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We use the Cahn-Hilliard approach to model the slow dissolution dynamics of binary mixtures. An important
peculiarity of the Cahn-Hilliard-Navier-Stokes equations is the necessity to use the full continuity equation
even for a binary mixture of two incompressible liquids due to dependence of mixture density on concentra-
tion. The quasicompressibility of the governing equations brings a short time-scale �quasiacoustic� process that
may not affect the slow dynamics but may significantly complicate the numerical treatment. Using the
multiple-scale method we separate the physical processes occurring on different time scales and, ultimately,
derive the equations with the filtered-out quasiacoustics. The derived equations represent the Boussinesq
approximation of the Cahn-Hilliard-Navier-Stokes equations. This approximation can be further employed as a
universal theoretical model for an analysis of slow thermodynamic and hydrodynamic evolution of the multi-
phase systems with strongly evolving and diffusing interfacial boundaries, i.e., for the processes involving
dissolution/nucleation, evaporation/condensation, solidification/melting, polymerization, etc.
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I. INTRODUCTION

Fluid mixtures can be classified as being immiscible �e.g.,
oil-water mixture� or miscible �e.g., honey-water mixture or
mixture of two gases�. An immiscible system is characterized
by a strict interfacial boundary. This boundary cannot be
crossed by the molecules of adjoining liquids, which, on mo-
lecular scale, can be explained by a high potential barrier due
to different intermolecular interactions within the mixture
components. At macroscale, the coefficient of surface tension
is introduced to define the macroscopic effects of the inter-
facial potential barrier.

The mixture of two gases is an example of a directly
opposite case. As intermolecular forces between gas mol-
ecules are negligibly small, no potential barrier at the gases’
boundary exists, and gas molecules of initially separated
components freely codiffuse. So there is no sense in intro-
duction of an interface, and hence, there is no surface tension
on the gases’ boundary.

The focus of the current work is on the miscible mixtures
of two liquids, for which the intermolecular forces cannot be
neglected. As an everyday example, the behavior of a droplet
of honey in water may be considered: for such a droplet, a
strict interface is visible for a long period after immersion of
a droplet into water; however, after a slow dissolution pro-
cess honey-water mixture becomes homogeneous. Again, the
existence of a strict interface between mixture components,
on molecular scale, should be associated with a potential
barrier. However, in comparison with the immiscible case,
for miscible interfaces, some molecules with sufficiently
high kinetic energies are able to cross this barrier. It may be
further assumed that the molecular flux through an interface
gradually diminishes the barrier’s height which would result
in growing numbers of molecules being diffused from one
phase to another and, ultimately, in a complete dissolution of
a droplet.

Thus, the concept of interface is required to describe the
behavior of a slowly miscible system. The interface, at mac-
roscale, will be characterized by the surface-tension coeffi-
cient. In contrast to immiscible systems, surface-tension co-
efficient varies as the dissolution progresses �see, e.g., Ref.
�1��. The cases of completely and partially miscible liquids
�e.g., honey-water and butanol-water mixtures� would differ
from each other by the fact that the surface-tension coeffi-
cient decreases to zero in the first case �as the interface dis-
appears� and is dynamically variable over dissolution process
but always remains nonzero in the second case.

The surface energy effects have a twofold influence on the
dissolution dynamics; both the morphology of the interface
and the rate of mass transfer through the interface are af-
fected. We may argue that the surface tension is sufficiently
high to exclude the codiffusion of molecules between immis-
cible liquids. In the case of miscible systems, the mass trans-
fer through the interface will be not zero but its rate will be
restricted by the surface energy effects. Mathematically, this
will follow from the fact that classical Fick’s law stating the
linear proportionality between diffusive flux and concentra-
tion gradient is invalid for strong solutions �2�. For instance,
there is a strong concentration gradient across the interfacial
boundary, but no interfacial diffusion for an equilibrated het-
erogeneous binary system. An equilibrium state of the binary
mixture is defined through the equality of the chemical po-
tentials of the adjoining liquids. A more general law for the
interfacial mass transport, generated when the binary system
is taken off its equilibrium, should be based on the gradient
of chemical potential through the interface. The expression
for the chemical potential will already include the surface-
tension effects �3� and the effect of barrodiffusion �2,3�. The
barodiffusion was experimentally observed in the studies of
the equilibrium and nonequilibrium concentration profiles in
binary mixtures �4–6�.

A first review devoted to the physics of slowly miscible
systems can be found in Ref. �1�. The phase-field approach
was adopted to model the hydrodynamic evolution of a mis-
cible interface. The authors pointed out that there is another*a.vorobev@soton.ac.uk
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physical effect that should characterize the evolution of bi-
nary mixtures, namely, the quasicompressibility of the hy-
drodynamic equations: even for a mixture of two incom-
pressible liquids, the fluid velocity is a nonsolenoidal field
due to dependence of mixture density on concentration.

The first numerical studies of the evolution of miscible
interfaces were based on the governing equations in which
the surface energy effects were not taken into account �7�.
The Cahn-Hilliard-Navier-Stokes equations, which include
all essential physical effects previously discussed by Joseph
and Renardy �1�, have been derived by Lowengrub and
Truskinovsky �3�. These equations fully define the hydrody-
namic behavior of miscible binary mixtures, showing that
there are two surface energy effects which define the mor-
phology of the interface �the Korteweg stress� and the rate of
mass transfer through the interfacial boundary. Nevertheless,
the recent numerical studies of the miscible multiphase sys-
tems do already take into account the effects of the surface
tension in the momentum balance equation but still continue
to describe the diffusion process based on the classical
impurity-like models �8–10�.

The hydrodynamics of immiscible systems has been stud-
ied either for density-matched fluids �11–13�—for such flu-
ids, the quasicompressibility effects are eliminated—or by
using the Boussinesq-like approximation �14–18�. Since
within the phase-field approach it is necessary to assume that
the density gradients are large at least in some parts of a
computational domain, this makes justification of the Bouss-
inesq approximation difficult. The role of the quasicompress-
ibility effects for a particular system was examined in Refs.
�19� �for an analysis of one-dimensional diffusion within a
pipe� and �8� �for an analysis of miscible displacements in
capillary tubes�. Following Ref. �19�, the velocity field was
divided into incompressible and expansion parts. In both
works, the estimations showed that the expansion part of the
velocity field is negligibly small. Nevertheless, even such a
statement is not sufficient to prove the use of the Boussinesq
approximation.

We are unaware of any paper where the Boussinesq ap-
proximation of the full Cahn-Hilliard-Navier-Stokes equa-
tions has been strictly derived. This is done in the current
work on the basis of the multiple-scale method and averag-
ing procedure. First, along with Ref. �3�, the quasiacoustic
effects will be identified. It will be shown that, similar to
the classical acoustics, the quasiacoustics is also character-
ized by the short time scale, which allows us to filter out
these quick process from the governing equations. The re-
sultant equations will define the slow �on the convective and
diffusion time scales� dissolution dynamics of a multiphase
system. The obtained model will represent the Boussinesq
approximation of the full Cahn-Hilliard-Navier-Stokes equa-
tions, but it can also be considered as an analog of the low-
Mach number approximation used for an analysis of slow
nonisothermal flows in compressible media �20–22�. The de-
rived equations are fully incompressible, which significantly
simplifies their numerical solution.

To conclude this introductory section, we would like to
mention that applications that involve the miscible interfaces
are ubiquitous. They include solvent extraction, cleaning, re-
moval of oil spills, waste treatment, enhanced oil recovery,

drug delivery, etc. Frequently, it is assumed that the rate of
dissolution and the rate of flow change are not comparable,
e.g., dissolution is a slow process and the changes, caused by
hydrodynamic flows, happen at much faster rate, or, on the
contrary, nucleation is a very fast process and the hydrody-
namic flows are much slower. For such cases, different sim-
plified models were proposed which allow these processes to
be considered separately. We, however, are interested in slow
flows when the typical dissolution and convective time
scales are comparable; an example can serve the hydrody-
namic flows in capillary tubes or in porous media. Other
important examples where the thermodynamic and hydrody-
namic processes interact are the flows in near-critical
systems.

II. CAHN-HILLIARD-NAVIER-STOKES-EQUATIONS

In the current work, the phase-field approach is utilized to
define the evolution of a multiphase system. The mixture
components are called solvent and solute. To characterize a
state of the binary mixture the concentration field is used,
which we define as the mass fraction of the solute in the
solvent phase.

The main idea of the phase-field approach is to artificially
smear the interfacial boundary and one system of the Navier-
Stokes equations is solved for the entire multiphase system.
All variables experience strong but continuous changes
through the interface. The position and shape of the interface
are tracked by using the concentration field. The fluid behav-
ior in the limit of zero surface thickness is usually analyzed.
We, however, should notice that the interface smearing is
physically justified for the systems near thermodynamic criti-
cal point.

A. Thermodynamic model

To define a thermodynamic state of a binary mixture we
need to introduce the free-energy function. Since, in the
phase-field approach, one system of equations is used to de-
fine the behavior of an entire multiphase system, it is conve-
nient to introduce the specific free-energy function f . This
function can be either written based on experimental data or
derived from a molecular level theory. To take the surface-
tension effects into account, Cahn and Hilliard �23� proposed
to define f not only as a function of density and concentra-
tion but also as a function of concentration gradient,

f��,C,�C� = f0��,C� +
�

2
��C�2. �1�

Here, f0 is called the classical part of the free energy, C is the
solute concentration, and � is a constant called the capillary
coefficient. Coefficient � is assumed to be very small, so the
second term is not negligible only at the places of strong
gradients of concentration, i.e., at interfaces.

The chemical potential �, derived from the free-energy
function �1� with the use of assumption of incompressibility
of mixture components �i.e., � is a function of concentration
C and independent of pressure p�, reads �3�

ANATOLIY VOROBEV PHYSICAL REVIEW E 82, 056312 �2010�

056312-2



��p,C� = �0�C� −
p

�2

d�

dC
−

�

�
� · �� � C� , �2�

�0�C� �
df0�C�

dC
. �3�

Here, �0 stands for the classical part; the incompressibility
assumption brings an explicit dependence of the chemical
potential on pressure; and the last term is a nonclassical con-
tribution which stems from the Cahn-Hilliard addition in Eq.
�1�.

The expression to be adopted for the classical part of the
free-energy function, f0, is written so as to reproduce the
behavior defined by the phase diagram depicted in Fig. 1. In
general, there are other different types of phase diagrams
characterizing the states of binary systems �2�. The diagram
depicted in Fig. 1 is, however, one of the most popular. This
diagram defines the mixture with the upper critical solution
temperature: a system with the temperature below the critical
point may be either homogeneous or heterogeneous depend-
ing on concentration �the amount of a second component�,
while a supercritical system is always homogeneous.

In the current work, we use the expression for the free-
energy function originally proposed by Landau and Lifshitz
�2� to define a thermodynamic state of a system near its
critical point,

f0�C� = a�C − Ccr�2 + b�C − Ccr�4. �4�

In this expression, Ccr is the solute concentration in the criti-
cal point, and coefficients a and b are the phenomenological
parameters which define the choice of a particular binary
mixture. It is necessary to note that the coefficient a absorbs
the factor �T−Tcr�, i.e., �i� a tends to zero as the system
approaches the critical point and �ii� a is negative for under-
critical conditions and positive for the temperatures above
the critical value. Function �4� has two minima for negative
values of a and one minimum for positive a. An equilibrium
of a thermodynamic system corresponds to a minimum of the
free-energy function. Two minima characterizing a system
below the critical point are associated with two different
phases, while in supercritical conditions a binary mixture is
homogeneous and is characterized by the only minimum of
the free-energy function.

Using function �4� we may derive an expression for the
classical part of the chemical potential,

�0�C� = 2a�C − Ccr� + 4b�C − Ccr�3. �5�

If, first, the surface tension is not taken into account �the
Maxwell theory is adopted� and, second, there is no loss or
gain in volume upon liquids’ mixing �simple mixtures are
considered�, then the equilibrium concentrations of the mix-
ture components are defined by C01,02=Ccr� �− a

2b �1/2.
We will use expression �4� as a simple model for a binary

system that, under different conditions, may define both mis-
cible and immiscible solutions. Another popular choice for
the free-energy function frequently used to model the behav-
ior of immiscible mixtures reads

f0 = 1
2 �C − C01�2�C − C02�2. �6�

It can be shown that Eq. �6� transforms into Eq. �4� if b
=1 /2 and C01,02�Ccr� �−a�1/2. That is, formula �4� can be
used to define the binary mixtures even under temperatures
far from the critical one, where it can be considered as an
interpolation of the experimental data; two new phenomeno-
logical coefficients a and b are determined so as to provide
the best fit to the experimental data.

Finally, we notice that a thermodynamic model defines the
equilibrium states. A thermodynamic system can reach its
equilibrium following a long equilibration process �complete
dissolution takes hours for the honey-water mixture�. In the
present work we aim to define the behavior of a binary sys-
tem during equilibration to its thermodynamically stable
state.

B. Hydrodynamic model

The evolution of a binary mixture to its thermodynamic
equilibrium is defined by the hydrodynamic model. The gov-
erning equations for hydrodynamic evolution of the Cahn-
Hilliard fluid were derived in Ref. �3�. These equations in-
clude the laws of conservation of mass, species, and
momentum,

��

�t
+ � · ��v� = 0, �7�

�� �C

�t
+ �v · ��C� = ��2� , �8�

�� �v
�t

+ �v · ��v� = − �p + � · �	 − � � · ��. �9�

Here, the constant � is the coefficient of mobility.
The fluids studied in this paper are assumed to be incom-

pressible, but due to large concentration gradients at the in-
terface the continuity Eq. �7� needs to be taken in its full
form. Such fluids are called quasi-incompressible �1,3�. The
dependence of the fluid density � on the solute concentration
C has the simplest form for the simple mixtures, for which

FIG. 1. The phase diagram for a binary system with an upper
critical solution temperature.
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1

�
=

1 − C

�01
+

C

�02
, �10�

where �01 and �02 are the solvent and solute densities. So for
the mixture of water and glycerol, expression �10� is true
with 1% accuracy; for the mixture of methanol and water, the
accuracy of Eq. �10� is 3.5% �1�.

As the velocity field is nonsolenoidal, the divergence term
in the expression for the viscous stress tensor �	 also needs
to be taken into account,

�	 = 	�� � v + �� � v�T − 2
3 �� · v�I� . �11�

In this expression, the symbol � stands for the tensor prod-
uct, the index T denotes the transposed, and I denotes the
unit tensor. The viscosity coefficient 	, introduced by ex-
pression �11�, should, in general, depend on the solute con-
centration and can be represented by a simple mass-weighted
approximation or by an experimental formula.

The tensor ��, defined as

�� = � � C � �C , �12�

introduces the Korteweg interfacial stress.
The right-hand side of Eq. �8� takes into account the spe-

cies transport due to diffusion. Here, the driving force for the
diffusion flux is the gradient of chemical potential. One
should also notice that diffusive term of Eq. �8� includes the
pressure and surface-tension effects �stemming from expres-
sion �2� for the chemical potential�.

The full system of equations, defined in this section, is
complemented with boundary and initial conditions. As ini-
tial conditions, the velocity v and concentration C are as-
sumed to be known. As boundary conditions for the velocity
field, the standard no-slip condition is used. For the field of
solute concentration, two conditions need to be imposed at
each boundary as Eqs. �2� and �8� define the fourth-order
system of equations in terms of concentration field C. The
first boundary condition is the zero-flux requirement,

n · �� = 0. �13�

Here n is the vector normal to the boundary. The second
boundary condition imposes the local thermodynamic equi-
librium of the fluid-wall system. The full form of this condi-
tion is discussed in, e.g., Refs. �15,16,24�. For contact angle
of 90°, this condition can be written as

n · �C = 0. �14�

In such a form, this condition states that the interface is
orthogonal to the wall or, in other words, the wall is neutral
to components of a binary mixture. It is also easy to write
another alternative boundary condition for the field of con-
centration when the wall firmly attracts the molecules of one
of the mixture components, i.e., on the wall, C=0 or C=1,
depending on whether solvent or solute molecules are at-
tached �being the molecules of a perfectly wetting liquid�.

At the end of this section, let us enumerate the essential
features required for derivation of governing equations �Eqs.
�7�–�9��. The first two requirements have been already men-
tioned; they are the use of the Cahn-Hilliard free-energy
function �1� and the assumption that the mixture components

are incompressible liquids. The third requirement is to define
the velocity, v, as the mass-averaged quantity over random
velocities of different molecules that constitute a fluid par-
ticle. The volume-averaged definition for the fluid velocity of
a multiphase system is also possible and can even have some
advantages as it would automatically produce a divergence-
free velocity field for the mixing of two simple incompress-
ible liquids �17,25�. However, a traditional definition for the
velocity in fluid mechanics is the mass-averaged quantity.
The resultant governing equations based on this definition
can be more easily and more naturally compared with the
classical equations for a single phase medium.

III. SEPARATION OF TIME-SCALES

The quasicompressibility of Eqs. �7�–�9� brings short-
term �or quasiacoustic� processes, which significantly com-
plicates the numerical solution of the equations. The descrip-
tion of slow diffusion and convective evolution of binary
mixtures would frequently be more relevant for practical ap-
plications. However, even if the quick �quasiacoustic� pro-
cesses do not determine the slow evolution, the numerical
integration with the time step smaller than the typical qua-
siacoustic time scale is required in order to obtain a conver-
gent numerical solution. In this section, the time scales that
characterize the evolution of a miscible multiphase system
are first explicitly identified and then, by using the multiple-
scale method, the general governing equations are split into
two systems which separately define the fast and slow
evolutions.

A. Nondimensionalization of governing equations

For further analysis we redefine the density and concen-
tration fields by shifting their reference points by the critical
values, �cr and Ccr, namely,

�� − �cr� → �, �C − Ccr� → C . �15�

We also nondimensionalize the governing equations using
the following units of time ��, velocity V�, pressure p�, and
specific free energy,

�� =
L�

V�

, V� = ��
1/2, p� = ����, f� = ��. �16�

Here L� is the typical size, �� is the typical density �e.g., �cr�,
and �� is the unit of the chemical potential, for which we can
use ��=b. The resultant dimensionless equations then read
as

��

�t
+ �v · ��� = − �1 + �� � · v , �17�

�1 + ��� �C

�t
+ �v · ��C� =

1

Pe
�2� , �18�

�1 + ��� �v
�t

+ �v · ��v� = − �p +
1

Re
� · �	 − Ca � · ��

+ Ga�1 + ��
 , �19�
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p =
1

�
	− � + �0 − Ca��2C + ��1 + ����C�2�
 , �20�

f0 = AC2 + C4, �0 =
df0

dC
, �21�

� =
�C

1 − �C
, �22�

�	 = 	�� � v + �� � v�T − 2
3 �� · v�I� , �23�

�� = �1 + �� � C � �C . �24�

The last term in Eq. �19� is the gravitational force �with 

being a unit vector directed upward�. A nondimensionalized
coefficient of viscosity 	 �in formula �23�� is obtained using
the typical value 	� �e.g., the viscosity coefficient of a binary
mixture in its critical point�.

The nondimensional parameters entering the above equa-
tions are the Peclet number,

Pe =
��L�

���
1/2 , �25�

the capillarity parameter,

Ca =
�

��L�
2 , �26�

the Galileo number,

Ga =
gL�

��

, �27�

and the Reynolds number,

Re =
����

1/2L�

	�

. �28�

The binary mixture is also characterized by the parameter

� =
��

�01
−

��

�02
�

�02 − �01

��

, �29�

where �01 and �02 are the densities of the mixture compo-
nents. The approximate formula is valid for small differences
between �01 and �02, which is typical for all liquid mixtures.
The adopted expression for the free-energy function also
contains another nondimensional parameter that defines the
distance from the critical point,

A =
a

��

. �30�

This parameter also defines whether the system is heteroge-
neous �negative A� or homogeneous �positive A� in equilib-
rium.

Finally, let us also write the expression for the total en-
ergy of the fluid enclosed by volume V,

E = �
V

�1 + ��
v2

2
+ f0 +

Ca

2
��C�2 + Ga�
 · r��dV .

�31�

Here the first term corresponds to the fluid kinetic energy, the
second term is the classical part of free energy, the third term
accounts for the energy accumulated by interfaces, and the
last term is the potential energy due to gravity. The total
energy is measured in the units of ����L�

3.

B. Typical time scales

To identify the different time scales characterizing the
physical system defined by the full equations written in Sec.
III A we consider the evolution of a one-dimensional �along
the x-axis� small-amplitude perturbation on the background
of a stationary homogeneous state. For simplicity, we also
omit the gravity term for this analysis. A similar stability
analysis but for an inviscid binary mixture was first under-
taken in Ref. �3�.

The evolution of such a perturbation is defined by the
following linearized equations:

��

�t
= −

�v
�x

, �32�

�C

�t
=

1

Pe

�2�

�x2 , �33�

�v
�t

= −
�p

�x
+

4

3Re

�2v
�x2 , �34�

p =
1

�
�− � + 2AC − Ca

�2C

�x2 �, � = �C . �35�

Seeking a solution in the form of a plane wave, C
�exp�ikx− i�t�, where i is the imaginary unit, k is the wave-
number, and � is the frequency, we obtain the following
dispersion relation:

�2 = − i��Pe

�2 +
4

3Re
k2� +

k2

�2 �2A + Cak2� . �36�

Next, we split � into the real and imaginary parts, �=�r
+ i�i, and equate the coefficients in front of the like terms to
obtain

��r
2 − �i

2� = �i�Pe

�2 +
4

3Re
k2� +

k2

�2 �2A + Cak2� , �37�

2�r�i = − �r�Pe

�2 +
4

3Re
k2� . �38�

The analysis of the second equation shows that this is satis-
fied by either

�r = 0 �39�

or
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�i = −
1

2
�Pe

�2 +
4

3Re
k2� . �40�

To simplify further derivations we will use that

k

�
�2A + Cak2�1/2 
 �Pe

�2 +
4

3Re
k2� �41�

or, equivalently,

� 
 1, A 
 1, Ca 
 1, Pe � 1. �42�

That is, we assume a small density difference between com-
ponents of binary mixtures, close to the critical point and the
existence of an interface.

Substitution of condition �39� into Eq. �37� produces two
formulas for the decrements which define the monotonic de-
cay of the considered one-dimensional perturbation,

�i,1 = − �Pe

�2 +
4

3Re
k2� , �43�

�i,2 = −

k2

�2 �2A + Cak2�

Pe

�2 +
4

3Re
k2

. �44�

Next, we should note that Eq. �37� has no solution if
option �40� to satisfy the imaginary part of the dispersion
relation is chosen.

Derived dispersion relations �43� and �44� define the lin-
ear stability of a homogeneous state and confirm the ex-
pected behavior of a binary system, namely, the homoge-
neous state is unconditionally stable for positive values of A
�supercritical conditions on the phase diagram�, while some
disturbances would monotonically grow if A is negative,
when the spinoidal decomposition should occur as under
such conditions the thermodynamically stable state of a bi-
nary system is heterogeneous.

In addition, expressions �43� and �44� allow us to con-
clude that the evolution of the miscible multiphase system
defined in Eqs. �17�–�19� is characterized by at least three
different time scales,

�d =
Pe

A
, �c = Re, �e =

�2

Pe
. �45�

Here, �d and �c are the diffusion and convection time scales
and �e is the fast time scale that we call the expansion time
scale �the effect defined by this time scale was called either
the expansion �1� or sonic �3� wave�. Let us also adduce the
expressions for these time scales in the dimensional form,

�d
� =

��L�
2

���

, �c
� =

��L�
2

	�

, �e
� = �2 �

��

. �46�

As it is clear now, inequality �41� reflects the ratio be-
tween the quick and slow time scales. For further analysis we
will introduce the small parameter � defined as

�4 �
�e

�d
=

�2A

Pe2 . �47�

We are interested in the dissolution dynamics, i.e., in the
evolution on the slow diffusive time scale. The main idea of
the multiple time-scale method is to explicitly introduce two
times, the quick one, t−2, describing the evolution of a system
on the fast expansion time scale and the slow one, t2, defin-
ing the diffusive and convective evolution. The time deriva-
tive can be then written as

�

�t
=

1

�2

�

�t−2
+ �2 �

�t2
. �48�

We will also expand all variables in the series of small
parameter �,

v = �2v2 + �4v4 + ¯ , �49�

p = p0 + �2p2 + �4p4 + ¯ , �50�

� = ��1 + �3�3 + ¯ , �51�

� = �2�2 + �4�4 + ¯ , �52�

C = �C1 + �3C3 + ¯ , �53�

	 = 1 + ¯ , �54�

and we relate the nondimensional parameters to different or-
ders of �,

� = �1�, A = A2�2, Ca = Ca2�2, �55�

Re = Re−2
1

�2 , Pe = Pe0, Ga = Ga2�2. �56�

We should note that there are two main conditions implying
the choices for the above-written ratios, namely, �i� to save
all essential physical effects and �ii� to have a closed system
of governing equations. The nondimensional parameters de-
fine the ratios between different terms in the governing equa-
tions. For derivations, we always assume that all effects in
the original equations �Eqs. �17�–�19�� may be important and
such values of the nondimensional parameters are chosen
which permit us to include all corresponding terms in the
final equations. Ratios �Eqs. �55� and �56�� imply that �d and
�c are of the same order. This only means that the final equa-
tions will include both convective and diffusive terms. Fol-
lowing such an approach, we will obtain a comprehensive
theoretical model that can be used for the analysis of a wide
range of problems. For a particular problem, some terms in
the model may be found either small or very large, which
would, sometimes, lead to further simplifications. However,
our aim is to obtain a general model.

C. Separation of the processes occurring
on different time scales

First, we write down the different orders of Eqs.
�17�–�19�. The first orders of the mass �Eq. �17�� and species
balances �Eq. �18�� are as follows:

��2

�t−2
= 0,

�C1

�t−2
= 0, �57�
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��4

�t−2
= − � · v2,

�C3

�t−2
=

1

Pe0
�2�1, �58�

�C5

�t−2
+

�C1

�t2
+ �v2 · ��C1 + �2

�C3

�t−2
=

1

Pe0
�2�3. �59�

The first orders of the equation of momentum balance �Eq.
�19�� read as

�v2

�t−2
= − �p0, �60�

�v4

�t−2
= − �p2 + Ga2
 , �61�

�v6

�t−2
+

�v2

�t2
+ �v2 · ��v2 + �2

�v4

�t−2

= − �p4 +
1

Re−2
� · �	,2 − Ca2 � · ��,2 + Ga2�2
 .

�62�

Here, the corresponding orders of the viscous stress tensor
and of the Korteweg tensor are

�	,2 = � � v2 + �� � v2�T − 2
3 �� · v2�I , �63�

��,2 = �C1 � �C1. �64�

In these equations, all variables are assumed to be func-
tions of both times, t−2 and t2. Next, we will split out the
processes on different time scales using the averaging proce-
dure briefly outlined in the next two paragraphs.

First, we assume that all fields can be split into slowly and
quickly changing parts,

v = u�t2� + w�t−2,t2� , �65�

� = �̄�t2� + �̃�t−2,t2� . �66�

Here, u�1 /T2�0
T2vdt and w�v−u. That is, u is the fluid

velocity averaged over long time scale �T2 is a time interval
much larger than the fast time scale� and w defines the quick
time-scale fluctuations of the fluid velocity. For scalar quan-
tities, the barred symbol is used to denote the averaged parts
and the tilded symbols denote the fluctuating parts. As an
example, we show the splitting of density field �66�; similar
expressions have to be written for concentration, pressure,
and chemical potential.

The equations for the long-term evolution will be ob-
tained by averaging the equations. To accomplish averaging,
the following general equalities are required to be used:

V̄̃ = 0,
�

�t−2
� ¯ � = 0, �67�

where V stands for any quantity.
Averaging gives the following equations for the processes

on the diffusive and convective time scales:

p̄0 = 0, �̄1 = 0, �68�

�p̄2 + Ga2
 = 0, �69�

�u2

�t2
+ �u2 · ��u2 + �w2 · ��w2

= − �p̄4 +
1

Re−2
�2u2 − Ca2��2C1 � C1 + �

��C1�2

2
�

+ Ga2�2
 , �70�

� · u2 = 0, �71�

�C1

�t2
+ �u2 · ��C1 =

1

Pe0
�2�̄3, �72�

p̄2 =
1

�1
�− �̄3 + 2A2C1 + 4C1

3 − Ca2�
2C1� , �73�

�2 = �1C1. �74�

Here, we took into account that C1 and �2 are independent of
the quick time �Eq. �57�� so the overbars were omitted for
these variables.

Combining Eqs. �69� and �73� together gives the equation
of state,

��̄3 = �1Ga2
 + ��2AC1 + 4C1
3 − Ca2�

2C1� . �75�

To write down the further equations, it is convenient to in-
troduce the modified pressure,

� � p̄4 + Ca2
��C1�2

2
, �76�

where the gradient-like terms are collected.
Subtracting the averaged parts from the full equations, we

obtain the equations for the processes on the quick time
scale,

� �̃4

�t−2
= − � · w2, �̃4 = �1C̃3, �77�

�C̃3

�t−2
=

1

Pe0
�2�̃1, �78�

�w2

�t−2
= − �p̃0, p̃0 =

1

�1
�− �̃1� . �79�

These equations describe a rapidly decaying process. For in-
stance, the field of concentration varies in accordance with
the following formula:

C̃3 = C̃in exp�−
Pe0

�1
2 t−2� , �80�

where index in denotes the initial concentration field. If the
averaged equations are characterized by divergence-free fluid
velocity �71�, for the quick processes, the quasicompressibil-
ity effects are essential. However, the divergence of the ve-
locity field also rapidly decreases following a similar expo-
nential decay,
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�� · w2� = �� · win�exp�−
Pe0

�1
2 t−2� . �81�

Finally, we note that, first, the quick time-scale processes
are damping and, second, there is no energy injection into
fast processes as it could, for example, happen in the case of
imposed high-frequency vibrations �21,22,26�. These two
facts allow us to draw a conclusion that the short-term pro-
cesses, even if existed at the initial moment, are to be rapidly
damped out and are not to affect the long-term evolution on
the convective and diffusive time scales.

Omitting indices and bars, the governing equations for the
processes on the convective time scale can be finally written
as follows:

�u

�t
+ �u · ��u = − �� +

1

Re
�2u − Ca�2C � C + �GaC
 ,

�82�

�C

�t
+ �u · ��C =

1

Pe
�2� , �83�

� · u = 0, �84�

� � �Ga�
 · r� + 2AC + 4C3 − Ca�2C . �85�

These are strictly incompressible equations; the modified
pressure field � needs to be determined using an incom-
pressibility constraint. The interesting conclusions can be
drawn for the diffusion mechanisms of mass transfer, as three
different mechanisms can be identified: the classical �Fick-
ian� diffusion with, however, nonconstant diffusion coeffi-
cient, barodiffusion arising through the hydrostatic pressure
gradient, and the surface energy effects. The product �Ga
forms the solutal analog of the Grashoff number.

The derived equations must be supplemented with the fol-
lowing boundary conditions:

v = 0, n · �C = 0, n · �� = 0. �86�

Here, we would like to remind a reader that the above-
written boundary condition for the concentration field is only
a simplified formula.

Finally, in order to show that no important effects have
been lost during our derivation, let us write down the new
expression for the total fluid energy,

E = �
V

u2

2
+ f0 +

Ca

2
��C�2 + Ga�C�
 · r��dV , �87�

f0 = AC2 + C4. �88�

Let us also rewrite Eq. �82� so to modify the Korteweg
force into the form adopted in Refs. �14,15�, i.e., −C��.
Using equation of state �85� and redefining the incompress-
ible pressure field into

�1 � � + AC2 + C4 − �C + �GaC�
 · r� , �89�

transform Eq. �82� into the following form:

�u

�t
+ �u · ��u = − ��1 +

1

Re
�2u − C � � + 2�GaC
 .

�90�

Comparison of this equation with the corresponding equation
in Refs. �14,15� might suggest that the buoyancy force is
doubled in our case, but this occurs only due to an implicit
gravity addition in the Korteweg force through the expres-
sion for the chemical potential.

The finally derived Eqs. �82�–�84� look quite similar to
the model first used in �14,15� as the computational tool for
tracking of complex transformations of the interfacial bound-
ary between two immiscible liquids. This computational
model, adopted in �14,15�, was earlier proposed by several
researchers �for derivation and further references, see Refs.
�27,28��. In the current work, we have strictly derived the
Boussinesq approximation of the Cahn-Hilliard-Navier-
Stokes equations, obtaining a general hydrodynamic model
for the slow dissolution processes in miscible systems. As
one can see, Eqs. �82�–�84� differ from Jacqmin’s model in
taking into account the barodiffusion effect.

IV. CONCLUSIONS

In this paper, we showed that the evolution of a multi-
phase system of two incompressible slowly miscible liquids
is characterized by three typical time scales, namely, the con-
vective, diffusion, and expansion time �Eq. �46��. Then, by
using the multiple-scale method, we filtered out the short-
term expansion �or quasiacoustic� process and, as a result,
the equations for the slow evolution of a binary system were
derived. Even if the quick processes are not supported and
hence should not affect the real physical system, the numeri-
cal integration of the full Cahn-Hilliard-Navier-Stokes equa-
tions would require time resolution of all processes �the
quick processes will be constantly excited due to discretiza-
tion errors of a numerical scheme� and this would make cal-
culations of long-term dissolution dynamics unfeasible. The
general idea of the obtained model is quite similar to the
low-Mach number approximation used for description of the
convective motion in a compressible media �see, e.g., Refs.
�20–22��.

The given derivation is quite similar to the derivation of
the classical Boussinesq equations for thermal convection
when the nonhomogeneities in density field are caused by
temperature variations �see, e.g., �21,22��. These density
nonhomogeneities are assumed to be small which is satisfied
by assuming that the Boussinesq parameter, ��T, is small
��T might be not small if � is very small�. In our work, the
nonhomogeneities of density field are caused by variations in
concentration; the role of the Boussinesq parameter plays
��C. For the derivation, the density variations should be
assumed small, �
1, which is well satisfied for the binary
mixtures of two liquids. We would like also to note that
parameter � enters the final equations only in the product
with Galileo number, so the requirement on the smallness of
� might be relaxed.

The obtained Eqs. �82�–�84� form a closed mathematical
model for a general thermodynamic and hydrodynamic evo-
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lution of a multiphase system with phase transition. An ap-
plicability of the final model is to be considered in a broader
extent compared to what is defined by assumptions �55� and
not, e.g., only for the binary systems in the vicinity of the
critical point. For illustration, we may refer the classical
Boussinesq equations for thermal convection: despite the fact
that such equations are derived in assumption of finite Ray-
leigh numbers, most interesting convection problems are
considered for large Rayleigh numbers ��1000�. Neverthe-
less, such a statement still needs to be verified. We should
also note that even the validity of the original Cahn-Hilliard-
Navier-Stokes equations to be used for description of the
miscible multiphase flows has not been well verified yet. For
which, the equations should be applied for reproducing of
some experimental data. However, as noted, the numerical
solution of the full equations was not feasible due to their
quasicompressibility. Currently, we are working on the veri-
fication of the general approach by using the derived set of
reduced equations.

We should also note that Refs. �3,14,15,19� are all well
known within the scientific community interested in hydro-
dynamics of multiphase flows. However, these papers con-
tain different sets of governing equations, making other re-
searchers provide their additional justifications for the actual
models chosen �see, e.g., Refs. �8,17��. Most of the numeri-
cal studies, based on the phase-field approach, use Jacqmin’s
model but, in such papers, the evolution of immiscible sys-
tems is targeted. For miscible systems, the most popular ap-
proach is the set of impurity-like equations with an addition
of the Korteweg stress tensor �8–10�. The main achievement
of our work is the derivation of the Boussinesq approxima-
tion of the full Cahn-Hilliard-Navier-Stokes equations of Lo-
wengrub and Truskinovsky. The obtained equations are quite
similar to the divergence-free equations of Jacqmin but they
also include the new term. An important difference of our
model from the impurity-like equations lies in the definition
of diffusion flux through the gradient of the chemical poten-
tial rather than the concentration gradient. Such an amend-
ment takes into account the surface tension and barodiffusion

effects into calculations of the dissolution rate. The surface-
tension effects also define the morphology of the interfacial
boundary �the Korteweg stress in the Navier-Stokes equa-
tion�, which is frequently taken into account, but their influ-
ence on the diffusion rate is frequently missed out.

We also would like to note that derived Eqs. �82�–�84� are
not ready yet for the comprehensive analysis of particular
configurations, as the values of the introduced phenomeno-
logical parameters �, a, and b are unknown. In fact, the value
of a can be relatively easily estimated from the phase dia-
gram for a particular system. Determination of � and b would
require a more lengthy investigation. Jacqmin published his
equations about ten years ago. Since then, these equations
have been applied to different problems �14–18�, but they
have always been used for immiscible systems, for which a
fluid behavior in the limits of �→0 and �*→� is sought.
Technically, the equations are successively solved for several
values of parameters to reproduce the needed limiting behav-
ior of an immiscible interface �see, e.g., Refs. �14,15,17,18�.
For the case of miscible systems, the values of � and �* are
finite and should be obtained from a comparison of the nu-
merical solution with the experimental data. In some recent
experiments, the estimations and measurements of the
surface-tension coefficients for several particular miscible bi-
nary systems became available �29–31�. These experiments
also contain detailed description of the dissolution dynamics.
Such information �time evolution of the surface-tension co-
efficient and of the dissolution rate� should be sufficient for
obtaining the missing values of � and �*. This is the aim of
the author’s current research work.
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