� for a dis-
placement excitation �see Eq. �23�� is the absence of the
prefactor �� of Qn

���Qn0

���. As a consequence one obtains

�en�t�� �
1

2
�

0

	

d�g���
exp�− �n − n0�/�2����

coth�1/�2����
, �39�

where �2 in Eq. �35� is replaced with 1. With the same as-
sumptions as above we obtain for the infinite chain and a
momentum excitation

�en�t�� � 1
8
c2�K−1�/
�n − n0�−3/2, �n − n0� → 	 . �40�

It is not surprising that we find a power-law decay again.
The corresponding exponent is �=3 /2.

Figures 2 and 3 report the numerical result for the disor-
der averaged energy profile at different large times of dis-
placement and momentum excitations, respectively. They
clearly demonstrate first that the numerical result of the dis-
order averaged energy profile becomes independent of t for t
large enough; and, second, that it converges to a power law
for large �n−n0� with exponents predicted by the analytical
calculation. The three spikes at the t-dependent positions n�t�
are the phonon fronts propagating with the effective sound
velocity �Eq. �12��.

There is a finite-size effect for N�	 due to the existence
of extended states. For ���L=� /N �with � being a suit-
able constant O�1��, it is

��Qn
���Qn0

����2� �
4

N
sin2�cqn�sin2�cqn0� , �41�

where ��cq. With g����g0 for the density of extended
states it is easy to estimate the contribution of those to �en�t��
in the case of a displacement excitation:
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FIG. 2. �Color online� Energy profile at three different times
averaged over 103 realizations of the disorder with R=4 for
N=8192 particles and a displacement excitation with A=2. The
dashed line is the predicted power-law decay �37�. The ballistic
peaks propagate at a velocity c=1.476 in agreement with the value
c=1.471. . . computed from Eq. �12�.
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FIG. 3. �Color online� Same as Fig. 2 but for a momentum
excitation with B=2 and averaged over 2�103 realizations. The
dashed line is the predicted power law �40�.
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�en�t���ext� �
�3g0

6
N−5/2. �42�

If 1� �n−n0��N, then it is �en�t��= �en�t���loc�+ �en�t���ext�

��en�t���loc�	�n−n0�−5/2. For �n−n0��N but �n−n0�=O�N�
there is a crossover value �n−n0�c.o. depending on �, g0, etc.
such that

�en�t���loc� � �en�t���ext� 	 N−5/2. �43�

For N=8192 this contribution is of order 10−10. The cor-
responding contribution for a momentum excitation is

�en�t���ext� 	 N−3/2, �44�

being of order 10−6 for N=8192.
Figure 4 compares the energy profiles for different

strengths of the disorder, i.e., for various values of the pa-
rameter R. We limited ourselves to the case of a displace-
ment excitation. The profiles display the same decay law.
The cases with stronger disorder attain the asymptotic profile
at smaller distances since in this case the localization lengths
are shorter. As seen from Fig. 4, the data are consistent with
the expectation that the asymptotic profile is reached for
�n−n0���min. The values of �min given in that figure are a
rough estimate of the shortest localization length obtained
by extrapolating formula �11� at �=�max=2c, i.e.,
�min=���max�.

The prefactor of both power laws, Eqs. �37� and �40�,
depends on the disorder as demonstrated in Fig. 4. It seems
reasonable that �2������ for �→0 with a positive param-
eter �, independent on � and the disorder. Equations �11�
and �33�, together with this hypothesis, imply

c2 = 8�
�K−1�

�K−2� − �K−1�2 . �45�

Again m=1 and a=1 have been used. For the uniform
distribution p�K� �Eq. �17��, �K−1� and �K−2� can easily be
calculated. From this we obtain

c2�R� = 8�
�R − 1�R ln R

�R − 1�2 − R�ln R�2

� 72��R − 1�−2�1 + O�R − 1�� . �46�

Note that c2�R� diverges in the no-disorder limit R→1+,
as it should be since only extended states exist thereby. Ac-
cordingly, ���� should become infinite for all �.

Introducing c2�R� from the first line of Eq. �46� and
�K−1��R�= �ln R� / �R−1� into the prefactor C�R� of the power
laws, Eqs. �37� and �40�, leads to the R dependence shown in
Fig. 5 in the case of a displacement and a momentum exci-
tation, respectively. The unknown parameter � has been ad-
justed in order to fit the numerical result for the prefactors.
The latter are obtained from the numerical data in Figs. 2 and
3 extrapolating �en�t���n−n0�� at large �n−n0�.

The numerical and analytical results for the prefactor in
the case of a displacement excitation agree satisfactorily,
even for the smallest value of R=1.3. Investigating the pro-
file for even smaller values is hampered for our finite chain
by the increase in the localization length with decreasing
�R−1�. The same agreement is also valid in the case of the
momentum excitation, except for the two smallest R values
at 1.3 and 1.5. Equation �7� demonstrates that the weight of
the low-lying Anderson modes for a momentum excitation is
by a factor 1 /�� higher than for a displacement excitation.
Since the localization length increases with decreasing ��,
this could be the reason for the “asymmetric” behavior of
C�R� for both kinds of excitations. Indeed, we have observed
that �en�t���n−n0�3/2 does not reach a stationary value for,
e.g., R=1.3. The strong deviation of the fit parameter � for
the displacement and momentum excitations may originate
also from this fact.

C. Moments of the local energy

A customary way to describe wave-packet diffusion is to
look at time evolution of moments of the energy distribution
that are defined as
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FIG. 4. �Color online� Disorder averaged energy profiles at
t=2000 for a displacement excitation with A=2 and increasing dis-
order strengths �from top to bottom�. Other parameters are same as
in Fig. 1. The dashed line indicates the predicted power law �37�.

1 4 8 12 16 20
R

10
1

10
2

10
3

10
4

pr
ef

ac
to

r

Displacement exc.
(λ

fit
=3.97)

Momentum exc.
(λ

fit
=144)

FIG. 5. �Color online� Dependence of the prefactors C�R� on the
disorder strength R for a displacement �A=2� and momentum
�B=2� excitation: numerical �full circles and triangles, respectively�
and analytical results �37� and �40� with formula �46� �solid lines�.
Dashed-dotted lines are the expected asymptotic behaviors for
R→1+, �R−1�−3, and �R−1�−1, respectively. The fitting parameter
�fit is given in the legend.

ASYMPTOTIC ENERGY PROFILE OF A WAVE PACKET IN… PHYSICAL REVIEW E 82, 056602 �2010�

056602-7



m��t� =

�
n

�n − n0��en�t�

�
n

en

�47�

�the denominator is clearly only a scale factor�. Of particular
interest for a statistical characterization are the disorder av-
eraged moments �m��t��. Their numerical result is shown in
Fig. 6. If one uses asymptotics �37� and �40� and introduces
a cutoff of the sum in the numerator of Eq. �47� at the bal-
listic distance �n−n0�=ct, one obtains

�m��t�� � t����, ���� = �� + 1 − � , � � � − 1

0, � � � − 1.
� �48�

For �=�−1 there is a logarithmic divergence of �m��t��
with time. As demonstrated in Fig. 7, the numerical values of
���� are in excellent agreement with Eq. �48�. This also im-
plies that the contribution of the traveling peaks is not rel-
evant as implicitly assumed in the derivation of Eq. �48�.

This result is consistent with the values that could be in-
ferred by Datta and Kundu �10�. Indeed, they predicted
��2�=1 /2 and ��2�=3 /2, respectively, for displacement and
momentum excitations. Notice that, if one looks only at
m2�t�, one would incorrectly conclude that the two cases
would correspond to subdiffusive and superdiffusive behav-
iors, respectively. A full analysis of the spectrum of moments
and of the wavefront shape is necessary to assess the real
nature of dynamics.

IV. ENERGY PROFILE: ANHARMONIC CASE

In this section we will investigate numerically the n de-
pendence of the energy profile averaged over the disorder in

the presence of anharmonicity. Particularly, we will check
whether its tails can be described by those of the harmonic
chain. As a model we have chosen the Fermi-Pasta-Ulam
�FPU� chain with cubic nonlinear force

mün = Kn�un+1 − un� − Kn−1�un − un−1�

+ G�un+1 − un�3 − G�un−1 − un�3. �49�

It reduces to the harmonic chain for G=0. For simplicity, we
considered the case of uniform nonlinear coupling G �G=1
in the following�.

The analysis of the previous section shows that the behav-
ior of the harmonic chain follows all the expected features.
Which influence of the anharmonicity do we expect? If the
initially localized energy would spread completely it would
be en�t�→0 for t→	, for all n. For incomplete spreading,
however, �en�t�� for t large enough should decay by the
power law �37� or �40�, again, and the amplitudes of oscilla-
tions at sites far away from site n0 of the initial excitation
should become so small that the harmonic approximation
applied to those tails should become valid.

A detailed analysis of the effects of nonlinearity goes be-
yond the scope of the present work. We thus limited our-
selves to the case of FPU with initial displacement excitation
with A=2. We checked that the energy is about a factor of 2
larger with respect to the G=0 case, meaning that the non-
linear part of the potential is sizable. We considered the usual
definition of en

�pot� where Ki�ui+1−ui�, with i=n−1,n, in Eq.
�14� is replaced by Vi��ui+1−ui� with Vi�x�=Kix

2 /2+Gx4 /4.
As for the harmonic case, we performed the average over
disorder at three different times.

The average energy profiles for three different disorder
strengths are reported in Fig. 8. The profiles still show a
pretty slow decay, reminiscent of the harmonic case. From
Fig. 8 we first observe that the convergence of �en�t�� to a
limiting profile at t=	 becomes slower for larger disorder
strengths R, i.e., for shorter localization lengths. Second,
whereas the profile for R=4 and the largest time t=6000 can
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be satisfactorily fitted by the power law �37�, this is less
obvious for R=2 and R=8. For R=2 and �n−n0��1000 the
profile is practically time independent for t�2000. But in
contrast to the harmonic case �see Fig. 2� it does not reveal
the asymptotic power law �n−n0�−5/2, although the data sug-
gest that this may happen for �n−n0��3000. For R=8 the
profile follows that power law for 100� �n−n0��1000, i.e.,
for about 1 decade, but deviates for �n−n0��1000. However,
comparing this profile for the three different values for t
hints that the range of the power-law decay may increase
with increasing t. In addition, the profiles display some form
of weak “broadening” of the tails indicating that some en-
ergy is indeed slowly propagating.

As a consequence, the disorder averaged moments �m��t��
do not display a convincing scaling with time. Even for sta-
tistically accurate data as the ones in Fig. 8, the effective
exponents �as measured, for example, by the logarithmic de-
rivatives of �m��t��� display sizable oscillations which are
well outside the range of the statistical fluctuations �see Fig.
9�. Similar results are obtained for momenta of different or-
ders �not reported�.

We may thus argue that, at least in the considered param-
eter range, the nonlinear case has a core that remains almost
localized �in a similar way as the harmonic case�, but in
addition there must be a small propagating component. The
fraction of such propagating component increases upon in-
creasing the energy and/or nonlinearity. As a consequence,
with the data at hand it is impossible to draw definite con-
clusions on the nature of the spreading process.

V. SUMMARY AND CONCLUSIONS

The relaxation of an initially localized excitation in a
translationally invariant chain of particles has been studied
for harmonic and anharmonic nearest-neighbor couplings.
The main focus has been on the energy profile �en�t��, the
moments �m��t��, both averaged over the disorder, and the
relation between the asymptotic t dependence of �m��t�� and
the asymptotic n dependence of �en�t��. As far as we know,
this has been explored neither for the anharmonic nor for the
harmonic case due to the lack of analytical knowledge of
�en�t�� for �n−n0�→	.

For the harmonic model we succeeded to determine ana-
lytically the disorder and time averaged energy profile �en�t��
for a displacement and a momentum excitation at site n0 and
initial time t=0. Whereas en�t� is a quasiperiodic function
which does not converge for t→	, we have argued that
�en�t�� converges for t→	. In that case �en�t�� gives the lim-
iting profile averaged over the disorder. The analytical calcu-
lation yields a power-law decay

�en�t�� � C�R��n − n0�−�, �50�

for 1� �n−n0��N, in case the system is finite. The exponent
� and the prefactor C�R� depend on the type of excitation.
For displacement and momentum excitations we have found
�=5 /2 and �=3 /2, respectively, in good agreement with the
numerical values. This agreement also holds for the
analytical and numerical results for the R dependence of
C�R�, except for the two smallest values of R in the case of
a momentum excitation. Accordingly our assumption
�2���	���� for �→0 is supported. From this proportional-
ity it also follows that C�R� diverges at R=1, the no-disorder
limit. The power-law decay �50� originates from the gapless
excitation spectrum of the Anderson modes. It is the conse-
quence of the translational invariance of model �4�. Destruc-
tion of this invariance by adding, e.g., an on-site potential
like in the KG model generates an energy gap. The corre-
sponding localization length at the lowest eigenfrequency
will not diverge anymore, and therefore the energy profile
will decay exponentially for �n−n0�→	. However, we stress
that any lattice model without an external potential has to be
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invariant under arbitrary translations. This implies a gapless
spectrum which is the origin of the power-law decay of the
profile.

The power-law decay of �en�t�� has remarkable conse-
quences on the asymptotic t dependence of the moments. If
we use Eq. �50� to calculate the time and disorder averaged
�th moment, we get for displacement and momentum exci-
tations

�m��t�� = 	 , �51�

for all ��2; note that, for instance, �m1�t�� is finite for a
displacement, but not for a momentum excitation. The result
�Eq. �51�� implies that the disorder averaged moment �m��t��
must diverge with time, although the initial local energy ex-
citation does not spread completely. This power-law diver-
gence of �m��t�� with time is clearly supported by the nu-
merical results for ��2 and ��1 for the displacement and
momentum excitations, respectively. As a matter of fact, con-
sideration of m2�t� alone is not sufficient to conclude that the
energy diffuses. This is one of the main messages of the
paper.

The analytically exact result for �en�t�� in the case of har-
monic interactions also allows us to check how far the tails
of an anharmonic chain, where the average displacements
become arbitrary small, can be described by the tails of the
harmonic system. Although no definite conclusion can be
drawn, we have found evidence for a crossover of the energy
profile of the anharmonic to that of the harmonic chain.
However, for the weakest and strongest strengths of disorder
this crossover seems to occur for �n−n0��3000 and for
t�6000, respectively. This may be explained as follows. The

localization length �2��� is large for weak disorder. Since
�n−n0� /�2��� enters into the calculation of the disorder aver-
aged profile �see Eq. �35�� the asymptotic power laws, Eqs.
�37� and �40�, occur at larger values of �n−n0�. For large
disorder, �2��� is small. But the time scale for tunneling
processes responsible for the energy propagation increases
significantly due to an increase in the potential barriers.
Therefore, the convergence to a limiting profile is much
slower, which is exactly what we observed �see Fig. 7�. The
increase in the localization length for weak disorder and the
increase in the relevant time scale of the relaxation for strong
disorder probably are also the reasons for the absence of a
convincing scaling of the moments �m��t��. In order to test
this, one has to increase both the number of particles and the
simulation time significantly. Requiring similar good statis-
tics of the data, this has not been possible so far within the
available CPU time. If it is true that the asymptotic energy
profile agrees with that of the harmonic chain, this would
imply that the moments �m��t�� for the anharmonic model for
��2 diverge with time as well, although the energy does not
spread completely. From our results, it is nonetheless clear
that the interplay of localized and almost-extended modes
leads to a nontrivial decay of wave-packet amplitudes, and
this must be taken into account when dealing with the non-
linear case.
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