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Discrete and mesoscopic regimes of finite-size wave turbulence
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Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or
complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on wave turbulence
(WT) i.e., on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three
different regimes of WT realizable for different levels of the wave excitations: discrete, mesoscopic and kinetic
WT. Discrete WT comprises chaotic dynamics of interacting wave “clusters” consisting of discrete (often finite)
number of connected resonant wave triads (or quarters). Kinetic WT refers to the infinite-box theory, described
by well-known wave-kinetic equations. Mesoscopic WT is a regime in which either the discrete and the kinetic
evolutions alternate or when none of these two types is purely realized. We argue that in mesoscopic systems
the wave spectrum experiences a sandpile behavior. Importantly, the mesoscopic regime is realized for a broad
range of wave amplitudes which typically spans over several orders on magnitude, and not just for a particular

intermediate level.
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I. INTRODUCTION

Dispersive waves play a crucial role in a vast range of
physical applications, from quantum to classical systems,
from microscopic to astrophysical scales. For example,
Kelvin waves propagating on quantized vortex lines provide
an essential mechanism of turbulent energy cascades in
quantum turbulence in cryogenic helium [1-6]; water waves
aid the momentum and energy transfers from wind to ocean
[7]; internal waves on density stratifications and inertial
waves due to rotation are important in turbulence behavior
and mixing in planetary atmospheres and oceans [8—10];
planetary Rossby waves are important for the weather and
climate evolutions [11]; and Alfven waves are ubiquitous in
turbulence of solar wind and interstellar medium [12-17].
More often than not, nonlinear interaction of different wave
modes is important in these and other applications, and there
has been a significant amount of work done in the past to
describe evolution of such interacting wave systems. If the
number of excited modes is large, they experience random
evolutions, which must be described by a statistical theory.
Weak wave turbulence (WT) refers to such a statistical theory
for weakly nonlinear dispersive waves in unbounded do-
mains [18]. This approach was initiated by Peierls in 1929 to
describe phonons in anharmonic crystals [19], and it was
reinvigorated in 1960s in plasma physics [20-22] and in the
theory of water waves [23]. By now, it has been applied to
description of a great variety of physical phenomena, from
synoptic Rossby waves [24-27] to magneto-hydrodynamic
turbulence [14-16], to acoustic waves [28], to waves in
stratified [8,9] and rotating fluids [10], and many other physi-
cal wave systems.

On the other hand, it has become increasingly clear that in
the majority laboratory experiments and numerical simula-
tions of nonlinear dispersive wave systems the discreteness
of the wave-number space due to a finite size is a crucially
important factor which causes the system behave differently
from the predictions of the classical theory of wave turbu-
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lence based on the continuous (infinite domain) limit
[29-37]. Moreover, similar behavior often occurs in nature
when waves are bounded, e.g., for planetary Rossby waves
bounded by the finite planet radius [38].

Description of transition from regular to random regimes
and characterization of the intermediate states where both
regular and random wave motions are present and mutually
interconnected, is an intriguing and challenging problem.
Such intermediate states where the number of waves is big
and yet the discreteness of the wave number space still re-
mains important are called discrete and mesoscopic wave
turbulence.

II. WEAKLY INTERACTING WAVES
A. Normal modes of linearized problem

An evolution equation is called dispersive if its linear part
has wavelike solutions #(r,r) that depend on the coordinate
in the d-dimensional physical space, r € RY and time ¢ as
follows:

Yr1) = Age’ T 1 cc. = |Ag|cos(k - — wt + @), (1a)

where “c.c.” means ‘“complex conjugate.” Here A
=|Alexp(ig) € C is a constant wave amplitude, ¢ is the wave
phase, ke R? is a wave vector and wave frequency
= w(k) € R is such that |#w/ dk; dk;| #0, where k; and k; are
components of k. Physically, the latter condition means that
wave packets with different wave-numbers propagate at dif-
ferent speeds so that localized initial data would disperse
(spread) in space.

In bounded systems, the set of normal wave modes be-
comes discrete. For waves in a periodic d-dimensional cube
with side L, the normal modes are given by (A) with a dis-
crete set of wave numbers k= ZTWI, where I € 7¢. For different
boundary conditions, normal modes of the linearized prob-
lem may differ from the propagating plane waves Eq. (1a).
For instance, zero boundary conditions in a rectangular box
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typically (but not always) lead to standing waves,
P(r.1) = |Aglsin(k - r + og)sin(wr + @), (1b)

where ¢, and ¢, are the space and time phases correspond-
ingly. A more complex form of the normal mode is given by
ocean planetary motions in a rectangular domain [0,L,]
X [0,L,] with zero boundary conditions, see, e.g. [39]:

Wlr,t) = |Ak|sin<w%xx>sin<w%>sin<%x + ot + (pt>,
(1c)

where m, nelN are integers and w
=pB/[2m(m/L,)*+(n/L,)*] with a constant 3 being the gra-
dient of the Coriolis parameter.

B. Equation of motion

A rather general class of nondissipative nonlinear waves
can be described within the framework of the classical
Hamiltonian approach. This means that after a proper change
in variables the motion equation in natural variables (fluid
velocity, electrical field, density variations, etc.) can be pre-
sented in the universal form of canonical Hamiltonian equa-
tions for canonical variables b(r,t), b*(r,t), which character-
ize the wave amplitudes. Here “™ denotes complex
conjugation. The Hamiltonian equations for the space-
homogeneous systems are most conveniently written in Fou-
rier space because it is a natural space for describing the
wave solutions. Introducing the Fourier transform of b(r,¢)
and calling it ay=a(k,1), the Hamiltonian equation can be
written as follows [18]:

dak 0H
dt ﬂak

(2)

Hamiltonian H = H{ay,ay} is usually (but not necessarily) is
the energy of the wave system, expressed in the terms of the
canonical variables a, a; for all allowed by the boundary
conditions wave vectors k. In the simplest case of a periodi-
cal box k=2l/L, with wave number I € 79 and L being the
box size and d is space dimension.

For the waves of small amplitudes (for example, when the
elevation of the gravity waves on the water surface is smaller
then the wavelength) the Hamiltonian can be expanded in
powers a; and aj:

H:H2+ Hint’ (321)

Him=H3+H4+H5+"', (3b)

where H; is a term proportional to product of j amplitudes a
and the interaction Hamiltonian H;,, describes the wave cou-
pling, as explained below. We omitted here the independent
of a; and a;, part of the Hamiltonian H, because it does not
contribute to the motion Eq. (2). In this paper we consider
only waves exited about steady equilibrium states, i.e., if
absent initially, the waves must remain absent for all time,
ar=a,=0. Thus, the linear Hamiltonian is zero, H;=0.

Expansion Eq. (3b) utilizes the smallness of the wave
amplitudes, therefore, generally speaking,
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H3>H4>H5>"'. (48.)

In particular cases, due to specific symmetries of a problem,
the odd expansion terms vanish (e.g. for spin waves in mag-
netics with exchange interactions, Kelvin waves on quantum
vortex lines). In these cases, instead of Eq. (4a) one has

H3=H5=H7="'=O, (4b)

Hy>He>Hg> -+ (4c¢)

Three-wave interactions often dominate in wave systems
with small nonlinearity, e.g., for Rossby waves in the atmo-
sphere and ocean, capillary waves on the water surface, drift
waves in plasmas, etc. On the other hand, if H;=0, or if
three-wave resonances are forbidden (in the sense that will
be clarified below) the leading nonlinear processes may be
four-wave interactions. Further, there are examples of sys-
tems where the four-wave interaction is absent and the lead-
ing nonlinear process is five-wave, e.g., for one-dimensional
gravity water waves [40-42], or even six order, e.g., for
Kelvin waves on quantum vortex lines [3,43]. However, such
higher-order wave systems are rather rare and, therefore, in
this paper we will discuss three- and four-wave interactions
only, which describe most of weakly interacting waves.

C. Noninteracting waves

The first physically meaningful expansion term, quadratic
Hamiltonian

Hy= 2, anlay

n=1

2 (5a)

according to Eq. (2) produces a linear equation of motion,

da
ld_tk = wpdy, (Sb)
and thus describes noninteracting waves with the dispersion
relation wr = w(k). For waves, considered in this paper, when
ing . {Hy=Ho, o = =0. Notice that H, in Eq. (5a) does not
have aga_, and aza’, terms. They were removed by linear
canonical transformation [known as the Bogolubov (u,v)
transformation] after which H, takes the fully diagonal form
(5a).

D. Three-wave interactions

The first contribution to the interaction Hamiltonian
is

1
1 1
H3 == E V23a1a2a3 523 +c.c., (63.)
ke ko ks

which describes the processes of decaying of single wave
into two waves (1 =2 processes) or confluence of two waves
into a single one (2= 1 processes). In Eq (6) for brevity we
introduced notations ay=ay,, etc. and 523 is the Kronecker
symbol ie., 53—1 if and only if ky+k,=k;. Clearly, V23
—V32 Generally speaking, H; also includes a;a,a; and
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ajayay terms that describe 3<0 processes (confluence of
three waves or spontaneous appearance of three waves out of
vacuum). However they can be eliminated by corresponding
nonlinear transformation [18] that leads to the canonical
form of Hj3, presented in Eq. (6).

Hamiltonian H,+H; with Eq. (2) yields the three-wave
equation:

dﬂlk
i : = WAy + E

1 .
—V’f2a1a25’f2+ V,lczalazﬁ,lfz . (6Db)
d klka 2

Two sets of terms in the RHS of this equation have time
dependence of the form exp[—i(w,+w;)f] and exp[—i(w,
—w3)t], correspondingly [we used shorthand notations, w;
=w(k;)]. They become important if their frequencies are
close to the eigenfrequency of a;, w: wy+w3=w; or w,
— w3 = wy. By relabeling the wave vectors, we can write both

of these conditions in the same form as follows:
w(k)) + w(k,) = w(ks). (7a)

This condition of time synchronization should be comple-
mented by the condition of space synchronization that for-
mally originates from the Kronecker symbols in Eq. (6b),

k|+k2=k3. (7b)

Both relations (6b) are named the resonance conditions of
the three-wave interactions or conditions of the three-wave
resonances.

There exists a simple conditions for the three-wave reso-
nance conditions to be satisfied for the power-law dispersion
relations w~k“ (a=const). In two-dimensional (2D), it is
most easily proved graphically, as suggested in [21]. Thus, it
was shown that the three-wave resonance is possible if and
only if =1 for the continuous case, k € R2. Obviously, this
condition becomes a necessary condition if k is restricted to
discrete values due to boundary conditions.

E. Four-wave interactions

‘When the three-wave resonances are forbidden, one has to
account for processes with weaker nonlinearity, the four-
wave interactions. The canonical part of the four-wave inter-
action Hamiltonian,

1
12 s 12
H4=4_l E T3a 050304655, (8a)
Ky Kok kg

describes a four-wave scattering processes 2<2. Terms
ajaasa, and its complex conjugate describing 4<0 pro-
cesses can be eliminated by an appropriate nonlinear canoni-
cal transformation [18]. After that the four-wave interaction
Hamiltonian takes the canonical form (8a). There also exist
13 systems with aa,asa; and its complex conjugate
terms in H, [5,6]. They can be treated similarly, but for
simplicity we omit them in the present paper.

Note that besides trivial symmetries with respect to the
indexes permutations, 12 and 3 <4, the interaction coef-
ficient Eq. (8) has the symmetry J‘Tf‘z‘:(Téﬁ)*, because the
Hamiltonian has to be real, H,="H,.

The dynamical equation for the four-wave case follows
from Eq. (2) with the Hamiltonian H="H,+H,:
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.dak 1 #
i— =+ 2 Thiajaas ). (8b)
dt Ky ks

Considering this equation similarly to Eq. (6b), one realizes
that the terms in the right-hand side (RHS) of Eq. (8b) oscil-
late with the frequencies w,+ w;—w; and becomes resonant
if this combination is close to wy. in the other words, the
condition of time synchronization (after proper renaming of
the variables) takes form (9a)

w(k)) + o(k;) = w(k;) + w(ky), (9a)

k1+k2=k3+k4, (9b)

while Eq. (9b) represents condition of space synchronization
that comes from the Kronecker symbol in Eq. (8b).

F. Physical examples

In the context of the problem at the hand, a choice of
physically important and methodologically illustrative
Hamiltonian systems is not an easy task. The corresponding
wave systems should preferably be well studied, both theo-
retically and experimentally (or numerically). They should
be simple enough to be understood by the nonexperts in the
area of wave turbulence and at the same time not too simple
in order to demonstrate the main characteristics of the reso-
nant wave systems described by different nonlinear disper-
sive partial differential equations (PDEs), with different
number of interacting modes and different boundary condi-
tions.

1. Surface water waves

Our first example is the system of surface water waves,
with dispersion relation of the general form:

/ ak?
wy=\/gk+—,
p

where g is the gravity acceleration, o is the surface tension,
and p is the fluid density. For small k Eq. (10a) turns into
dispersion law for the gravity waves:

(10a)

we =gk, (10b)

while for large k it is simplified to the capillary wave form

ok’
Wy = - .
p

In both limiting cases the dispersion law have scale-
invariant form, w;<k®. Notice that for the gravity waves «
=%<1 and therefore the leading nonlinear processes are
four-wave scattering 2 <2 with the quartets as the primary
clusters, while for the capillary waves a=% and thus the
leading nonlinear processes are three-wave interactions of
2&1 type. In this case the primary clusters are triads.

Surface water waves with the general dispersion law Eq.
(10a) can be described by the Hamiltonian equation of mo-
tion in canonical form (2) that turns into Eq. (6b) for the
capillary waves and into Eq. (8b) for the gravity waves.

(10c¢)
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Three-wave interaction coefficient for the capillary waves
reads as

’Ckl ’_kZ _ ’Ckl ’_k3

kl\‘"@ kﬂ”@ ko\kyks |

| _i\"w1w2w3[ Kix,

o 817\"%’
where
Kiyuy = ky - k3) + k. (11)

The four-wave interaction coefficient for the gravity waves is
given by rather long expressions which can be found in [44].

2. Nonlinear Schrodinger model

Probably the simplest known example of the four-wave
systems are waves in the nonlinear Schrodinger (NLS)
model of nonlinear optical systems and Bose-Einstein con-
densates [45,46]. NLS waves have dispersion function and
interaction coefficient as follows:

o =k%, Ty=1. (12)

3. Rossby and drift waves

Another important example of wave system with domi-
nating three-wave interaction, is Rossby waves, which are
similar to drift waves in inhomogeneous plasmas. Their am-
plitudes can be described by the so-called barotropic vortic-
ity equation which can be presented in the form similar to the
canonical three-wave Eq. (6b), but all ks taking values only
in half of the Fourier space,

1

.day ! I
‘Vlfzalazgfz + Vina1a56, |,

1 d = wyay + E
t Ky ok =0

(k> 0). (13)

The phase space in this case is half of the Fourier space is a
result is because the original equation in the x space is for a
real variable (barotropic vorticity). The difference in the
Hamiltonian structure of the Rossby and capillary waves
yields the difference in the form of the conservation laws and
therefore in their dynamical behavior. We will discuss this
later in greater detail.

Rossby waves on an infinite (or double-periodic) 8 plane
have dispersion function [27,47]

B’k
1+ p%k

Wy (14a)

where p:v‘gT—I/ f is the Rossby deformation radius H is the
fluid layer thickness, f=2() sin 6 is the Coriolis parameter, 0
is the latitude angle (B-plane approximates a local region on
surface of a rotating planet), () is the planet rotation fre-
quency, and B is the gradient of the Coriolis parameter, 3
=2() cos #/R, and R is the radius of the planet.

In the case of zero boundary conditions in a plane rectan-
gular domain (oceanic Rossby waves), the form of the eigen-
mode is given by Eq. (Ic), corresponding dispersion function
has the form
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BL

Wy, 277\'l—m2+n2' (14b)
Note that this dispersion relation coincides with relation
(14a) in the limit p—oo taking into account that (k,,k,)
=(B/2w*mm/L, * 7n/L) [which follows from Eq. (1c)].
However, the resonant mode sets are different because the
resonance in k is now replaced by the resonance conditions
in m an n.

One more example is atmospheric Rossby waves, propa-
gated on a rotating (with angular velocity ()) sphere. Eigen-
modes in this case, Yi'(sin ¢, \)exp[2im/{(€+1)t], are pro-
portional to the spherical functions Y7, where €=1 and
|m| =€ are integers and ¢ and \ are latitude and longitude,
correspondingly. In this case dispersion function is of the
form

B 2mQ)
L= e+

Notice that difference in the dispersion relations (14)
leads to essential difference in the topology of resonant clus-
ters and consequently to essential difference in the dynamical
and statistical behavior of the systems.

For concreteness we present here the interaction coeffi-
cients of the Rossby waves in the (infinite or double-
periodic) B plane [48]:

Vl _ B\/ |k1xk2xk3x| kly _ k2v _ k3v
= 4ri 1+p%k  1+p%5 1+p%3 ]

(14¢)

The interaction coefficients for the atmospheric Rossby
waves can be found in [38,39,49] and for oceanic Rossby
waves can be found in [50].

II1. REGIMES OF FINITE-SIZE WAVE TURBULENCE

What happens when, due to the finite size, the number of
exact resonances and active quasiresonances is depleted or
absent? The finite-size effects in WT can be characterized by
considering the nonlinear frequency broadening I' (i.e., the
inverse the characteristic time of nonlinear evolution) and
comparing it to the frequency spacing A, between the finite-
box eigenmodes. For simplicity, we will restrict our attention
to the periodic boundary conditions, in which case

o,
ok

27 @
L kL’

w

(15)

“Twiddle” here means that this is an order of magnitude
relationship, which corresponds the approximate character of
the physical estimates given below.

The kinetic equation is applicable when I'> A, this is the
kinetic regime. A qualitative different behavior can be ex-
pected in the opposite limit I'<<A : this is a regime of dis-
crete wave turbulence. These two regimes are realized when
WT forcing is rather high (but not too high so that the non-
linearity is still weak) and low, respectively. However, we
will also see that there is also a rather wide intermediate
range of forcing for which there is a regime with I'~A_,
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which we will call mesoscopic wave turbulence.

Name mesoscopic refers to an observation made in
[34,33] that in existing numerical simulations of the gravity
water waves there may be regimes where the statistical prop-
erties of the infinite-box systems coexist with effects due to
the k-space discreteness associated with a finite computa-
tional box. In was further argued in [36] [in the context of
magnetohydrodynamic (MHD) turbulence] that such a meso-
scopic regime is active in a wide intermediate range of wave
amplitudes. The key reason for such a wide mesoscopic
range is the fact that the typical values of I' for the discrete
(dynamical) and the kinetic (statistical) regimes are typically
strongly separated.

A. Discrete turbulence (small box, weak waves)

In the discrete WT regime, when I'<<A , only the terms
in the dynamical equations which corresponding to exact
wave number and frequency resonances contribute to the
nonlinear wave dynamics. All the other terms rapidly oscil-
late and their net long-term effect is null. The most clear
example here is the case when there is no exact resonances,
like in the system of the capillary water surface waves. In
this case, the averaged (over the fast linear oscillations) non-
linearity is negligible and the turbulent cascade over scales is
arrested. One can see an analogy with Kolmogorov-Arnold-
Moser (KAM) theory which says that trajectories of a per-
turbed (in our case by nonlinearity) Hamiltonian system re-
main close to the trajectories of the unperturbed integrable
system (in our case the linear wave system whose trajectories
are just harmonic oscillations of the individual modes) if
there is no resonances. Of course, this analogy should be
taken with caution because even in absence of the lower-
order resonances (e.g., triad resonances for the capillary
waves) higher-order resonances may be important.

Thus, for the discrete WT regime we have the following
reduced dynamical equations:

_da]( 1 -
IE = 2 <§Vlf2a1a2le2 + V%kalazR%k> , (16a)
1.2

for the three-wave case [Eq. (6b) in which we retain only
exact wave resonances] and

ddk 1
. 12 * 12
l =5 E Wiia,a,a3R5;

16b
e 2153 (16b)

for the four-wave case [Eq. (8b) with only exact resonances
left].

In Eq. (16a), factor R?Z is equal to one when modes k|, k»,
and ks are in exact wave number and frequency resonance,
and it is zero otherwise. Respectively, in Eq. (16b), R3] is
equal to one when modes k|, k,, k3, and k, are in exact wave
number and frequency resonance, and it is zero otherwise.

Some resonant triads or quartets (if at all present) may be
isolated, in which case their dynamics is integrable, and the
respective nonlinear oscillations can be expressed in terms of
the elliptic functions. Some triads or quartets may be linked
and form clusters of various sizes, whose dynamics is more
complicated and to some extent may be chaotic, especially
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for larger clusters. Study and classification of such exact
resonances and their clusters was initiated in [38,50-52] de-
veloped further in many papers including [31,33,53-57]. Ex-
amples of small and large clusters for the Rossby waves
(three-wave system) can be found in [53-55] and for the
gravity water waves (four-wave system) in [57].

Frequency broadening I" for the discrete WT can be esti-
mated from the dynamical Egs. (16a) and (16b),

[=T8" = [V N, (17a)
=T = |Wdl|N, (17b)

where V= V’l‘2 and W= Wéi are the interaction coefficients in
(16a) and (16b) respectively. Subscript D indicates that this
is a discrete-regime estimate, and superscripts 3W and 4W
stand for “three-wave” and “four-wave,” respectively. Here
N is the number of exact resonances which are dynamically
important at a fixed k, which less or equal to the number of
modes connected to k in the resonant cluster. For simplicity
we assumed that all the dynamically important resonances
are local, i.e., kj~k,~ky~k. Strictly speaking, estimates
(17a) and (17b) are only valid if A/ is not too large, because
when A/>1 one should expect statistical cancellations of the
effect of different triads or quartets, and our estimates would
have to be modified. This is the case, for example, of MHD
turbulence considered in [36]. Also, our estimates would
have to be modified for systems with nonlocal in k interac-
tions.

Thus, the condition of the discrete turbulence regime,
I'p<<A,, becomes

Wy

|Va,| < N for three-wave systems,  (18a)
Wa?| < Ok for four-wave systems.  (18b)
LT Y

B. Kinetic wave turbulence (infinite-box limit)

The kinetic regime comprises the classical infinite-box
weak WT theory, which is reviewed in the Appendix to this
paper, including recent theory extensions to description of
the higher-order wave moments and probability density func-
tion (PDF) and finding solutions corresponding to turbulence
intermittency [58—60]. In this regime, the frequency reso-
nance broadening, denoted Ik, is determined by the kinetic
Eq. (A10) for three-wave systems and Eq. (A11) for the four-
wave systems. This gives for I,

L = VPt = [VPla (kL)Y e, (192)
TR = Wi = [WPlay [ (kL) * oy, (19b)

where, for simplicity, we have assumed that the wave spec-
trum is not too narrow and the range of wave numbers inter-
acting with k is of width ~«.

The upper bound for applicability of the wave kinetic
equations follows from the condition of weak nonlinearity
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k<< 6wy, where dwy is the width of the spectrum in the
frequency space. For narrow spectra, dw;<<wy, condition
'k = dw, signifies onset of so-called phase locking phenom-
enon [61,62]. Hereafter for simplicity we restrict ourselves to
broad spectra, dw;~ wy, in which case the upper bound for
applicability of the wave kinetic equations becomes

|Vay|(kL)¥* < @, (three-wave), (20a)

|Wl|a,[2(kL)? < @y,  (four-wave). (20b)

Also, the wave amplitudes should be large enough for the
broadening I'; to be much greater than the frequency spacing
A, Together with Eq. (15), this condition gives

|Va,| > for three-wave systems, (21a)

Y
(kL)(d+1)/2’

Wy

2
|Wl|a,|* > kD7

for four-wave systems.

(21b)

C. Mesoscopic turbulence and sandpile dynamics

Consider first the case when the number of connections of
mode k in its discrete resonant cluster is relatively small,
N=1, as it is the case, e.g., for the case of the gravity water
waves. Comparing the range of kinetic WT [Egs. (21a) and
(21b)] and the one of discrete WT [Egs. (18a) and (18b)] one
can see that there exists a gap,

1 |vay 1
kLN> " > (k)@ (three-wave), (22a)
%
1 Wl|a,/? 1
>| e > (four-wave), (22b)

kLN wy (kL)4+172?

in which both the conditions for the kinetic WT and for the
discrete WT are satisfied. This means that in the region [Egs.
(22a) and (22b)] the wave behavior is neither pure discrete
nor pure kinetic WT. Existence of such a gap was first
pointed out in [36] in the context of MHD wave turbulence.
Regions (22a) and (22b) possess the features of both types of
turbulent behavior described above. In the other words, in
this region both types of WT may exist and the system may
oscillate in time (or parts of the k-space) between the two
regimes giving rise to a qualitatively new type of WT: me-
soscopic wave turbulence. It was suggested in [33] (in the
context of the surface gravity waves) that in forced wave
systems the discrete and the kinetic regimes may alternate in
time, see Fig. 1. Namely, let us consider WT with initially
very weak or zero intensity so that initially WT is in the
discrete regime, and let us permanently supply more wave
energy via a weak source at small ks. During the discrete
phase (with fully or partially arrested cascade) the wave en-
ergy accumulates until when the resonance broadening I'j,
becomes of order of the frequency spacing A,,. After that the
turbulence cascade is released to higher ks in the form of an
“avalanche” characterized by predominantly kinetic interac-
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A,

I 3’2 !

FIG. 1. “Sandpile” behavior in wave turbulence. Upper graph:
the frequency broadening I" follows the discrete turbulence depen-
dence I'=1"j until reaching the value ['=A , at time r=¢;, at which
point it jumps to the kinetic branch I'=I"x>1"}, and rapidly drops in
the kinetic regime to the value I'=A_ at time t=t,. Then it jumps
back to the discrete branch I'=I"j, <I'g, after which the cycle re-
peats. Lower graph: the amplitude gradually grows to a;~A; for
t<<t; and then quickly drops to A, for #; <t<t,, after which the
cycle repeats. For the three-wave systems A;~ (w/V)(kL)~@+D72
and A,~w/(kLVN) and for the four-wave systems A,
~ (/! W)Y2(kL)~ 24D/ and Ay~ /! (KLWN).

tions. At the moment of triggering the avalanche, the broad-
ening I' jumps up from I'=T"p to I'=T"x>1", see the upper
Fig. 1. In the process of the avalanche release, the mean
wave amplitude lowers so that the value of broadening I’
=I"g becomes of order of the frequency spacing A ,. Remem-
ber, for not too large N in this intermediate range T'x>T),.
Thus, at this point the system returns to the energy accumu-
lation stage in the discrete WT regime, and the cycle repeats,
see Fig. 1. Because of the obvious analogy, this scenario was
called sandpile behavior in [33].

As we see, the sandpile behavior is characterized by a
hysteresis where in the same range of amplitudes, from A, to
A, in the lower Fig. 1, the WT intensity increases in the
discrete regime and decreases in the kinetic regime.

For the small-amplitude part of the sandpile cycle, the
system will be close to the critical spectrum, where reso-
nance broadening 'y is of order of the omega spacing A,
This gives the frequency spectrum w™°, which was predicted
in [33] and experimentally confirmed in [29] [cf. w™ for the
Kolmogorov-Zakharov (KZ) spectrum in this case [23]].
Finding spectrum close to the large-amplitude part of the
cycle is not so straightforward because we do not know the
dependence of A on w.

So far, we only considered the case when A is not too
large. Case N'’>1 can be very different. Namely, instead of
the range where both conditions satisfied simultaneously, the
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one for the kinetic WT [Egs. (21a) and (21b)] and the one for
the discrete WT [(18a) and (18b)] one gets a range where
none of these two conditions are satisfied. This kind of me-
soscopic turbulence was considered using the MHD example
in [33]. We will see that in this case the frequency broaden-
ing ' remains of the order of the omega spacing A, in a
broad (mesoscopic) range of wave amplitudes. Remembering
that I' is a characteristic nonlinear evolution time, we note
that constancy of I' points at a possibility that the energy
transfer in such a mesoscopic regime is driven by a hidden
effectively linear process, which is yet to be understood.

D. Possible coexistence of different regimes

Strength of WT typically varies in along the turbulent
cascade in the k space and, therefore, one may expect differ-
ent wave turbulence regimes present in the different parts of
the k space at the same instant in time. For example, the
nonlinearity increases along the cascade toward high wave
numbers in WT of surface gravity waves and of MHD
Alfvén waves. Thus we can expect WT in these systems to
be discrete at low ks and kinetic at high ks. Moreover, on the
crossover regions one can expect nontrivial gradual transi-
tion which involves blending and interaction of different dy-
namical and statistical mechanisms. This effect is expected to
be more pronounced if the interaction of scales is nonlocal,
so that some wave number(s) from a particular resonant triad
(or quartet) could be in the discrete range whereas the other
wave number(s) from the same triad (or quartet) could be in
the kinetic range. As a result, in the crossover range a con-
tinuous spectrum described by the kinetic equation (e.g., KZ)
could coexist with selected few modes belonging to isolated
resonant clusters which would evolve coherently at deter-
ministic time scales. Moreover, the same set of modes might
randomly alternate in time from being discrete to kinetic and
back, as we described above in the sandpile scenario.

Some basic consequences of variability of the finite-size
effects in the k space can be seen in an very simple kine-
matic cascade model suggested in [35]. This model builds a
“cascade tree” in the following three steps:

(i) Let us put some energy into a small collection of initial
modes. We denote this initial collection of excited modes by
Sy (e.g., in within a circle or a ring at small ks which corre-
sponds to forcing at large scales). One can view set S as the
cascade tree’s “trunk.”

(i1) Next, find the modes which can interact with the ini-
tial ones at the given level of nonlinear broadening I'.
Namely, we define a new set of modes S; as the union of all
ks satisfying the quasiresonance conditions,

|w3—w2—w1|<r, k3—k2—k1=0 (233)
for the three-wave case and
lwy+ w3 — - )| <T,
k4+k3—k1—k220, (23b)

for the four-wave case, with all but one wave numbers in S
and the remaining wave number outside of S,. Provided that
I is large enough, the set S; will be greater than S,. Set S,
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comprises the cascade tree’s “biggest branches.”

(iii) Now iterate this procedure to generate a series of
cascade generations S, S, ..., Sy which will mark the sets of
active modes as the system evolves. The union of these sets
constitutes the whole of the cascade tree with all of its bigger
and smaller branches included.

This model is purely kinematic. It does not say anything
about how energy might be exchanged dynamically among
the active modes or how rapidly a certain cascade generation
is reached. However, the kinematics alone allows one to
make some interesting observations about the systems with
variable in k finite-size effects.

Let us consider the example of the gravity waves on deep
water, for which the following results were obtained in [33].
If one starts with a set of low-k modes, with broadening I'
below a critical value I',;=1.4X 107, a finite number of
modes outside the initial region get excited (generation 2)
but there will be no quasiresonances to carry energy to outer
regions in further generations. If the broadening is larger
than T, the energy cascades infinitely. Further, such the
kinematic cascades were shown to have the fractal snowflake
structure with the active modes being rather sparse in the
front of the cascade propagating to higher k, with pro-
nounced anisotropic and intermittent character.

Similar picture of intermittent cascades was also observed
for the capillary wave system [35]. However, because there
is no exact resonances for this system, the generation 1 an
higher appear only if I" is greater than some minimal value
I |- Further, there exists a second critical value ', 5
>T 4 1: the number of generations is finite for Ty ,>T
>T. 1 and the cascade process dies out not reaching infi-
nite ks, whereas for I'>T"_;, , the number of generations is
infinite and the cascade propagates to arbitrarily high ks.
Note that the later property makes the capillary wave system
different from the gravity waves for which the cascade al-
ways spread through the wave number space infinitely pro-
vided I"'>T ;..

Another example where the (three-wave) quasiresonances
and the kinematic energy cascades were studied is the system
of inertial waves in rotating three-dimensional (3D) fluid
volumes [37]. This system is anisotropic and the study of the
kinematic cascades allows to find differences between the 2D
modes, with wave vectors perpendicular to the rotation axis,
and the 3D modes. It appears that the “catalytic” interactions
which involve triads including simultaneously 2D and 3D
wave vectors dominate over the triads which involve 3D
wave vectors only.

IV. DISCUSSION

In this paper we have considered the three different re-
gimes which can be observed in wave turbulence (WT)
bounded by a finite box—discrete, mesoscopic, and kinetic.
For very low amplitudes and small boxes, we expect the
discrete WT, whose dynamics is driven by the exact reso-
nances. In the opposite infinite-box limit, we expect the ki-
netic WT, which is driven by quasiresonances and for which
the exact resonances do not play a role as they are hugely
outnumbered by the quasiresonances. This is the classical
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and the most studied WT regime, and it is summarized in our
Appendix. In the middle, there is a regime of the mesoscopic
WT. We have shown that this regime is characterized by
sandpilelike oscillations between the discrete and the kine-
matic regimes (if the size of the active resonant clusters is
small) or it settles to an intermediate (critical) state in which
the nonlinear frequency broadening is of order of the fre-
quency spacing between the discrete modes for a wide range
of wave numbers (if the size of the active resonant clusters is
large).

The key fact that has led us to the observation that the
mesoscopic regime should be realized in a wide range of
wave intensities is that the dependence of the frequency
broadening on the wave intensity is very different for the
dynamical and the kinetic equations; cf. I' given by Egs.
(17a) and (17b) and I'g given by Egs. (19a) and (19b). Thus,
for the same wave intensities in which I' and 'y are typi-
cally very different in size, and there exist a wide mesos-
copic range where either both the discrete and the kinetic
regimes can exist, or none of them is realizable—hence the
two types of the mesoscopic behavior described above.

Signs of bursty behavior typical of the sandpile behavior
suggested in this paper has already seen in laboratory and
numerical experiments [29,33]. In future, one should aim to
perform more direct diagnostics of the quantities allowing to
identify and to distinguish the different WT regimes describe
in the present paper, including the nonlinear frequency
broadening and character of its evolution in time.

In conclusion, we would like to emphasize the main mes-
sage of this paper: the WT processes are much reacher and
their range is much broader than it was previously believed.
Great care should be taken when one aims to test WT pre-
dictions in laboratory and numerical experiments, as well as
in field observations. Namely, one has to make sure that the
applicability conditions assumed the theory are satisfied. In
particular, the great majority of the numerical and laboratory
tests aimed at verifying the predictions of the kinetic WT
theory via confirming the KZ spectrum. However, applying
the estimates obtained in the present paper reveals that in
many of such tests the wave systems are not in the kinetic
regime but rather in the mesoscopic or even in the discrete
ones. Apart from the qualitative picture discussed in the
present paper, such as the sandpile and hysteresis behavior,
the discrete and the mesoscopic regimes remain largely un-
studied, and much of theoretical work remains done in this
direction in future.
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APPENDIX: KINETIC WAVE TURBULENCE

Classical wave turbulence theory provides a statistical de-
scription of weakly nonlinear waves with random phases. As
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discussed above, theory of wave turbulence is valid in a
range of wave-field strengths such that

r_ A, 1

1>—>—~— (A1)

w, w kL

where I' is given by Eq. (19a) or Eq. (19b) for the three- or
four-wave processes, respectively.

The most popular statistical object in the theory of wave
turbulence is the wave action spectrum although theory of
wave turbulence has been recently extended to description of
higher moments and PDFs in [58—60]. This allowed to deal
with non-Gaussian wave fields, as well as to study validity of
the underlying statistical assumptions such as, e.g., random
phases. We will now briefly describe these results. _

Let us represent the complex amplitudes as a;=\J
with wave intensity J, € R* (positive real number) and phase
factor 4, € S' (complex number of length 1). Let us define
the M-mode joint PDF P™) 5o that the probability for the
wave intensities of the selected M modes, J;, to be in the
range (si,s;+ds;) and for their phase factors i to be on the
unit-circle  segment between & and < §+d§ s
PMILY ds|dg]|. (Therefore P™ is a function of 2M+1
variables: M amplitudes, M phases, and time).

Notion of random phases refers to the cases where all
factor i are statistically independent and uniformly distrib-
uted on S, i.e.,

1
M) _
P

P (A2)

for any M =N, where N is the total number of dynamically
active modes. Here P;M) is the joint PDF of the amplitudes
only. Kinetic WT considers wave fields with random phases
at some initial time and with intensities satisfying condition
(A1). This leads to the following equation for the joint PDF
for the three-wave case:

73(1\’)

=167 f [Vasl* Sy = w; — w3) Sk — key — k3)

9 S pm
X 5185283 P dk]dkzdk3, (A3)
Os 3 Os 3

where [ 5/ 8s]3= 6/ 85— 8/ 8s,— 6/ 5s3. This equation was first
derived for a specific example of waves in anharmonic crys-
tals by Peierls [19] and for general three-wave systems in
[58,60,63]. It was also extended to the four wave systems in
[59]. Note that the phase variables are not involved in these
equations. Therefore, the random phase assumption is con-
sistent with these equations, namely the system which has
random phases initially will remain random phased over the
typical nonlinear time (i.e., its PDF will remain independent
of &). Thus, equations for the joint PDF Eq. (A3) allows an
a posteriori justification of the random phase assumption
underlying their derivations.

However, as we already mentioned, the most frequently
considered object in the theory of wave turbulence is the
spectrum which is defined as
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d

ny= (2_77) s (A4)
L

where d is the dimension of the space and the angular brack-

ets mean the ensemble averaging over the wave statistics.

The spectrum is a one-mode statistical object, and it is the

first in the series of one-mode moments,

27 \P4 2\ [
MP = (T) (Y= <?> f sEPW(s,)dsy.
0

Note that for deriving closures for the one-mode objects
the random phase property is insufficient and one has to
assume additionally that the amplitudes J; are also statisti-
cally independent of each other at different ks. Statistical
independent of the amplitude can also be justified based on
the equation for the joint PDF Eq. (A3), although this issue is
more subtle than the phase randomness because variables s,
do not separate in Eq. (A3) and, therefore any product fac-
torization of the joint PDF in terms of the one-mode PDFs
would not generally be preserved by the nonlinear evolution.
However, this situation seems to be typical for many sys-
tems, e.g., for the relation between the multiparticle and one-
particle distribution functions described by the Louisville
and Boltzmann equations, respectively. In these situations, a
sufficient for the closures property is that the low-order
PDFs, P™) with M <N, can be product factorized. It can be
seen from Eq. (A3) that it is the case for the weakly nonlin-
ear wave systems, i.e., that factorization, P(M)=HkM=177,((1)
+O(M/N), survives over the characteristic nonlinear time.

Importantly, the distribution of wave fields in the theory
of kinetic WT does not need to be Gaussian or close to
Gaussian, and one can consider evolution of the one-mode
PDFs P! that correspond to strongly non-Gaussian fields
(Gaussian fields would mean P! ~¢=)). Integrating the
joint PDF Eq. (A3) we get

JP  oF,
LTk, (A5)
ot ﬂsk

with F is a probability flux in the s space,

o oPY
Fr==si\ P+ mi 5. )
Sk

(A6)
where for the three-wave case we have
= 47TJ (|V,1(2|25(wk - ;= )8k —ky —k,)

+ 2|V]%1|25(0)2 - Wy — (l)l)a(kz k- kl))nlnzdkldkz,

Y = 87Tf (|Vlf2|25(wk— W) — ) 8k —ky —ky)n,

+ |V,%1|2Ai16(w2 - wy— ) 8ky =k —ky)(ny
- nz))dkldkz (A7)

Equation (A5) has an obvious exponential solution which
corresponds to a zero flux F:
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fp}{l) — Le—Sk/Uk)’
k

which corresponds to Gaussian statistics of the wave field a;.
However, there are also solutions corresponding to F
=const# 0 which for s,>(J,) has a power-law asymptotic
[58,59],

P =— £
YiSk
These solution corresponds to enhanced probability (with re-
spect to Gaussian) of strong waves which is called intermit-
tency of WT. Here, the constant flux in the amplitude space
F can be associated with a wave breaking process the exact
form of which depends on the physical system. For example,
for the gravity water surface waves the wave breaking pro-
cess takes form of whitecapping, and for the focusing NLS
system the wave breaking is represented by filamentation or
collapsing events. Obviously, this power-law tail of the PDF
cannot extend to infinity because the integral of the PDF
must converge. Thus, there exists a cutoff which can also be
associated with the wave breaking, which can simply be un-
derstood that the probability of waves with amplitude greater
than some critical value must be zero. Such critical value
roughly corresponds to the amplitude for which the nonlinear
term becomes of the order of the nonlinear one so that the
WT description breaks.
Multiplying Eq. (A5) by s and integrating over s;, we
have the following equation for the moments M ;”)=(J_§'):

d :
—M}" == pyM{ + PP M

dt (A8)

which, for p=1 gives the kinetic equation for the wave ac-
tion spectrum,

d

== Yyt T

P (A9)

Substituting into this equation expressions for 7y, and 7, we
obtain more familiar forms of the kinetic equations:

d
Enk= 47Tf |V]I2|25((Uk— | — (.02)5(k _kl —kz)(n1n2 —nng

- nznk)dkldkz + Sﬂf |Vi1|25((.02 - Wy — (,01)

X&(kz—k—kl)(i’lll’lz—l’lli’lk+1’l2nk)dk1dk2, (AIO)

and for the four-wave case

d

E”k = 47Tf |7§§|25(wk + ) — )y — @3)mnnyn; ok + ky — ky
1 11

1
k)| -+ —-—
n ny np ns

)dkldkzdk3. (A1)
Based on Egs. (A10) and (A11) [or Egs. (A5) and (A8)] one
can obtain the estimate for the nonlinear frequency broaden-
ing in the WT regime, i.e., inverse characteristic time of the
nonlinear evolution as in Eq. (19a) or Eq. (19b). This leads to
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the WT applicability condition (21a) or condition (21b).

Classical statistical approach allows to obtain some inter-
esting and physically relevant solutions, such as KZ spectra
corresponding to the energy and wave action cascades
through scales. Such solutions can be obtained analytically
using so-called Kraichnan-Zakharov transformation, as well
as from the scalings of the frequency and the interaction
coefficients based on the dimensional analysis. Discussion of
these issues is beyond the scope of our review, and the inter-
ested reader is referred for details to book [18]. Here, it suf-
fices to say that in most systems there exists a shortcut way
to obtain KZ spectra. It works for the systems with only one
relevant dimensional parameter, for example the gravity con-
stant g for the water surface gravity waves, surface tension
constant o for the capillary waves, speed of sound c, for
acoustic turbulence, quantum of circulation « for Kelvin
waves on quantized vortex lines, etc. In this case the 1D
energy spectrum E,~ k" can be immediately obtained from
the physical dimension of this constant which gives for the
direct cascade [35]:
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5-3a-d
v=2a+d-6+—""—,

N1 (A12)

where « is the power of the dispersion relation w~ k“ (which
is uniquely determined by the above dimensional constant), d
is the dimension of the system, and N is the number of waves
involved in the resonance interaction. For example, for the
water surface gravity waves we have E,~ k™2, for the cap-
illary waves E,~k™"* (both of these spectra are called
Zakharov-Filonenko spectra [23]), and for acoustic turbu-
lence E,~k™*? (Zakharov-Sagdeev spectrum [28]). For
Kelvin waves on quantized vortex lines, considering them as
a local six-wave process, one formally gets E,~k™ '
(Kozik-Svistunov spectrum [3]). However, this spectrum was
recently shown in to be nonlocal

Similar approach one can use for finding the inverse cas-
cade spectra, e.g., for the water surface gravity waves or
Kelvin waves [35].
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