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The nonlinear propagation of electromagnetic �EM� electron-cyclotron waves �whistlers� along an external
magnetic field, and their modulation by electrostatic small but finite amplitude ion-acoustic density perturba-
tions are investigated in a uniform quantum plasma with intrinsic spin of electrons. The effects of the quantum
force associated with the Bohm potential and the combined effects of the classical as well as the spin-induced
ponderomotive forces �CPF and SPF, respectively� are taken into consideration. The latter modify the local
plasma density in a self-consistent manner. The coupled modes of wave propagation is shown to be governed
by a modified set of nonlinear Schrödinger-Boussinesq-like equations which admit exact solutions in form of
stationary localized envelopes. Numerical simulation reveals the existence of large-scale density fluctuations
that are self-consistently created by the localized whistlers in a strongly magnetized high density plasma. The
conditions for the modulational instability �MI� and the value of its growth rate are obtained. Possible appli-
cations of our results, e.g., in strongly magnetized dense plasmas and in the next generation laser-solid density
plasma interaction experiments are discussed.
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I. INTRODUCTION

Having been discovered more than a century ago �1�,
whistler waves become one of the most important waves in
plasmas. Such waves �also known as helicons in solid state
plasmas� are low-frequency �lf� �in comparison with the
electron-cyclotron frequency, �c� right-hand circularly polar-
ized �RCP� electromagnetic �EM� waves guided almost
along the external magnetic field in dense plasmas. Because
of the increase of their group velocity with the frequency,
���c /2 �see, e.g., Ref. �2��, the lf waves arrive later giving
rise a whistling down-effect observed at ground level. Sten-
zel in his classic paper �3� demonstrated experimentally the
creation of magnetic field-aligned density perturbations ex-
cited by the ponderomotive force exerted by the EM whis-
tlers.

Whistler waves are important not only in space plasmas
due to wave-particle interactions, but also in laboratory plas-
mas as helicons for efficient plasma production as well as in
dense astrophysical environments �4–10�. On the other hand,
large amplitude whistlers propagating in a magnetized
plasma can initiate a great variety of nonlinear effects, e.g.,
three-wave interactions, parametric instabilities �10�, modu-
lational instability and the subsequent soliton formation
�4–6�. The latter which, in turn, causes local electron density
enhancement or depletion in plasmas, are considered as a
basis for understanding laser energy deposition in pellets
�11�, pulsar radiation interaction with the ambient magneto-

sphere �12�, whistler wave propagation in solar winds �13�
etc. Recent laboratory experiment �14� and observations
from the Freja satellite �15� show the clear evidence for the
formation of whistler envelope solitons accompanied by
plasma density cavities. Moreover, electrons in Van Allen
radiation belts can be accelerated to MeV energies within a
short period by large amplitude whistlers �16�. The latter
have recently been observed by the Cluster spacecraft �17�,
the STEREOS �16� and the THEMIS �18�. Furthermore,
laboratory experiments �19� and theoretical confirmation
�20� have demonstrated the existence of propagating whistler
spheromaks with fields exceeding the ambient magnetic
field. Whistlers also contribute to fast magnetic reconnection
and plasma dynamics in two-beam laser-solid density plasma
interaction experiments �21�.

Recently, there has been a notably growing interest in
investigating various quantum plasma effects in view of
some experimental progresses in nanoscale plasmas �22,23�,
ultracold plasmas �24�, spintronics �25�, and plasmonics
�26�. On the other hand, superdense quantum plasmas are
omnipresent in compact astrophysical objects, e.g., the inte-
rior of massive white dwarfs, interior of Jupitors, magnetars
etc. �27–29�, as well as in the next generation intense laser-
solid density plasma interaction experiments �30–32�. In
dense plasmas, degenerate electrons follow Fermi-Dirac
pressure law, and there are typically quantum force associ-
ated with the Bohm de Broglie potential, which produce
wave dispersion at nanoscales �33–35�. Furthermore, the ef-
fects of the electron spin manifests itself in terms of a mag-
netic dipole force, as well spin precession, which can be
exploited by transforming the Pauli equation to fluidlike
variables �36,37�. More elaborate kinetic models has also
been developed �38,39�. Hence the dynamics of electrons in
Fermi degenerate plasmas will be affected not only by the
Lorentz force, but also by the effects of quantum statistical
pressure, the Bohm force as well as the effects due to intrin-
sic spin of electrons. We ought to mention that in a dense
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magnetized plasma there also exist spin waves, which can be
excited by intense neutrino fluxes. Thus, nonlinear theories
of EM waves, in particular whistlers in magnetized dense
plasmas need to be developed in its own right accounting for
all these quantum effects. Recently, the theory of the pon-
deromotive force in plasmas has been extended to account
for the contribution from the intrinsic spin of electrons �40�.
It has been demonstrated that an EM pulse can induce a
spin-polarized plasma by this spin-ponderomotive force
�SPF�. Such force could also play an important role in the
propagation of lf EM waves, e.g., whistlers, Alfvén waves.

Our objective here is to present a theoretical study of
modulated whistler wave packets interacting nonlinearly
with background lf density perturbations that are reinforced
by the classical ponderomotive force �CPF� �5� as well as the
SPF �40�. The role of the ion motion as well as the dispersive
effects due to charge separation and the electron tunneling
are also taken into account. We will include the field-aligned
velocity perturbation �free electron streaming� associated
with the lf motion, and in addition, generalize the related
classical results that exist in the literature �see, e.g., Refs.
�4,5��. The obtained results could be useful for understanding
the propagation of localized EM whistlers which may ema-
nate in the interior of magnetized white dwarfs, magnetars as
well as in the next generation intense laser-solid density
plasma experiments.

II. NONLINEAR EVOLUTION EQUATIONS

Let us consider the propagation of nonlinearly coupled
EM whistlers and ion-acoustic �IA� density perturbations
along a constant magnetic field B=B0ẑ in a quantum
electron-ion plasma where any equilibrium drift velocity is
zero. In the modulational representation, the high-frequency
�hf� EM wave field for the RCP whistlers is given by E
= �x̂− iŷ�E�z , t�exp�ikz− i�t�+c.c., where E�z , t� is the slowly
varying �both in space and time� envelope of the whistler
wave electric field and c.c. stands for the complex conjugate.
Also, ��k� represents the whistler wave frequency �number�.
The basic equations for the evolution of nonlinear whistlers
then read �36,40,41�.
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where ne, me, ve denote the number density, mass and veloc-
ity of electrons, respectively, B is the magnetic field and Pe
is the electron thermal pressure. Also, S is the spin angular
momentum with its absolute value �S�= �S0�	� /2; �=

−�g /2� �B, where g
2.002 319 3 is the electron g-factor
and �B	e� /2me is the Bohr magneton. Equations �1�–�3�
are then closed by the following Maxwell equations with
� ·B=0.
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Equations �1�–�3� represent the nonrelativistic evolution of
spin–1/2 electrons, and are applicable even when different
states with spin-up and spin-down �relative to the magnetic
field� can be well represented by a macroscopic average.
This may, however, occur in the regimes of very strong mag-
netic fields �or a very low temperature regimes�, where gen-
erally the electrons occupy the lowest energy spin states. On
the other hand, for a time-scale longer than the spin-flip fre-
quency, the macroscopic spin state is well described by the
thermodynamic equilibrium spin configuration, and in this
case the above model can still be applied. However, such
case in which the macroscopic spin state will be attenuated
by a factor decreasing the effective value of �S� below � /2,
will not be considered further in the present work. As a con-
sequence, our studies will be focused on the regime of strong
magnetic fields and high density plasmas.

Taking the curl of Eq. �2� and using Eqs. �3�–�5� we
readily obtain the following evolution equation for whistlers:
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In the linear theory, the whistler frequency � and the wave
number k are related by the following linear dispersion rela-
tion in the nonrelativistic limit �see for details, Ref. �2��:

nR
2�1 +

��

� − �g
� = 1 −

�pe
2

��� − �c�
, �7�

where nR	ck /� is the refractive index, ��=g2�S0� /4me�e
2 is

the frequency due to the plasma magnetization current and
�e	c /�pe is the electron skin depth with �pe�i�
	�n0e2 /�0me�i� denoting the electron �ion� plasma fre-
quency. Also, �c=eB0 /me is the electron-cyclotron fre-
quency and �g= �g /2��c is the electron spin-precession fre-
quency.

The nonlinear dynamics of whistler wave envelopes under
the modulation of electron density perturbations associated
with the lf IA fluctuations and of the nonlinear frequency
shift caused by the magnetic field-aligned free streaming of
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electrons with flow speed vez, can be described by the fol-
lowing nonlinear Schrödinger �NLS�-like equation which is
obtained from the EM wave Eq. �6� as

i� �E
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+ vg
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�z
� +

vg�

2

�2E

�z2 − �E = 0, �8�

where E	Ex− iEy, and the group speed, vg	d� /dk �see Eq.
�11� in Ref. �2�� and the group dispersion, vg�	d2� /dk2 of
whistlers are given by
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The nonlinear frequency shift � is given by

� =
vg

	
� k�vez

�� − �c�2 + � �

� − �c
+

g2�k2

4me�� − �g��N� , �11�

where 	=2c2k /�pe
2 +g2�k /4me��−�g� and N	ne /n0 is the

relative perturbed density. By disregarding the spin contribu-
tion one can recover the previous results �4,5�. Note that the
term 
vez, representing the Doppler shift due to the plasma
streaming along the external magnetic field, is no longer neg-
ligible, but may be comparable to the other nonlinear terms,
and can thus change the sign of the nonlinearity as well.
More precisely, both vg� and � will change their sign depend-
ing on the frequency range to be considered as well as the
contribution from the spin correction terms. Later, we will
see that the change of sign is important for the formation of
localized wave packets at different whistler frequencies. The
quantities N and vez are related to each other by the electron
continuity equation.

�N

�t
+
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�z
= 0. �12�

Note that the ponderomotive force due to the EM whistlers
usually drives the lf �compared to the whistler wave fre-
quency �� density perturbations which propagate along the
field lines with low-phase speed �compared to the electron
thermal speed�. Thus, the lf electrostatic modulation also sat-
isfies the electron momentum equation
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where El is the lf part of the wave electric field and VF

=�kBTF /me is the Fermi speed relevant for a high density
plasma �42�. Here TF	�2�3�2n0�2/3 /2kBme and kB is the

Boltzmann constant. The term 
�2 is the quantum correction
associated with the Bohm de Broglie potential. The pondero-
motive force contributions are proportional to the constants
�1 and �2 where

�1 =
�
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,
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in which the first terms appear due to CPF �5� and the second
ones �
�� are due to the SPF �40�. The equations for the cold
ion motion involved in the lf IA perturbations are
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Eliminating ni, El, viz and disregarding the term 
me /mi, we
obtain from Eqs. �13� and �15�–�17� the driven wave equa-
tion for lf perturbations of the Boussinesq-type as
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where �1=�0�1 /2n0me and �2=�0k�2 /2n0me�
2, cs

=�kBTF /mi is the ion-acoustic speed and �F=cs /�pi is the
Fermi screening length for electrostatic oscillations.

Thus, we have a set of three coupled equations, namely,
Eqs. �8�, �12�, and �18�, modified from previous results by
the SPF and quantum tunneling, which describes the nonlin-
ear coupling of electron whistler waves with the field-aligned
electrostatic density fluctuations. These equations can be re-
cast by normalizing the variables according to z→z /�F , t
→ t�pi , E→E /E0, vez→vez /cs, in which case we obtain
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and
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where E0=�2kBTFn0 /�0, Vg=vg /cs, Vg�=vg��pi /cs
2, 

=� /�pi, H=��pe /2kBTF is the quantum coupling parameter,
�1=�pe

2 �1 /�2 and �2=�pe
2 kcs�2 /�2. Equations �19�–�21�

contain the main results of the present work. In particular,
previous results �4,5� can be recovered by disregarding the
spin contribution 
� as well as the particle dispersion 
H
and considering, e.g., the isothermal equation of state �rel-
evant for low or moderate density plasmas�.

III. STATIONARY LOCALIZED SOLUTIONS

In this section we will investigate the properties of non-
linear whistlers by solving numerically the Eqs. �19�–�21� in
the stationary frame �=z−Mt �where M 	V /cs�. We will
consider the parameter regimes for the density and the mag-
netic field for which the nonrelativistic fluid model is valid
and SPF is comparable to the CPF. We will also see that the
case in which SPF dominates over the CPF may correspond
to the strongly magnetized superdense plasmas where rela-
tivistic treatment may be necessary. However, before going
further to such discussions let us first consider the particular
case in which the dispersion due to charge separtion
�quasineutrality� is negligibe. The latter can be justified even
when the spin effects dominate, i.e., �	�k2 /me��1 �2�.
From the scaling

k2�F
2 � �VF

2

c2 �� c2k2

�2 �� �2

�pe
2 � . �22�

we find that the quasineutrality limit k2�F
2 �1 holds in non-

relativistic �VF
2 �c2� plasmas as long as nR	ck /��1 and

�pi����pe. However, we will see that in a specific param-
eter regime, such restrictions can be valid for very lf ��
��c� whistler modes. In this case, B0�BQ	4.4�109 T
and n0�1032 m−3 �2� with TF�TB���c /kB. Moreover,
when ��1, the contribution from the term 
�2 can be
smaller than that 
�1, since ��2 /�1���kcs /���me� /�k2�
�1. Thus, in the quasineutral regime, we obtain from Eqs.
�19�–�21� the following NLS equation.
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d�2 + i�Vg − M�
dE

d�
+ �̄�E�2E = 0, �23�

together with

N = 	�E�2, vez = M	�E�2. �24�

Then we can write Eq. �11� as �=−�̄�E�2, where �̄ is defined
as

�̄ 
 −
	�vg

	�pi�� − �c�
�1 +

kV

� − �c
+

�k2

me�
� , �25�

where 	= ��1+�2M� / �M2−1�. Physically, the electrons ex-
perience a longitudinal force exerted by the front of the whis-

tler pulse, and thereby gain a net energy. The electrons gain
energy during the rising front of the pulse, but then slow
down by the backward ponderomotivelike force. Moreover,
electrons can approach the group velocity of the whistler
when it reaches the pulse peak at the center. From Eq. �24�,
we find that this can be possible for M2�1, which may
happen for a whistler frequency satisfying �c /2����c and
for high density ��1036 m−3� and strongly magnetized �B0
�108 T� plasmas. In this case, the Fermi speed may exceed
the group speed ��c�. On the other hand, corresponding to
the parameters as in Fig. 1 below, M �1 and �1+�2M

�0.01, so that N��E�2�10−7, vez��E�2�10−5, and �̄
�10−7. Again, note that slow electrons can freely move
along the direction of the external magnetic field. The finite
velocity perturbations would then induce an additional den-
sity change in order to maintain the conservation of particles
�equation of continuity� under localized disturbances. Conse-
quently, the total density variation in the frequency-shift be-
comes �N, where

� 
 1 +
kV

� − �c
+

�k2

me�
. �26�

Clearly, � changes sign whenever the third term 
� in Eq.
�26� dominates over the other two terms. Now, for lf propa-
gation of whistlers, �1�0 and as in the previous section,
�2M��0� is smaller compared to �1 when the spin contribu-
tion dominates. Thus, in the quasineutral lf regime, the den-
sity and velocity perturbations are positive and negative ac-
cording as the whistler wave propagation is subsonic or
supersonic �see Eq. �24��.

Furthermore, localized bright �dark� envelope solutions of
Eq. �23� exist through the modulational instability �stability�
when �̄vg��0��0�. For lf waves ����c�, when �k2 /me�

�1, �1+�2M �0, vg��0 and �̄�0 according as M �1.
Hence, a possible final state of the MI could be a supersonic
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FIG. 1. �Color online� Whistler solitary solution of Eqs. �28� and
�29� with associated electric field W �upper panel� and density per-
turbation N �lower panel� for �=0.8 �solid line� and 0.82 �dashed
line�. The other parameter values are n0=1034 m−3, B0=5
�108 T, �c /�pe=15.6, �=0.4, M�	vg /cs�=234.54, Vg�=
−1.81, vg=2.98�108 m /s.
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�subsonic� bright �dark� solitonlike structure in a quasineutral
spin quantum plasma. Equation �23� has an exact soliton

solution �when �̄ and Vg� have the same sign� of the form

E��� = Em sech�Em
��̄/Vg��� − �0�� , �27�

where Em ,�0 are constants. The other particular cases,
namely the quasistationary lf density response �i.e., �t→0�
for which ���pi �4� and the case of unidirectional propa-
gation �near sonic envelope� in which the quasineutrality is
not a valid assumption �7� will not be discussed here as those
cases are not so relevant to the parameter regimes to be con-
sidered, instead we will focus on our main Eqs. �19�–�21�.

Thus, we look for stationary solutions of Eqs. �19�–�21� in
the stationary frame �=z−Mt. Here we assume E to be of the
form E=W���exp�−i�t�, where W is a real function and � is
a real constant. Then Eqs. �19�–�21� reduce to

Vg�

2

d2W

d�2 + W� + �̃NW = 0, �28�

�− M2 + H2�
d2N

d�2 + �M2 − 1�N = ��1 + �2M��M2d2W2

d�2 + W2� ,

�29�

where �̃= �̄ /	. We numerically solve the Eqs. �28� and �29�
by Newton method with the boundary conditions N, W, d�

2N,
d�

2W→0 as ���→�. We consider the density and magnetic
field strength to vary as n0�1034–1036 m−3 and B0
�108 T. Figure 1 illustrates the existence of double-hump
localized whistler envelope accompanied with a density
depletion for a set of parameters: n0�1034 m−3, B0�5
�108 T, �=0.4, and �=0.2. The corresponding frequencies
are �pi=1.32�1017 s−1, �pe=5.64�1018 s−1 and �c=8.79
�1019 s−1. Also, M�	vg /cs�=234.54, �De�=�Fe	VFe /�pe�
=9.67�10−12 m, and VFe=5.46�107 m /s. Thus, the whis-
tlers have negative group dispersion with Vg�=−1.81. From
the dispersion relation we obtain k=1.18�1011 m−1, which
corresponds to whistlers with a wavelength of 5.3121
�10−11 m, and the group speed is vg=2.98�108 m /s. Fur-

thermore, the nonlinear frequency shift is obtained as �̃
=0.85. The density depletion is observed quite small due to
large group velocity �compared to the sound speed� of the
whistler waves.

In another illustration �Fig. 2� with a higher magnetic
field, we observe a dark-soliton-like structure correlated with
a density hump. The amplitude of the solitary pulse de-
creases as the magnetic field increases. In Fig. 3 we have
presented the solitary structures when the density is very
high �n0�1036 m−3�. This basically corresponds to the case
when �k2 /me��1. However, in this case one must note that
the Fermi speed is close to or can even be larger than the
speed of light in vacuum and so, nonrelativistic quantum
fluid model may no longer be appropriate. The quantum pa-
rameter H has no significant role for the regime considered
here, as can be seen that M�	Vg� mainly dominates in the
term −M2+H2 �Eq. �29�� because of large group velocity �

c�. In order that H can be comparable to M, one might
have to consider relatively higher densities ��1036 m−3� and

weakly magnetized ��108 T� plasmas. However, in this
case the coefficient �1+�2M��105� will be much larger than
the other coefficients, which might prevent any hope for lo-
calized solution. As shown in Fig. 4, one can excite a non-
diverging whistler with a positive group dispersion in other
regime, e.g., �=0.189, �=0.7, n0�7�1036 m−3, and B0
�5�108 T for which Vg�=0.262, H=0.11, vg=2.37
�108 m /s, M =45.24, VFe=2.25�108 m /s, cs=5.24
�106 m /s. This basically corresponds to oscillatory pulse
associated with a field-aligned density hump �N�10−10�.

IV. GROWTH RATE OF INSTABILITY

Nonlinear interaction of the hf pump EM whistlers �� ,k�
with lf electrostatic field-aligned perturbations �� ,K� gives
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FIG. 2. �Color online� Whistler solitary solution of Eqs. �28� and
�29� with associated electric field W �upper panel� and density per-
turbation N �lower panel� for B0=5.8�108 T �solid line� and 5.9
�108 T �dashed line�. The other parameter values are n0

=1034 m−3, �=0.8, �=0.4. The corresponding M values are M
=234.88 �solid line� and 234.91 �dashed line�.
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FIG. 3. �Color online� Whistler solitary solution of Eqs. �28� and
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and dotted line�. The other parameter values are B0=5�108 T,
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rise upper and lower side bands with frequency and wave
numbers, respectively, ��+� ,k+K� and ��−� ,k−K�. The
latter interacts with the pump and thus produces a lf pon-
deromotive force which eventually reinforces the lf electro-
static oscillations. When all the perturbations are aligned
along the external magnetic field, the parametric interactions
of EM waves can be described from Eqs. �19�–�21� by the
following dispersion relation:

	K2Vg��K
2�1 + H2K2� − �1 + K2��2�

= 4VgE0
2�1 − �2���1K + �2���K�1 + ��� , �30�

where �=k��c
3 /�De��−1�2 and �, k have been normalized

by �c and �De
−1, respectively. Some simplification can be in

order. Note that under the quasineutrality assumption, the
coefficient of �4, �3, and the term 
K4 as well as the term

�1 in the coefficient of �2 will not appear. Also, for lf
propagation of whistlers ����c�, �2 is smaller and thus be-
ing neglected. Moreover, the ratio of the term 
� in the co-
efficient of � �which appears due to the parallel electron
streaming vez� and the constant term 
�1 scales as
�k /K���me��c /�k2� and we need �k /K���me��c /�k2��1
for spin effects to be dominant. Thus, in this case the disper-
sion relation reduces to

�2 
 K2�1 + H2K2� − E0
2�2, �31�

where �2= �4Vg�1�1 /�c
2	Vg� in which � ,k etc. are being

normalized. Clearly, MI sets in for modulation wave num-
bers satisfying K�1+H2K2�E0�, or K�Kc
E0� for highly
dense medium and small K. The growth rate of instability
��= i�� is then given by

� 
 �E0
2�2 − K2�1 + H2K2� . �32�

Hence, in the long-wavelength limit �K→0� maximum
growth rate of instability can be achieved, and is roughly
proportional to the pump wave electric field E0 and �. For
parameters as in Fig. 1, we obtain �
2.77. It basically re-

stricts the characteristic length-scale to a certain value for the
formation of envelope solitons through MI.

V. DISCUSSION AND CONCLUSION

In the present investigation focusing on whistler waves
we point out that the spin contribution is substantial when
�k2 /me��1, i.e., when ��c /mec

2�1 and �2�c2k2. This
corresponds to the case in which the magnetic field strength,
B0�BQ and the particle density is very high, i.e., n0
�1036 m−3 for which the magnetic field is nonquantizing
and does not affect the thermodynamic properties of elec-
trons. However, in such regimes, the Fermi velocity may
approach or exceed the whistler group velocity �close to c in
the present study�, and so the nonrelativistic quantum fluid
model may no longer be appropriate to consider. In the
present work, we have considered B0�108 T and the den-
sity to vary in the range 1034�n0�1036 m−3 in order that
the nonrelativistic fluid model is valid to some extent. More-
over that �pe��c and the terms due to spin magnetization
current together with the SPF are comparable to the classical
counter parts. Furthermore, in this regime the velocity of
electrons remains much smaller than the whistler group ve-
locity ��c�.

Since the whistler group speed is much higher than the IA
speed, whistler solitons are not significantly affected by the
particle dispersion associated with the Bohm potential as
well as the Fermi-Dirac pressure, though the length scale of
excitation is of the order of the Compton wavelength. How-
ever, those effects reduce the plasma characteristic wave-
length of excitation. Such effects can be more significant in
some other regimes when M �1 and/or for possible excita-
tion of the ion wakefields at nanoscales. Note that since de-
generate electrons follow the Fermi-Dirac pressure law
�where the Fermi temperature is density dependent�, the cold
plasma limit cannot be recovered from the present study un-
less one consideres, e.g., isothermal equation of state to be
relevant for low or moderate density plasmas. Furthermore,
H→0 means that one approaches the higher density regimes
and H=0 is the case when one simply disregards the quan-
tum tunneling effect.

The parameter regimes considered here can be achievable
in the magnetized white dwarfs ��1036 m−3� as well as in
the next generation intense laser-solid density plasma experi-
ments ��1034 m−3�, in x-ray free electron lasers, and in plas-
monic devices. One can, in principle, go beyond the param-
eter regimes considered here �since there is no specific
theoretical limit for the density�, however, we have to be
careful about those parameter values for the excitation of
localized whistlers and for spin-ponderomotive force to have
a role. The latter may dominantly accelerate the ions by
separating the electric charges and building up a high electric
field. However, plasma can sustain such high electric fields,
and so it remains an attractive medium for particle accelera-
tion, which is still a most important area of research works in
both laboratory and astrophysical plasmas.

In conclusion, we have presented a new set of nonlinear
equations which governs the dynamics of modulated whis-
tlers interacting with the field-aligned electrostatic lf density
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FIG. 4. �Color online� Ducted whistler obtained as solution of
Eqs. �28� and �29� with associated electric field W �upper panel� and
density perturbation N �lower panel� for �=0.189, B0=5�108 T,
n0=7�1035 m−3, �=0.7. The other parameters are M =45.24, Vg�
=0.262, H=0.11, vg=2.37�108 m /s.
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perturbations due to IA fluctuation, in a magnetized spin
quantum plasma. Both the classical as well as the spin-
induced ponderomotive force has been considered to modify
the local plasma density in a self-consistent manner. Numeri-
cal simulation of the governing equations in the stationary
frame �Eqs. �28� and �29�� reveals the existence of super-
sonic stationary envelope solitons characterized by a single
or double-hump whistler wave electric fields that are trapped
in a self-created density cavity. This happens for wave fre-
quency satisfying ���c /2 and when the whistler has nega-
tive group dispersion. When the whistler frequency is
smaller than �c /4 and the group dispersion is positive at
higher densities, one can excite a nondiverging whistler
wave, i.e., a ducted whistler. The latter corresponds to a
field-aligned density hump with N�10−10. Furthermore, the
whistler solitons with density dips and humps can occur de-

pending on the consideration of the frequency regime as well
as the magnetic field strength and/or the particle density.

We ought to mention that our present investigation on the
nonlinear propagation of EM whistlers might play an impor-
tant role in studies of beat-wave particle accelerators �43� as
well as in the problem of radio-frequency electron-cyclotron-
resonance heating �44� of plasmas where the driver, instead
of being a laser, is a whistler wave.
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