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Injection-driven immiscible flow in radial Hele-Shaw cells results in highly ramified patterns if the injection
rate is constant in time. Likewise, time-dependent gap immiscible flow in lifting Hele-Shaw cells leads to
intricate morphologies if the cell’s gap width grows exponentially with time. Recent studies show that the
rising of these complex fingered structures can be controlled by properly adjusting the injection rate, and the
time-dependent gap width. We investigate the effectiveness of these control strategies assuming that the fluids
involved are miscible. Despite the absence of surface tension effects, intensive numerical simulations support
the stabilizing role of these controlling protocols. Splitting, merging and competition of fingers are all inhib-
ited. The sensitivity of the system to changes in the initial conditions and Péclet numbers is also discussed.
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I. INTRODUCTION

During several decades the Saffman-Taylor instability
�1,2� has been serving as a paradigm of interfacial pattern
formation systems, both as a relatively simple example of
morphological instability, and as a nontrivial but solvable
problem of pattern selection. It arises at the interface sepa-
rating two viscous fluids constrained to flow in the narrow
gap between closely-spaced parallel plates of a Hele-Shaw
cell. Under constant injection radial flow rate �3� the most
typical signature of such an instability is the occurrence of
fingerlike structures which split at their tips, leading to the
emergence of a convoluted dense-branching morphology.
Over the years this constant injection rate radial viscous fin-
gering problem has been extensively studied both experi-
mentally �4–6� and theoretically �7–11�.

An interesting variation of the classic radial flow
Saffman-Taylor situation also results in the formation of
complex structures: it is the so-called lifting radial Hele-
Shaw flow �12–15�. In this lifting version of the problem, the
more viscous fluid is placed at the center of a Hele-Shaw
cell, surrounded by a less viscous fluid, and the upper cell
plate is moved upwards. While the more viscous fluid is
stretched vertically along the variable gap direction, the
fluid-fluid interface moves inwards allowing the penetration
of multiple fingers of the outer, less viscous fluid. This
viscosity-driven unstable scenario culminates in the rising of
visually striking fingering patterns. However, in contrast to
the constant injection radial flow where finger tip-splitting
abounds, the most noteworthy interfacial feature in conven-
tional time-dependent gap lifting Hele-Shaw flows is the
strong competition among the penetrating fingers. By “con-
ventional” we mean those usual setups studied in both theory
and experiments, in which the cell gap width grows linearly
or exponentially with time �12–15�.

Despite the richness and beauty of the radial patterns pro-
duced by constant injection and conventional lifting, in many
practical circumstances such as in oil recovery �16� and ad-
hesion science applications �17� the formation of convoluted
interfacial shapes is quite undesirable. For instance, the
Saffman-Taylor instability is a major contributor for poor oil
recovery processes, once rapidly evolving branched fingers
of water reach the entrance of the well, so that mainly water,
and not the more viscous petroleum is retrieved. Moreover,
the growing of intricate patterns due to lifting is a critical
impediment when mechanical, nondestructive removal of ad-
hered surfaces is needed. These two illustrative situations
exemplify the importance of achieving improved control of
the shape of emergent patterns, and try to enhance the effi-
ciency of the various physical and engineering processes re-
lated to viscous fingering phenomena.

Very recent investigations have tackled the problem of
controlling viscous fingering in radial Hele-Shaw flows with
immiscible fluids �18–20�. With regards to the injection-
driven situation, meticulous experiments, analytical calcula-
tions, and sophisticated numerical simulations have shown
that the development of the usual multibranched morphology
could be constrained by properly choosing the time depen-
dence of the injection flux. Instead of employing a constant
pumping routine, they assumed a variant injection rate which
scaled with time like t−1/3. Under such circumstances, the
traditional ramified patterns are indeed suppressed, and re-
placed by symmetric shapes containing a prescribed number
of fingers. This behavior is quite robust and independent of
the initial perturbation conditions. With respect to the lifting
flow case, the conventional linear or exponential time depen-
dencies have been substituted by a variant gap width which
scales with time with exponent −2 /7 �20�. For this particular
situation, it has been shown that finger competition is re-
strained leading to a more ordered array of fingers. As
pointed out earlier, these suggestive controlling mechanisms
have been tested for immiscible displacements, where surface
tension plays a key role in both stabilization protocols.

Motivated by the stimulating results obtained in Refs.
�18–20� we examine similar situations, but now considering
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that the fluids involved are miscible. Miscible displacements
are characterized by negligible surface tension, so that the
interplay of diffusive, convective, and viscous effects dictate
the pattern formation behavior. We have already carried out
highly accurate numerical simulations for miscible radial
Hele-Shaw flow under constant injection rate �11� and con-
ventional lifting �14� conditions. We have verified that typi-
cally miscible patterns are even more irregular and complex
than their immiscible counterparts. Therefore, the search for
control mechanisms in confined miscible fluids is certainly a
challenging topic. In this work we revisit the miscible injec-
tion and lifting problems in radial Hele-Shaw geometry, but
now focus on analyzing how the stabilizing procedures in-
troduced in �18–20� could influence the ultimate appearance
of the fluid-fluid diffusive interface.

II. INJECTION-DRIVEN MISCIBLE HELE-SHAW FLOW

A. Governing equations

Consider a Hele-Shaw cell of constant gap thickness h0
containing two miscible, incompressible, viscous fluids �Fig.
1�. Denote the viscosities of the fluids as �1 and �2, and
assume that �2��1. Fluid 1 is injected into fluid 2 at a given
injection rate Q �equal to the area covered per unit time�
which may depend on time. The dimensionless equations
governing the dynamical evolution of the system are the tra-
ditional gap averaged Hele-Shaw flow equations �11�.

� · u = 0, �1�

�p = − �u , �2�

�c

�t
+ u · �c =

1

Pe
�2c . �3�

Equation �1� expresses the incompressibility condition,
where u denotes the two-dimensional �2D� gap averaged ve-
locity. Darcy’s law is expressed by Eq. �2� where p is a
scaled hydrodynamic pressure. The gap averaged concentra-
tion equation is given by Eq. �3�, where the concentration of
the fluid 1 is represented by c, and

Pe =
Qc

2�D
�4�

is a Péclet number which is a measure of the relative impor-
tance of advection to diffusion. For the miscible flow situa-
tions studied in this work, we focus on diffusive effects
rather than on surface tension, so that in some sense the
Péclet number replaces the usual capillary number �ratio of
viscous to surface tension effects� �18–20�. Qc denotes a con-
stant injection rate, and D is the constant diffusion coeffi-
cient. The dimensionless viscosity of the mixture is assumed
to vary exponentially with concentration

��c� = exp��R�1 − c��� , �5�

with R=ln��2 /�1� representing a viscosity parameter which
is related to the viscosity contrast A= �eR−1� / �eR+1�. The
specific functional form relating viscosity and concentration
in Eq. �5� has been originally proposed some time ago in a
seminal paper by Tan and Homsy �21�. We stress that the
validity and suitability of Eq. �5� has been demonstrated by
contrasting numerical simulations �22,23� and experiments
�24–26� for various combinations of fluids. We point out that
the less viscous fluid �fluid 1� always serves as the displacing
fluid in both the injection and lifting cases. The concentration
of the less viscous fluid 1 is denoted by c, so that c=1 �c
=0� represents a pure fluid 1 �2�.

As in Ref. �11� the expressions presented above have been
made dimensionless by taking an arbitrary length � as the
characteristic length scale. In conjunction with the source
strength Qc, we then obtain a time scale as 2��2 /Qc, a ve-
locity scale in the form of Qc /2��, and a characteristic pres-
sure 6�1Qc /�h0

2. Viscosity is rescaled by �1.
In order to solve the governing Eqs. �1�–�3� numerically,

we recast them into the well known stream function-vorticity
formulation �� ,�� �23�. By employing such an approach we
rewrite the gap averaged velocity in Eq. �2� as u=ur+upot,
where ur is the rotational component of the velocity, and upot
represents its potential component. Likewise, we define the
total stream function of the system as �0=�+�pot, where �
and �pot denote the rotational and potential stream functions,
respectively. Since �2�pot=0, we end up with the equations

ur =
��

�y
, vr = −

��

�x
, �6�

�2� = − � ,

� = − R�u
�c

�y
− v

�c

�x
� , �7�

where u and v are the components of the velocity vector u
along the x and y directions. Notice that the velocities in Eq.
�6� refer to the x-y components of the rotational velocity
�ur ,vr�. The numerical scheme we use is based on a combi-
nation of spectral methods and compact finite differences.
Much more details about these particular numerical methods
can be found in specialized books on the subject �27,28�.
Extensive discussions about the implementation and valida-

1

2
η

h0

η Q

FIG. 1. �Color online� Schematic setup for the injection-driven
radial Hele- Shaw flow with miscible fluids. The constant cell gap
width is denoted by h0, and the less viscous fluid 1 is injected into
the more viscous fluid 2. The injection rate Q can be either constant
or time-varying.
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tion of the numerical scheme have been provided in our pre-
vious works �11,14�.

Our main goal is to contrast the behavior of the emerging
miscible patterns obtained under constant injection rate Qc
with those in which a variant time-dependent injection rate
Q�t�� t−1/3 is employed. In both situations the rotational part
of the velocity is smooth and can be obtained with high
accuracy, while the potential part induced by injection is re-
lated to a flow singularity at a source located at the origin
making accurate computations more difficult near these lo-
cations. To avoid numerical instabilities near r=0 we smooth
out the point source by distributing its strength in a Gaussian
way over a small circular core region. To accomplish this, we
consider a “Gaussian source” �29� which is characterized by
a core size �=0.075. In addition, the initial condition is as-
sumed as an initial fluid core of radius of ri=0.1.

Under the circumstances of constant injection rate, the
dimensional injected area at a given time can be written as
Ac=Qct. In this case, the dimensionless potential radial ve-
locity satisfying these requirements can be expressed as

upot =
1

r
�1 − exp�− r2/�2��r̂ , �8�

where r̂ denotes the unit vector along the radial direction.
Inspired by the results of Refs. �18–20�, we consider a

time-dependent, variant dimensional injection rate of the
form

Q�t� =
Qv

�1 + 	t�1/3 , �9�

where 	 is a control parameter with an inverse dimension of
time. The corresponding dimensional injected area takes the
form Av= �3Qv /2	���1+	t�2/3−1�. Therefore, the dimen-
sionless potential velocity field associated to this variant in-
jection case is

upot =
I

�1 + 
t�1/3r
�1 − exp�− r2/�2��r̂ , �10�

where 
�2�	�2 /Qc and I=Qv /Qc are two additional di-
mensionless control parameters.

B. Constant and variant injection scenarios: Numerical results

In this section we present a series of numerical simula-
tions which confront the miscible pattern morphologies un-
der constant and variant injection rates. In order to compare
the different patterns under equivalent conditions we focus
on the “efficiency” of the injection processes. In other words,
we compare situations in which the patterns for constant and
variant injection have reached equal area at equal times, i.e.,
Ac=Av=A at t=� �dimensional conditions taken�. In this con-
text, the ratio of injection strengths is readily obtained

I =
Qv

Qc
=

2	t

3��1 + 	t�2/3 − 1�
. �11�

Without loss of generality, for the illustrative simulations
shown in this section we consider the representative values
	=1, �=0.2, so that I=1.032. In addition, we take the pa-

rameter 
=200, the viscosity contrast A=0.905, and the Pé-
clet number Pe=600. Here and in Sec. III B we use the larg-
est value of A for which our numerical code remains stable.
For this value of A the most unstable attainable situation is
reached, so that our results can only improve if smaller val-
ues of A�0 are used. In the injection-driven simulations a
square computational domain with width of two characteris-
tic lengths is chosen, so that −1�x�+1 and −1�y�+1,
and the boundary conditions are prescribed as

x =  1:� = 0,
�c

�x
= 0, �12�

y =  1:� = 0,
�c

�y
= 0. �13�

We begin by analyzing Fig. 2 which depicts the concen-
tration images obtained for increasingly larger values of the
dimensionless injected areas A /�=0.1, 0.2 and 0.4, both for
the constant �top row� and variant �bottom row� injection
situations. This is done for a given set initial random pertur-
bations �perturbation set 1�. When injection is constant in
time, typical miscible viscous fingering patterns arise as the
mixing front evolves, where initially thin fingers tend to get
a little wider. This induces a process in which fingers simul-
taneously split and merge, creating a significantly convoluted
morphology. However, a different kind of pattern forming
structure is observed under the variant injection condition.
The width of the fingers is more uniform, and finger inter-
penetration and splitting are unfavored. Consequently, a
somewhat more symmetric pattern is obtained, in which the
number of resulting fingers �in this case 17� tends to remain
basically unaltered as the area is changed. So, despite of the
absence of interfacial tension a more regular array of fingers
is produced if the variant injection protocol is employed. It
should be noted that this stabilizing behavior is not a pecu-
liarity of the particular value of Péclet number we have used
�Pe=600�. In fact, we have performed a number of additional
simulations for the variant injection in a wide range of Péclet
numbers �200�Pe�1200�, and always get a regular distri-
bution of fingers whose numbers for A /�=0.4 vary only
from 15 to 21.

We proceed by investigating the robustness of the control-
ling procedure for variant injection rate Q�t�� t−1/3 illus-
trated in Fig. 2. In order to do that, as in Ref. �18� we exam-
ine how the overall shapes of the resulting patterns obtained
in Fig. 2 behave if we consider different initial conditions.
This is done in Fig. 3 which depicts the constant and variant
injection patterns for A /�=0.4, and two distinct sets of ini-
tial random perturbations: perturbation set 2 �first column�,
and perturbation set 3 �second column�. It is evident that,
though the shapes illustrated in Figs. 2 and 3 for A=0.4� are
not exactly the same, they are very similar. In particular, the
stabilizing mechanism due to variant injection and the total
number of resulting fingers are not affected, regardless the
change in initial conditions. Interestingly enough, the variant
injection miscible patterns shown in Figs. 2 and 3 present
some resemblance with equivalent immiscible patterns ob-
tained experimentally in Ref. �19� �see their Fig. 1�d��.
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An alternative and more quantitative account of the role
played by the change in the initial conditions in determining
the behavior of the evolving mixing interface is offered by
the growth of a characteristic quantity related to the perim-

eter of the mixing boundary region. Unlike the situations
involving immiscible fluids, the mixing region between two
miscible fluids is not a well defined, sharp interface, but
rather a diffuse layer. Nevertheless, in the region of signifi-
cant concentration gradient, a rescaled mixing interfacial
length can be well represented as �23�

L =
1

L0
	

S


� �c

�x
�2

+ � �c

�y
�2

dxdy , �14�

where S is the entire computational domain, and L0 is the
initial interfacial length. Figure 4 plots the dimensionless in-
terfacial length L as a function of the dimensionless injecting
area A /� for the constant injection case �solid curves� and
variant injection situation �dashed curves�. This is done for
the three sets of initial perturbations considered in Figs. 2
and 3. First, as expected, we notice that the solid curves
stand above the dashed ones, indicating more fingering and
interfacial irregularities for the constant injection case. More-
over, note that the dashed curves almost overlap, while the
solids curves are not as close to each other. This indicates
that the controlling mechanism via variant injection is quite
insensitive to modifications in the initial conditions.

III. LIFTING MISCIBLE HELE-SHAW FLOW

A. Governing equations

The geometry of the time-dependent gap Hele-Shaw cell
is sketched in Fig. 5. Consider a Hele-Shaw cell of a variable
gap width h�t� containing two miscible, incompressible, vis-
cous fluids. For this lifting setup, the upper plate of the cell is
elevated along the direction perpendicular to the cell plates,
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FIG. 2. �Color online� Concentration images for the dimensionless injecting areas A /�=0.1, 0.2 and 0.4, for the cases of constant
injection �top row�, and variant injection �bottom row�.
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FIG. 3. �Color online� Concentration images for the dimension-
less injecting area A=0.4� for the cases of constant injection �top
row�, and variant injection �bottom row�. These simulations used
the same physical parameters utilized in Fig. 2, but employed two
distinct sets of initial random conditions: perturbation set 2 �first
column�, and perturbation set 3 �second column�.
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while the lower plate is held fixed. The initial plate spacing
h�t=0�=h0, and the initial fluid-fluid diffusive interface is
circular, having radius R�t=0�=R0.

As in Refs. �12,14� we assume an exponentially increas-
ing gap width h�t�=h0 exp��t� for the conventional lifting
situation, where � is a control parameter. Here the gap aver-
aged Hele-Shaw dimensionless expressions are a bit different
from those presented in the injection-driven case �Eqs.
�1�–�3�� due to the time variation of the cell gap spacing

� · u = − 1, �15�

�p = −
�

e2tu , �16�

�c

�t
+ u · �c =

1

Pe
�2c , �17�

where ��c�=exp�R�1−c��, and

Pe =
�R0

2

D
�18�

defines a Péclet number for the lifting flow situation. Equa-
tions �15�–�17� have been made dimensionless by using R0
as a characteristic length scale. We further scale the viscosity
with �1 and time with 1 /�. Finally, velocity is rescaled by
�R0, and pressure by �12�1�R0

2� /h0
2.

The velocity is split into a divergence free component u f
which is the rotational velocity of the constant gap spacing
case, and an axisymmetric divergent radial, potential velocity
ud=ud�r� caused by the gap variation, so that

u = u f + ud, �19�

� · u f = 0, �20�

� · ud = − 1. �21�

Note that the divergence free component can be obtained by
solving Eq. �6� in which ur should be replaced by uf. The
divergent radial velocity is obtained directly as ud=−rr̂ /2,
which is a potential field. Similarly to the injection-driven
case, the divergence free component u f can be obtained by
solving Eqs. �6� and �7�.

Following Ref. �20� for the variant dimensional lifting
situation we consider that

h�t� =
h0

�1 − �t�2/7 , �22�

where � is a control parameter with an inverse dimension of
time. We utilize the same set of characteristic scales used in
the exponential lifting situation to obtain the corresponding
governing equations for the variant lifting case. In this con-
text, the dimensionless continuity equation takes the form

� · u = −
2a

7�1 − at�
, �23�

but Eqs. �16� and �17� remain unchanged. Note the definition
of an additional dimensionless parameter, namely the lifting
ratio a=� /�. Likewise, in dealing with the variant lifting
situation, Eqs. �19� and �20� are unaltered, but Eq. �21� is
replaced by

� · ud = −
2a

7�1 − at�
. �24�

The divergent radial velocity is obtained directly as ud=
−arr̂ / �7�1−at��, which is a potential field.

B. Exponential and variant lifting scenarios: Numerical results

Here we turn to the numerical results comparing the re-
sulting patterns under exponential lifting with those with
variant lifting. As in Sec. II B we compare the fingering pat-
terns under the same dimensional lifting effectiveness, i.e.,
we contrast the situations in which the patterns for exponen-
tial and variant lifting have reached an equal gap width at
equal times: hexp=hv=h. In the following simulations, we
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FIG. 4. �Color online� Interfacial length L as a function of the
dimensionless injecting area A /� for the constant injection �CI�
case, and three different sets of initial perturbations �solid curves�.
The dashed curves represent similar sets of data for the variant
injection �VI� situation. In the inset the numbers label the different
perturbation sets.

η
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FIG. 5. �Color online� Sketch of the time-dependent gap radial
Hele-Shaw flow with miscible fluids. The upper cell place is lifted,
so that the cell variable gap width h=h�t�. The inner fluid is more
viscous ��2��1�.
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consider characteristic values for the lifting Péclet number
Pe=3000, and viscosity contrast A=0.925. In addition we
take a=1 /3. In order to ensure the appropriateness of the
Hele-Shaw approach �14�, only situations of relatively small
gap spacing, namely h=2h0 ,3h0 and 4h0 are considered. For
both lifting cases the boundary conditions are prescribed as

x =  4/3:� = 0,
�c

�x
= 0, �25�

y =  4/3:� = 0,
�c

�y
= 0. �26�

Figure 6 illustrates the concentration images obtained for
increasingly larger values of the dimensionless gap width
h /h0=2, 3, and 4, both for the exponential �top row� and
variant �bottom row� lifting cases. This is done for a given
set initial random perturbations �perturbation set 1�. During
exponential lifting with h /h0=2 we see the development of a
large number of small fingers of the less viscous fluid pen-
etrating the more viscous one. At h /h0=3 fingering is con-
siderably stronger where invading inward moving fingers
compete more intensively giving rise to a deformed diffusive
interface. Finally, for h /h0=4 the patterns are even more
ramified, revealing plenty of finger competition �length vari-
ability� among less viscous fingers, resulting in convoluted
structures presenting forms which resemble forks and tri-
dents. On the other hand, variant lifting reveals a quite dif-
ferent set of morphologies. When h /h0=2 the boundary of
the droplet is nearly circular, so that fingers are absent. Very
mild fingering formation is then observed for h /h0=2. Fi-
nally, if h /h0=4 fingers emerge �about 40 or so�, but in a

more orderly fashion, so that finger competition among in-
ward moving fingers is substantially suppressed. This points
to the stabilizing nature of the variant lifting process. We
have performed simulations for several other values of the
Péclet number in the interval 2500�Pe�3500, and identi-
fied the very same stabilizing behavior. Despite this variation
in the values of Pe we found a relatively small modification
in the number of resulting fingers: for example, when h /h0
=4 the number of fingers changes only from 38 to 42. This
supports the suitability of the controlling mechanism pro-
vided by the variant lifting in spite of sizable modifications
in the Péclet number.

Similarly to what we have done in Sec. II B, we examine
the response of the patterns to modifications in the initial
conditions. This issue is addressed in Fig. 7 which depicts
patterns at h /h0=4 for both types of lifting, and two addi-
tional collections of initial conditions: perturbation set 2
�first column� and perturbation set 3 �second column�. It is
clear that the structures obtained in Fig. 7 are not that differ-
ent from those obtain in Fig. 6 for h /h0=4. However, it is
worth pointing out that under variant lifting the final number
of fingers practically does not change �it varies only from 41
to 43� if initial conditions are altered. A more quantitative
account about this result is shown in Fig. 8 which describes
the behavior of the dimensionless interfacial length L in
terms of h /h0 for exponential lifting EL �solid curves� and
variant lifting VL �dashed curves�. This is done for the three
sets of initial perturbations considered in Figs. 6 and 7. Note
the collapse of the dashed curves, a fact that reinforces the
indifference of the variant lifting protocol with regards to
changes in initial conditions. The strong stabilization role of
the variant lifting is also evident �dashed curves located far
below the solid ones�.
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FIG. 6. �Color online� Concentration images for the dimensionless gap distances h /h0=2, 3, and 4, for the cases of exponential lifting
�top row�, and variant lifting �bottom row�.
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IV. CONCLUSION

Usual immiscible flows in radial Hele-Shaw geometry un-
der constant injection rate, and exponentially varying time-
dependent gap width lead to the formation of complex mor-
phological structures. However, by properly controlling
injection and lifting rates the rising of such complicated pat-
terns can be inhibited, and replaced by much more symmet-
ric shapes �18–20�. Nevertheless, the feasibility of these sug-
gestive and useful procedures to miscible fluid displacements
remained an open question.

We have investigated the application of these control
strategies for the very same flow setups, but considering that
the fluids involved are miscible. Despite the absence of sur-
face tension effects, our fully nonlinear numerical simula-
tions support the effectiveness of the control protocols in
restraining the emergence of intricate miscible morphologies.
But, in contrast to the immiscible �finite surface tension�

cases, one cannot exactly prescribe the final number of fin-
gers. However, we have found that the ultimate number of
fingers is not significantly modified despite considerable
changes in Péclet numbers. Moreover, we have verified that
the controlling procedure is quite insensitive to changes in
initial conditions.

Our results point to the robustness and efficiency of the
suggested stabilizing mechanisms, even under miscible flow
circumstances. Considering that controlling the development
of complicated diffusive interfacial shapes is a serious chal-
lenge for a number technological applications �for instance,
oil recovery �16�, and adhesion science �17��, and academic
research areas in physics, chemistry �30� and biology �31�,
we hope experimentalists will feel motivated to check, and
hopefully validate the ideas put forward in this work.
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