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I. INTRODUCTION

The study of thermodynamic and transport properties of
the systems of interacting particles is of significant interest in
various fields of science and technology �plasma physics,
medical industry, physics of polymers, etc.�. The main prob-
lem involved in the studies of these systems is associated
with the absence of analytically justified theory of liquid
which could provide simple parametrical expressions for its
equations of state, thermodynamic characteristics, and ki-
netic coefficients �e.g., constants of diffusion, thermal con-
ductivity, or viscosity�. To predict the physical properties of
nonideal systems, various semiempirical approaches and
computer simulations of particles’ dynamics involving differ-
ent models for their interaction potentials are widely used
�1–11�.

Dusty plasma �consisting of electrons, ions, neutral gas,
and solid macroparticles of micron sizes� is a good experi-
mental model for studying the nonideal systems including
the verification of existing analytical approaches and the de-
velopment of new models in theory of liquid. Dusty plasma
is ubiquitous in nature and often appears in a number of
technological processes. Most of the experimental investiga-
tions of dusty plasma are performed in weakly ionized
plasma of gas discharges where a dissipation of dust energy
due to dust-neutral collisions can considerably influence the
physical properties of the system. In gas discharge plasma,
the nonemitting micron-size grains acquire a significant
negative charge eZ �where e is the electron charge� and can
form the three-dimensional �3D� or the two-dimensional
�2D� structures similar to liquids or solids. The quasi-2D
structures—which consist of one to approximately ten layers
of grains—are typical for plasma of radio-frequency �RF�
discharge �8–12�.

At present the problem about the form of interaction po-
tential between dust particles in plasma has no satisfactory
solution. The best-known model for description of pair inter-
action of repelling dust particles is based on the screened
potential of the Yukawa type �8–10�,

� = A exp�− r/��/r . �1�

Here, r is the distance between particles, � is the screening
length, and A is a parameter equal to �eZ�2 for two similar
charged particles. It should be mentioned that simple Yukawa
model �1� agrees with numerical and experimental results in
complex plasma only for short distances r�4�D between
two isolated macroparticles in plasma; here, �D is the Debye
length �13–16�. With increasing distance r the screening ef-
fect weakens and the asymptotic character of the potential �
for large distances r��D can follow the power-law depen-
dence: ��r−2 �17� or ��r−3 �18�. The Yukawa model may
also be incorrect under conditions of dense grain cloud and
in the sheath region of laboratory gas discharges. Further-
more, this model does not take into account the ionization or
recombination processes, the collisions of plasma electrons,
ions with neutrals, and many other factors �10,19�.

Here we introduce two dimensionless parameters �by
analogy with the parameters found in �12,20–22��, which are
responsible for mass transfer and phase state in nonideal dis-
sipative systems within wide range of the isotropic pair po-
tentials, namely, the effective coupling parameter,

�� = c1rp
2��/2T , �2�

and the scaling parameter,

� = ��/	 fr = �c2��/2
M�1/2/	 fr. �3�

Here M is the particle mass, 	 fr is the friction coefficient of
particles due to their collisions with the neutrals of surround-
ing gas, �� is the second derivative of a pair potential ��r� at
the point of the mean interparticle distance r=rp, and c1 and
c2 are the coefficients: c1=c2�1 for 3D systems and
c1=1.5 and c2=2 for the 2D case. Note that the transport
processes and spatial correlation of particles are defined by
these two parameters ��� ;�� for a wide range of ��r� func-
tions satisfying the empirical condition �12,20�,

2
 � ���rp/��� . �4�

Here �� is the value of the first derivative of ��r� at the point
of mean interparticle distance. In this case the spatial corre-
lation of particles is independent of the friction �	 fr� and is
defined by the �� value within the range between ���10
and the crystallization point �c

� �i.e., the point of formation of*Formerly X. G. Adamovich.
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the “perfect” crystal where no migration of particles occurs
and their diffusion coefficient D=0�. For the nonideal dissi-
pative 2D systems forming the hexagonal primitive �hp� lat-
tice in their crystal state, the value of �c

�=�2D
� �154�4

�12,22�; for 3D systems forming the body-center-cubic �bcc�
lattice, the �c

� value is equal to �3D
� �102�3 �12,20�.

Here we study thermodynamic properties in nonideal dis-
sipative systems of particles interacting with the different
isotropic pair potentials commonly used for simulation of
repulsion in kinetics of interacting particles. Semiempirical
approach for calculations of the energy density in strongly
coupled systems is proposed. Analytical relations between
the basic transport constants and the energy density are con-
sidered. The basic attention is given to the screened Coulomb
potential of Yukawa type �1� that is of particular interest in
the context of investigation of dusty plasma �8–10� and for
colloid systems �including medical and biological systems
and polymer structures� �2–7�. For these Yukawa systems the
effective coupling parameter �see Eq. �2�� may be rewritten
as

�� = c1��1 + 
 + 
2/2�exp�− 
� , �5�

where �= �Ze�2 / �Trp� is the Coulomb coupling parameter
and 
=rp /� is the screening factor. Then, the characteristic
frequency �� in Eq. �3� may be presented as

�� = 	c2�eZ�2
1 + 
 +

2

2
� exp�− 
�

rp
3
M

�1/2

. �6�

To conveniently compare the results of various works with
our data, we introduce the normalized values of the Coulomb
coupling parameter and the screening factor, which take into
account the Wigner-Seitz radius, namely, �2=��
�1/2,

2=
�
�−1/2 and �3=��4
 /3�1/3, 
3=
�4
 /3�−1/3 for the 2D
and 3D Yukawa systems, respectively.

II. BASIC EQUATIONS AND THEORETICAL
APPROACHES

A. Equations of state for nonideal fluid systems

It is necessary to note that at present time the theoretically
proved forms of the equations of state exist only for some
solid crystal structures �for example, in the model of Mi and
Grjunejzen� and for gases �the virial equation�. In case of
isotropic pair interactions �with the known interaction energy
����r�� the physical properties of nonideal systems, such
as the energy density U and the pressure P, are determined
by the temperature T, the concentration n, and the pair-
correlation function g�r�, which can be measured experimen-
tally or may be found from the computer simulations �4–6�,

U =
m

2
T + �m − 1�
n


0

�

��r�g�r�rm−1dr , �7�

P = nT −
�m − 1�
n2

m



0

� ���r�
�r

g�r�rmdr , �8�

where m=2,3 is the number of dimensions in the system and
n=rp

−m. Since both equations of state �thermal R�T ,n ,� ,g�

and calorific U�T ,n ,� ,g�� are known, any thermodynamic
function may be found by means of basic formulas of ther-
modynamics. For example, the normalized thermal coeffi-
cient of pressure �V=n−1��P /�T�V, the heat capacity
SV= ��U /�T�V at constant volume V, and the normalized iso-
thermal compressibility �T=T / ��P /�n�T. Isothermal com-
pressibility �T can be also defined from a known relation of
statistical physics, S�0�=�T, where the structure factor S�k�
is related to the function g�r� by the Fourier transform,

S�k� = 1 + 2
n�m − 1�

0

�

�g�r� − 1�rm−1��kr�dr . �9�

The ��kr� function is determined by the dimension of the
Fourier transform: ��kr�=sin�kr� / �kr� for m=3 and
��kr�=J0�kr� for m=2, where J0�k� is the zero-order Bessel
function of the first kind. Note that the majority of experi-
mental methods for studying the physical properties of real
molecular liquids are based on measurements of structural
factor S�k� by various methods of spectroscopy �2�. Taking
into consideration Eq. �9� at k→0, the value of isothermal
compressibility may be presented as

�T = T
 �n

�P
�

T

� 1 + 2
n�m − 1�

0

�

�g�r� − 1�rm−1dr .

�10�

In case of T→0 the values of U→U0, P→P0, and
�T /T→�T

0 /T= ���P0 /�n�T�−1, where U0 and P0 are the en-
ergy density and the pressure for the crystal lattice at T=0,
respectively. For any lattice of known type, e.g., for classical
triangular lattice �hp crystal� or for the bcc lattice, the values
of U0 and P0 may be easily computed. The illustration of an
arrangement of particles in two mentioned types of lattices is
presented in Fig. 1. In Table I the normalized values of en-
ergy U0��T�−1, pressure P0�n�T�−1, and compressibility �T

0�
calculated in the Yukawa systems with different screening
parameters 
 are shown for hp and bcc lattices. Procedure of
definition of U0 and P0 for isotropic pair potentials of any
form is briefly described in the Appendix.

To avoid repeated computer calculations of the
U�T ,n ,� ,g� and P�T ,n ,� ,g� functions with a change of the
system parameters �T ,n ,� ,g�, the various approximations
for both equations of state �7� and �8� are widely used
�4,5,23–30�. Some of them are complicated polynomials ob-
tained by the best fitting of numerical data by the various

FIG. 1. Illustration of arrangement of particles in �a� hp and �b�
bcc lattices. The step of hp lattice: ahp���3 /2�1/2rp and the mini-
mal interparticle distance in bcc lattice abcc�21/3rp.
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approximating curves �23–30�, while the others are based on
Mayer’s cluster expansion for weakly nonideal systems �23�.
In both cases the form of approximating curves �for U and/or
P� can vary depending on a range of system parameters
�T ,n ,� ,g�. Accuracy of such approaches often does not al-
low the correct calculation of other thermodynamic charac-
teristics on the base of known formulas of thermodynamics
�which include the integrals and/or differentials of U and/or
P� without the use of additional fitting procedures.

B. Approximations for the energy density
in the Yukawa systems

The energy density U may be represented as sum of the
simple thermal part �Uth=mT /2� and the potential part
�Up=U−Uth, i.e., second term in Eq. �7��. Owing to this, the
existing approaches of U are commonly restricted by choos-
ing a suitable Up function. Proposed approximations usually
describe the thermal component Up

th of the potential energy,

Up
th = �Up − U0� � 
U − U0 −

mT

2
� , �11�

or its negative correlation �or “cohesive”� component,

Uc = Up − UH � �m − 1�
n

0

�

��r��g�r� − 1�rm−1dr .

�12�

Here, UH is the positive Hartree part of the potential energy,

UH = �m − 1�
n

0

�

��r�rm−1dr . �13�

In the Yukawa systems UH /T=�2 /
2�
� /
 for 2D case
and UH /T=3�3 / �2
3��2
� /
 for 3D case. When � in-
creases ��→��, the Uc value approaches the value
of the Madelung energy EM �for an appropriate lattice�:
Uc→EM =U0−UH. Sometimes the contributions of back-
ground plasma in the correlation part of energy are consid-

ered, so, for example, for the 3D Yukawa systems we have
Uc

0=Uc−T�3 and 
3�Uc−T�
 �27–30�. Thus, the expres-
sion EM

0 =U0−UH−T�
 is used to estimate the value of the
Madelung energy. Thus, in terms of EM and Uc, the thermal
component of the potential energy can be presented as
Up

th=Uc−EM. Without dependence on the form of represen-
tation �11� or �12�, in the majority of existing works, the
choice of the approximating factors in the proposed ap-
proaches of U is carried out using the numerical data for the
Uc / �T�� function �23–30�.

For convenience of comparison of various approximations
we will use the normalized value for the thermal component
Up

th of the potential energy,

�U = �U − U0 − mT/2�/T . �14�

Some approximations for the energy density in the Yukawa
systems �23,24,28,29� are given below. So, the calculations
for fluid 3D systems were performed in the works of
Hamaguchi and co-workers �28,29� and the following ap-
proximation expression for the �U value was proposed:

�U � �U3
H-F = A1�3 + A2�3

1/3 + A3 + A4�3
−1/3. �15�

Here, for 
3�1 �28�, the coefficients Ai may be represented
by the polynomials

A1 � − 0.003 256 − 0.000 482
3 − 0.000 964
3
2,

A2 � 0.559 934 + 0.026 341
3 + 0.050 644
3
2,

A3 � − 0.192 006 − 0.082 556
3,

A4 � − 0.040 346 − 0.044 115
3. �16�

For the case of 
3�1.2 Hamaguchi et al. �29� proposed the
other values Ai; some of them are tabulated in Table II.

The calculations for the fluid 2D Yukawa systems
were presented in the work of Totsuji et al. �23� together
with an approximate expression for �U in the range of
0.05��2�100 and 0.5�
2�2,

TABLE I. The energy U0��T�−1 pressure P0�n�T�−1 and �T
0� in the Yukawa systems with different

screening parameters, 
, for hp and bcc lattices.




U0

�T
�hp�

P0

n�T
�hp� �T

0� �hp�

U0

�T
�bcc�

P0

n�T
�bcc� �T

0� �bcc�

1 1.62532 2.18866 0.20716 5.27533 5.82251 0.08376

1.5 7.59943�10−1 1.17343 0.36339 1.95710 2.35588 0.20100

2 3.93543�10−1 6.90916�10−1 0.57723 8.80191�10−1 1.16464 0.39121

2.5 2.14259�10−1 4.24073�10−1 0.87662 4.34854�10−1 6.33702�10−1 0.68704

3 1.19909�10−1 2.65362�10−1 1.30390 2.26360�10−1 3.62802�10−1 1.14122

3.5 6.82001�10−2 1.67435�10−1 1.92353 1.21584�10−1 2.13634�10−1 1.83764

4 3.91733�10−2 1.05911�10−1 2.83392 6.66133�10−2 1.27778�10−1 2.90901

4.5 2.26391�10−2 6.69524�10−2 4.18603 3.69740�10−2 7.70731�10−2 4.56518

5 1.31346�10−2 4.22279�10−2 6.21252 2.07047�10−2 4.66832�10−2 7.13853

5.5 7.63929�10−3 2.65513�10−2 9.27356 1.16661�10−2 2.83228�10−2 11.15676
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�U � �U2
TLTT = �B1�2 + B2�exp�− 2.55��2

0.18 − 0.050.18�� .

�17�

Here B1=
−1/2�−1.9605+0.8930
2−0.1959
2
2+0.017 15
2

3�
�U0 / ��T�−
 /
 describes the Madelung energy EM for tri-
angular lattice and B2=�2

2�ln�2�2
2�+2�−1�, where
�=0.5772. . . is the Euler constant. It was confirmed that the
relative error in a determination of Uc / �T�2� from Eq. �17� is
less than 1% for 10��2�100, less than 3% for
1��2�10, and less than 10% for 0.05��2�1.

Another approximation for �U was proposed in the work
of Hartmann et al. �24� for the 2D Yukawa systems with
0.05��2�120 and 0�
2�3,

�U � �U2
HKDK = �2�C1 + C2C3

−2/3� − C0, �18�

where S0=U0 / ��T�−
 /
 and the coefficients Ci
�i=1,2 ,3� may be represented by the polynomials

C1 = − 1.113 + 0.505
2 − 0.107
2
2 + 0.006 86
2

3 + 0.0005
2
4,

C2 = 0.384 − 0.036
2 − 0.052
2
2 + 0.0176
2

3 + 0.001 65
2
4,

C3 = �2�1 − 0.388
2
2 + 0.138
2

3 − 0.0138
2
4� . �19�

Note that the value of S3��� determines the form of pair-
correlation function, g�r� �25�.

C. New analytical approaches for the thermodynamic
function in the fluid systems

Here we present the simple analytical approximation for
the energy density of the 2D nonideal systems that was ob-
tained by means of the semiempirical “jumps” theory based
on the analogies between solid and liquid states of matter
�1,3�. According to this theory, physical properties of the
strongly nonideal systems may be characterized by a single
average energy, namely, the energy of jump activation Wa
�i.e., the energy which is necessary for a particle to pass from
one “settled” condition to another�. Note that this theory
works well in determination of the transport constants �dif-
fusion, viscosity, thermal conductivity, etc.� both for simu-
lated systems and for real molecular liquids. Following the
jump theory and a principle of detailed balance �1,3,31–34�
let us consider a system consisting of N=N1+N2 particles,
where N�const, N1 is the number of settled particles with

the energy density U1, and N2 is the number of “free” mi-
grating particles with the energy density U2. Under equilib-
rium conditions for the system in a contact with “thermostat”
we have

w12N1 = w21N2,

w12/w21 = exp���2 − �1�/T� � exp�� f/T� , �20�

where w12 and w21 are the probabilities of transition from a
settled state �i=1� to a free state �i=2� and vice versa, re-
spectively, and �i is the energy of corresponding state
�i=1,2� per one degree of freedom. Further, assuming
U1= �U0+mT /2� and �U2−U1�=a1� f, where the a1 value is
determined by the total number of degrees of freedom s
�a1�s� �27�, the energy density of the analyzed system may
be written as

U =
U2 − U1

1 + exp�� f/T�
+ U1 �

a1� f

1 + exp�� f/T�
+ U0 +

mT

2
.

�21�

According to the absorption or adsorption theory,
the � f value is determined by the energy of jump of deacti-
vation �1,7,34,35� �� f =Wa+Qa, where Wa=a2Tc and
Qa=a3�T−Tc� /2 are the energy and the heat of jump activa-
tion, respectively; Tc is the crystallization temperature of the
system �formation of the perfect crystal� and ai �i=2,3� are
some coefficients depending on the type of lattice in system’s
crystalline state �s�ai�1��,

� f = Wa + Qa � a2Tc + a3�T − Tc�/2. �22�

Thus, under the assumption of ai�const ��f�T��, the ap-
proximation for the energy density in fluids may be found by
the choosing of appropriate coefficients �ai , i=1,2 ,3� in
Eqs. �21� and �22�.

Under a simplified quasiclassical approach for these sys-
tems, a2=m and a3=1, and we may rewrite the energy � f
�Eq. �22�� as

� f

T
=

0.5��c
� − ��� + m��

�c
� . �23�

After some transformations the energy density of systems
considered may be presented in the form

U � Ua = U0 +
mT

2
+

a1� f

1 + exp�� f/T�
, �24�

and normalized value for the thermal component of the po-
tential energy can be written as

�U =
U − U0 − mT/2

T
�

a1�

1 + exp���
, �25�

where �=� f /T�0.5+ �m−0.5��� /�c
�, �c

�=�2D
� for 2D sys-

tems and �c
�=�3D

� for the 3D case.
The approximation of Ua �Eq. �24�� may be used for de-

termination of various thermodynamic functions. So, the heat
capacity SV�SV

a = ��Ua /�T�V may be presented as

TABLE II. Fluid fitting parameters Ai �i=1,2 ,3 ,4� defined by
Eq. �13� for 
3�1.2 �29�.


3 �
� A1 A3 A2 A4

1.2 ��1.934� −0.002524 0.522733 −0.305649 0.026740

1.4 ��2.257� −0.002451 0.514325 −0.344195 0.049258

2.0 ��3.224� −0.001545 0.442193 −0.382900 0.100506

2.6 ��4.191� −0.000865 0.366308 −0.411566 0.159826

3.0 ��4.836� −0.000559 0.312503 −0.394913 0.173963

3.6 ��5.803� −0.000253 0.239251 −0.362000 0.195448

4.0 ��6.448� −0.000080 0.182517 −0.257154 0.131096
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CV
a =

m

2
+

0.5a1 + �� − 0.5��U exp���
1 + exp���

. �26�

Approximate expressions for the pressure Pa may be ob-
tained from a well-known relation

− n2��Ua/�n�T = T��Pa/�T�n − Pa. �27�

Further, after certain development,

n2T−2��Ua/�n�T = ���PaT−1�/�T�n,

�mrpT�−1d�UaT−1�
d�


 ��

�rp
�

T

=
d�PaT−1�

d�

 ��

�rp
�

n

,

we have

Pa = P0 + nT + �n�UT/m , �28�

where �=−���� /�rp�rp /��, i.e., �= �1+
+
2 /2+
3 /2� /
�1+
+
2 /2� for the Yukawa systems. Thus, approximate ex-
pressions for the thermal coefficient of pressure
�V

a =n−1��Pa /�T�V and the normalized isothermal compress-
ibility �T

a =T / ��Pa /�n�T may be written as

�V
a = 1 + m−1��CV

a − m/2� , �29�

��T
a�−1 = 1 + ����T

0�−1 + �0
2�� − 0.5�
 a1 − �U

1 + exp���
− �U�

+ 
�0�m − 1�
m

+ �0
2�1��U , �30�

where �0=� /m and �1=����2�� /�rp
2� / ���� /�rp�2−1.

Finally, we note that the relation between heat capacities
SV= ��U /�T�V �at constant volume V� and SP= ��I /�T�P �at
constant pressure P, where I denotes enthalpy� may be writ-
ten as

�CP − CV� = �V
2�T. �31�

Bear in mind that the difference SP−SV is insignificant �5�
for liquids in the majority of cases.

D. Theories of melting for two dimensions

Here we need some short remarks that may be useful for
discussion of the below-mentioned numerical data. There are
two main approaches in the melting theory for two dimen-
sions that are based on unbinding of topological defects. The
first of them is the Kosterlitz-Thouless-Halperin-Nelson-
Young �KTHNY� theory which predicts two phase transi-
tions from the solid to liquid state via an intermediate state
�so-called “hexatic” phase� �36–38�. In this hexatic phase the
spatial reducing of peaks �gk� for pair correlations
function g�r� is described by an exponential law
�gk�r��exp�−�r� , ��const�, and the bound orientation
function g6�r� obeys power law �g6�r��r−� , ��0.25�. The
second melting theory, the theory of grain-boundary-induced
�GBI� melting �39,40�, predicts a single first-order transition
from the solid to the liquid state without an intermediate
phase for a certain range of values of the point-defect core
energies. In this case, the mentioned spatial KTHNY—

reducing of g�r� and g6�r� functions—is not valid for both
phase states of the system. �Note that the question of alter-
native two-stage melting is still open in GBI theory.�

Compelling evidence for KTHNY theory in the systems
with different interparticle potentials has been presented in a
set of experimental and numerical works �22,36,41–47�; e.g.,
a detailed study of validity of KTHNY theory for the simu-
lated quasi-two-dimensional dissipative Yukawa systems is
presented in �22,47�. The numerical simulations �22,47� have
shown that the physical properties of these systems have two
singular points. The first of them ���=�h

��98�3� may be
related to the fluid-to-hexatic phase transition, the second
point ���=�2D

� �154�4� is the point of hexatic-to-perfect
�without defects� crystal transition. Nevertheless, a compari-
son of existing experiments in dusty plasma �48,49� with the
predictions of mentioned theories of 2D melting shows no
strong evidence neither for KTHNY theory nor for GBI
theory.

E. Transport coefficients in the liquid systems

The coefficients of diffusion D, thermal conductivity �,
and viscosity � reflect the thermodynamic state of a system.
In the case of gases, the constants of diffusion, kinematical
viscosity 	=� /�, and thermal diffusivity �=� / ��cP� have
close values and may be written in the form of known ana-
lytical relations �31� �here, �=Mn and cP=CPkB /M stand for
specific-heat capacity at constant pressure P and kB is the
Boltzmann constant�. Such relations for the liquid state of
matter accept applying known hydrodynamic models for
analysis of the wave propagation and the formation of vorti-
ces and various instabilities in nonideal media. When the
deviations of the system from the statistical equilibrium are
small, the kinetic coefficients of linear dissipative processes
�constants of diffusion, viscosity, thermal conductivity, etc.�
can be found from the well-known Green-Kubo formulas.
However, in the general case of nonideal fluids, the analyti-
cal solutions of the Green-Kubo equations are unavailable.

Existing numerical study �11,21,22� shows that the diffu-
sion coefficient for the strongly coupled �liquidlike� systems
�with 100����50� can be approximated as

D �
T��

12
�� + 1�	 frM
exp
− 3

��

�a
�� . �32�

Here �a
� is the crystallization point ��a

�=�3D
� �102� for the

3D problem �11,21� and �a
�=�h

��98 for the 2D case, where
�h

� is the �� value in the point of formation of the hexatic
phase of solid �22,47�.

Relations between the energy density, heat capacity, and
diffusion constants in the 3D and 2D Yukawa systems were
studied in a recent paper �50� where it was found that the
energy density for the 2D and 3D nonideal system may be
presented as

U = U0 + mT/2 + mT�1 − D�� − �m − 1���T/�c
�, �33�

where D�=D�	 fr+���M /T and �c
�=�3D

� for the 3D case
�m=3� and �c

�=�2D
� for 2D case �m=2�. Thus, the approxi-

mation of diffusion constants may be presented as �see Secs.
II C and III B; a1=4�
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D� � 1 −
1

m

 4�

1 + exp���
+ �m − 1�

��

�c
�� . �34�

Proposed relation �34� provides a better description of the
numerical data �in the wide range of �� values from �10 to
��c

�� than expression �32� �50�. The relative accuracy of Eq.
�34� is within 5–10 % for 10����100, which corresponds
to the error of the numerical experiment.

We may also assume that presented approach �34� is valid
for the various types of pair potentials which satisfy condi-
tion �4�. This is due to the fact that for systems satisfying this
condition both D� and �U functions �as it is illustrated be-
low� are determined by the �� parameter only.

In addition, the values of constants of viscosity and ther-
mal diffusivity may be easily estimated for the strongly
coupled liquid systems �50�����c

�� via Eq. �34� using the
known Einstein-Stokes relations �5,22,51,52�. The numerical
simulation of transfer processes in simple monatomic liquids
with a wide scope of interaction potentials reveals that the
relations between the transport coefficients may be approxi-
mated as �4�

	 �
0.12rp

2T

MD
, �35�

� � 1.5
rpVt

CP

0.6rpVt

D
�5/8

, �36�

where Vt= �T /M�1/2.

III. RESULTS OF NUMERICAL SIMULATION
AND THEIR DISCUSSION

A. Parameters of numerical simulation

The simulation was carried out by the Langevin
molecular-dynamics method based on the solution of the sys-
tem of differential equations with a stochastic force that
takes into account processes leading to the established equi-
librium �stationary� temperature T of particles’ system �i.e.,
the one considered when concerning temperature of a con-
tinuous media� which characterizes kinetic energy of their

random �thermal� motion. The simulation technique is de-
tailed in �11,21,22�.

The calculations were carried out for various types of pair
isotropic potentials ��r� that represent various combinations
of power-law and exponential functions commonly used for
simulation of repulsion in physical kinetics �2,7�,

� = �c	b1 exp
− 

r

rp
� + b2
 rp

r
��� , �37�

which satisfies empirical condition �4� under the additional
limit: ���rp /����1. Here b1�2�, 
=rp /�, and � are variable
parameters; �c= �eZ�2 /r is the Coulomb potential energy.
The calculations were performed for a uniform 3D system
and for a quasi-2D system representing an extensive dusty
layer. The scaling parameter was varied from ��0.04 to
��4, i.e., in the range typical for the laboratory dusty
plasma in gas discharges. The �� value was varied from �1
to 120–250.

In the 3D case the external forces were considered to be
absent since the periodical boundary conditions were used
for all three directions, x, y, and z. The number of indepen-
dent particles Np in the central calculated cell was varied
from 250 to 686; accordingly, the cutoff distance of potential
was varied from 4rp to 8rp �here, rp= �Np /Vc�−1/3, where Vc
is the volume of simulated cell�. In the quasi-2D case the
simulations were carried out for a monolayer of grains with
periodical boundary conditions in the directions x and y. In z
direction the gravitational force Mg compensated by the lin-
ear electrical field Ez=�z was considered. Here � is the
magnitude of gradient of electrical field. The number of in-
dependent particles Np in the central calculated cell was var-
ied from 256 to 1024; accordingly, the cutoff distance of
potential was altered from 8rp to 25rp �here rp= �Np /Sc�−1/2,
where Sc is the area of simulated cell�.

The � value was varied from �10−2 to �100 V /cm2, and
for the simulated monolayers of grains the � value was in an
agreement with the criterion proposed in �53�,

FIG. 2. Results of numerical calculations of g�r /rp� functions for 2D systems with �� parameters �indicated in figures� and for different
pair potentials—�a� �lines� � /�c=exp�−4r /rp� and ��3; ��� � /�c=exp�−3r /rp�+0.05rp /r and ��0.12; ��� � /�c=0.05�rp /r�3 and
��0.5; �b� ��� � /�c=exp�−2r /rp� and ��0.5 and �lines� � /�c=exp�−4r /rp� and ��0.5.
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�eZ�� � 2�
i=1

Np

���ri�/ri. �38�

Under this condition any considerable dependence of par-
ticles’ dynamics on the values of � and Np has not been
detected in our simulations.

B. Results of numerical simulations of thermodynamic
and transport properties

For all cases under study the form of obtained pair-
correlation functions g�r� was determined by the value of ��

parameter for the systems with ���10–15. For illustration,
Fig. 2 shows the simulations of the pair-correlation functions
for the 2D layer of particles interacting with various poten-
tials and values of �� parameter. Similar results for the 3D
systems with isotropic pair potentials within wide ranges of
values of their parameters were obtained in �21�.

The numerical study of the 2D systems shows also that
the physical properties of analyzed systems �such as extrema
of pair-correlation functions g�r� and the diffusion coeffi-
cients D� have two singular points. The first of them �the

inflection point at ��=�h
��98�3� may be related to the

fluid-to-hexatic phase transition; the second one �the point of
abrupt changes at ��=�c

���2D
� �154�4, where D→0�

tends to be the point of hexatic-to-perfect crystal transition.
The spatial reduction of peaks �gk� for pair correlation func-
tion g�r� subject to the exponential law gk�r��exp�−�r� for
the liquid ��=��T���h for ����h

�� and for the hexatic
phase ��=�h�0.6 for �h

������2D
� � was described by the

power law gk� �r /rp�−� with ��1 /3 for all pikes of g�r�
excluding its first maximum in the case of perfect crystal
�����2D

� �, where D=0. The disagreement between the re-
sults of the all calculations was within the limits of the nu-
merical error and did not exceed �1–3 %. The similar re-
sults were obtained earlier for simulated the quasi-2D
dissipative Yukawa systems �22,47� �see Sec. II D�.

The calculations of thermodynamic characteristics �U, P,
�V=n−1��P /�T�V, SV= ��U /�T�V, and �T=T / ��P /�n�T� vs
�� using the obtained g�r� functions and Eqs. �7� and �8� for
the 2D and 3D systems are presented in Figs. 3–6 for various
pair potentials ��r� and scaling factors �. The error bars in
these figures correspond to the relative error of 5%.

The illustrations of U���� and P���� are presented in Fig.
3 for the 2D and 3D systems with different potentials.

FIG. 3. The values of �U and �P= �P− P0−nT� / ��nT� vs �� for �a� 3D and �b� 2D with different potentials � /�c: ��� exp�−2r /rp�; ���
exp�−5.5r /rp�; ��� exp�−3r /rp�+0.05rp /r; ��� exp�−4r /rp�+0.01�r /rp�2; and ��� 0.05�rp /r�3; solid lines are approximations �25� and �28�
with a1=4.

FIG. 4. The CV values vs �� for �a� 3D and�b� 2D Yukawa systems with different 
: ��;��—2, ��;��—5.5, and �: ��;��—0.2, and
��;��—2; solid lines correspond to approximation SV

a �Eq. �26��.
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It is easily seen that the obtained normalized values of
�U= �U−U0−mT /2� /T and �P= �P− P0−nT� / ��nT� are
completely determined by the value of �� parameter in ac-
cordance with the semiempirical approaches �Eqs. �25� and
�28��. Under the assumption of ai�const ��f�T�� the ex-
pression for the energy density Ua���� may be found by the
choosing the appropriate coefficients �ai , i=1,2 ,3� in Eqs.
�21� and �22� using the best fitting of the numerical calcula-
tions U���� by the analytical curve. The calculations have
shown that these coefficients can be presented as a1�4, a2
�m, and a3�1 for all cases under study. Thus, the energy
density of analyzed systems may be written in form Eq. �24�
with a1=4. One can easily see that the relative deviations of
�U values for proposed approximation �25� from numerical
results are less than 5% in the range from ���10–15 to the
point of formation of the perfect lattice ���=�c

��.
The heat capacity SV= ��U /�T�V, together with the ap-

proximation SV
a �Eq. �26��, is shown in Fig. 4 for the Yukawa

systems with various screening factors 
 and scaling param-
eters �. Additionally, in Figs. 5 and 6 the results of numerical
simulations of other thermodynamic coefficients ��V ,�T� and
their analytical approximations �Eqs. �29� and �30�� for the
2D Yukawa systems are also shown.

The relative deviations of proposed approximation �Eqs.
�26� and �28�–�30�� from numerical results are less than 5%
in the range from ���15 to ����c

� �excluding the point of

phase transition�. Singularity �jumps� of the thermodynamic
coefficients �SV���� ,�V���� ,�T����� close to the values of
����3D

� �pointed in figures with a dotted line� corresponds
to the point of crystallization of the analyzed 3D systems. In
the 2D case, two singularities for the above-mentioned coef-
ficients close to the values of ����h

� and ����2D
� are de-

termined by the two-stage scenario of melting in the 2D
systems �see Sec. II D�.

C. Comparison with the existing numerical data

Comparison of new approximation for the energy density
with the existing approaches for U functions for the 2D and
3D fluid Yukawa systems �23,24,28,29� is presented in Figs.
7–9. The error bars in these figures correspond to the relative
error of 5%.

So, the approximation for �U �Eq. �25�� together with the
expression �U3

H-F �Eq. �15�� �28,29� is illustrated in Fig. 7�a�
and the �SV����= �SV−m /2� functions are presented in Fig.
7�b�. The deviations of the functions �U3

H-F���� from the
curve shown in Fig. 7�a� are less than 1% in the range of 

from 0 up to 5.5. Thus, we can conclude that the approxima-
tion of �U3

H-F �28,29� is also determined by the �� value, as
the new approximation �U �Eq. �25��. Nevertheless, there
is the difference between �U and �U3

H-F, which is
 H-F=�U3

H-F−�U�1.78�� /�c
��0.0178��. This difference

FIG. 5. Function �V vs �� for the 2D Yukawa systems with
�=1.86 and different 
: ���—2; ���—3; and ���—4; solid lines
correspond to approximation �V

a �Eq. �29��.

FIG. 6. Function of ��T vs �� for the 2D Yukawa systems with

=2 and different �: �-�-�—0.23; �-�-�—1.86; deep line is ap-
proximation �30�.

FIG. 7. The values of �a� �U and �b� �CV= �CV−m /2� vs the 3D Yukawa systems obtained using the various approaches for the U
function: �deep lines�—approximation �25�, �symbols�: ���—Eq. �15� for 
 from 0 up to 5.5; and ���—corrected Eq. �15�, i.e.,
�U=�U3

H-F− H-F.
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 H-F does not affect the SV���� function �see Fig. 7�b�� due
to the �T H-F� value that is independent of the temperature T,
i.e., �T H-F�� f�T�.

It is necessary to remember that in the majority of existing
works the choice of the approximating factors in the pro-
posed approaches of U is based on the numerical data for the
Uc / �T�� function �23–30� �see Sec. II B�. It is possible to
estimate the deviation � to the value of Uc / �T�� �28,29�
from the additional term  H-F as

� =
 H-F/�
Uc/�T��

� 0.0178
1 + 
 +

2

2
� exp�− 
�


 + 2
/

,

i.e., it is less than 0.5% for all values of � and 
 under
consideration.

Let us consider �U2
TLTT �Eq. �17�� and �U2

HKDK �Eq. �18��
in case of the Yukawa fluids. Note that within domain of
applicability, which is described for these approaches in
�23,24�, the values of �U2

TLTT and �U2
HKDK correspond to the

proposed �U���� and �SV���� functions �with deviation of
less than 7%� only for the scaling parameters 0.5�
�1 �see
Figs. 8�a� and 8�b��. Nevertheless, the error in the definition
of Uc / ��T� for all three mentioned approximations is insig-
nificant �i.e., it is within �1–2 %� for all scaling parameters

�5.5 and ���10 �see Fig. 8�c��. With the decreasing of
��, the difference between the mentioned approximations
and numerical data grow depending on the � value �see Fig.

9�. Note that calculations in Refs. �23,24� were performed for
a case �→� �	 fr�0�. Therefore, the considered approxima-
tions are not suitable for estimations of energy density in the
real dissipative �	 fr�0� systems with ���5.

Finally, in this section we consider some illustration for
possibility to use the presented results for the analysis of heat

FIG. 8. The values of �a� �U, �b� �CV= �CV−m /2�, and �c� Uc / ��T� vs �� for the 2D Yukawa systems obtained using the various
approaches for the U function: �lines�—approximation �25�; �symbols�: ��; �; ��—Eq. �18�, ��; �; ��—Eq. �17�; that is, ��; ��—for

=1; ��; ��—for 
=2; and ��; ��—for 
=3.

FIG. 9. �Color online� The values of Uc / ��T� vs �� for the 2D
Yukawa systems �
=2� obtained using various approaches for the
U function: 1—Eq. �25�; 2—Eq. �18�; and 3—Eq. �17�; symbols are
the results of the numerical simulations for the various �: ���—
1.84; ���—0.92; and ���—0.23.
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capacities SV and SP for dust component in experiments
with laboratory complex �dusty� plasma of a RF discharge
�51�. Estimations of the value of SP may be performed from
the coefficients of thermal conductivity � and of thermal
diffusivity �, which were measured in �48� as SP�� /�.
So we can find that SP=1.95�0.1 in the range of ��

from 6 to 14. Neglecting the difference �SP−SV� �Eq. �31��,
which is less than 0.1 for ���5 and 
�1, we may
assume SP�SV�1.95�0.1. Note that in the Yukawa
systems within �� from 6 to 14 the heat capacities at
constant volume are SV�2.1�0.1 for the 3D case
and SV�1.75�0.15 in the 2D structures �see Fig. 4�.
Thus, the experimental results are in good accordance
with our numerical data as the dust structures observed
in mentioned experiments consisted of �13–15 dust
layers.

IV. CONCLUSIONS

To conclude, here we propose the analytical approxima-
tion for the energy densities in the 2D and 3D nonideal sys-
tems in a wide range of types of repulsive isotropic pair
potentials. The parameters of proposed expression were ob-
tained by the best fitting of the numerical and analytical data.
In contrast to existing approaches the presented approxima-
tion can be used to formulate analytical expressions for the
pressure, the thermal coefficient of pressure, the isothermal
compressibility, and the heat capacities on base of the known
thermodynamics formulas. The analytical relations between
the basic transport constants and the energy density in
strongly coupled systems are considered. The comparisons of
obtained theoretical results with the numerical calculations
have shown that the proposed approximations can be used
for the description of thermodynamic properties in analyzed
nonideal systems.
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APPENDIX

Procedure of definition of the U0 and P0 values for iso-
tropic pair potentials is detailed below.

In the case of two-dimensional hexagonal primitive �hp�
crystal lattice “zero” energy density and pressure can be pre-
sented as

U0,hp =
1

2�
i=1

�
j=1

��rij� ,

P0,hp = −
1

4rp
2 �

i=1
�
j=1

rij
���rij�

�r
.

Here rij =a�i2+ j2+ ij and a=ahp�rp��3 /2�1/2 is the step �the
lattice spacing� of hp lattice.

For three-dimensional body-centered-cubic �bcc� crystal
lattice zero energy density and pressure can be presented as

U0,bcc =
1

2�
i=0

�
j=0

�
k=0

���r1,ijk� + ��r2,ijk�� ,

P0,bcc = −
1

6rp
3 � r

���r�
�r

.

Here r1,ijk=a�i2+ j2+k2 and r2,ijk

=a /2�4i2+4j2+4k2+4i+4j+4k+3, where we have
a=2abcc /�3�21/3rp is the spacing of bcc lattice.
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