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The phenomenon of liquid film retraction, occurring in bursting bubbles, is investigated in the simplest case
of a semi-infinite sheet of inviscid liquid. Discretized equations of motion are solved on a staggered grid, with
the boundary condition adapted to handle movement and breakup of liquid domain. Two independent ap-
proaches show a perfect agreement. The calculation shows a periodic pinchoff of small droplets, in contrast to
the published results on viscid fluids where the liquid accumulates at the rim. A quantitative analysis of
simulated liquid profiles shows that the characteristic parameters are very close to the theoretical predictions
obtained from energy conservation and laws of motion.
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I. INTRODUCTION

In many natural phenomena involving free liquid surface,
the bulk flow is strongly coupled to the dynamic boundary
conditions. In extreme configurations such as jets, films, and
droplets, the surface dynamics becomes dominant, and ef-
fects of surface tension play an essential role. Jets are intrin-
sically unstable and break apart into droplets via Rayleigh
instability �1,2�. Liquid films are stable to small perturba-
tions �1� and can be further stabilized by surfactants, with
notable examples being soap bubbles and foam. When the
film is punctured, the resultant free edge with a high surface
curvature quickly retracts under the influence of the surface
tension. This process is most easily observed in bursting soap
bubbles �3�. The first experiments and theoretical predictions
were made by Rayleigh at the beginning of the 20th century
�4�, but new findings keep being published �5–7�. Experi-
ments �8–11� have shown that a thick rim forms at the edge
and grows in time. The rim itself is unstable and leaves a
trail of droplets behind it. For a finite viscosity, the rim does
not detach from the film �12,13�. This results in rather large
droplets, compared to the initial thickness of the film. In the
limiting case of semi-infinite planar film of inviscid liquid of
uniform thickness with a free edge, the number of free pa-
rameters is reduced and a clear insight into mechanics of the
breakup is gained.

The problem is first investigated by means of analytical
approximations and conservation laws. The predictions are
compared to numerical results, obtained from a one-
dimensional finite difference scheme, modified to handle the
free edge correctly and stably. The interpretation of the re-
sults underlines the difference from the well-investigated vis-
cous case.

II. THEORETICAL ESTIMATES

We assume that the breakup of the film is fully contained
in a two-dimensional cross section normal to the edge, so
that translational symmetry in the remaining dimension is
retained. With this approximation, complex geometrical cir-
cumstances which could arise in three dimensions are elimi-
nated. The hypothetical two-dimensional liquid breaks up
into cylindrical strands, which in three-dimensional world

rapidly dissolve into droplets via Rayleigh instability �1�. We
also assume that the liquid is inviscid, so that energy is ex-
actly conserved.

Assuming the breakup into two-dimensional droplets �cyl-
inders� of roughly the same size, a relation between radius of
droplets and their velocity can be derived. Initially, we have
a stationary liquid sheet with width l, half-thickness h0, and
surface energy per unit of width 2l�. After breakup, all the
liquid is moving with velocity v. The resulting
N=2lh0 /�r2 droplets of radius r have less surface energy
than the initial film. The energy balance gives

�N2�r + 2lh0�
v2

2
= 2l� . �1�

Introducing nondimensional variables, where lengths are
measured in units of h0 and velocity in units of v0=�� /�h0,
we obtain a relation

2

r
+

v2

2
= 1. �2�

In the limit of r→�, all of the energy is in the motion.
The nondimensional velocity v=�2 corresponds to the Ray-
leigh’s result v=�2��h0 �1,8�. This is the maximum velocity
that the droplets can reach.

To simulate the detailed dynamics of the liquid, the equa-
tions of motion are applied. For a one-dimensional model,
besides the horizontal velocity v, the half-thickness h of the
film is introduced as additional variable, both dependent only
on one coordinate x and time. The approximation implies
that v does not vary considerably across the film thickness
and that the transverse velocity is negligible. This is true for
films with small variation of thickness.

Euler equation retains its form in this approximation. The
continuity equation reduces to a form similar to that for com-
pressible fluids, with h playing the role of density,

�v
�t

+ v
�v
�x

= −
�p

�x
, �3�
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�h

�t
+

�hv
�x

= 0. �4�

The pressure term in Euler equation is governed by the sur-
face tension and is proportional to the surface curvature. It is
an intermediate variable that only depends on the thickness
profile.

The conservation of energy has yielded a relation between
velocity and droplet radius. If the breakup of the film is a
steady and uniform process, there must be another relation to
fix the values of velocity and radius of the droplets.

A scenario of the steady-in-time droplet formation is par-
ticularly enlightening. In this case, thickness and velocity
profiles retain their form in time. The motion should there-
fore be either periodic or uniform. The droplet formation is
clearly periodic, but we can assume a uniform dynamics far
from the free edge of the film. If the velocity profile is only
translated with time, it automatically satisfies the advection
equation. We need not know anything about the nature of the
profile disturbances, only that they move with a fixed veloc-
ity c:

�v
�t

+ c
�v
�x

= 0. �5�

At the edge itself, not only the disturbances are moving, but
also the liquid is moving. If the liquid moved faster than the
disturbances, shock waves would form and there would be
no smooth and uniform movement. If the liquid moved more
slowly, the deviations would outrun the liquid motion and the
film would break up globally, without a clearly defined front.

The motion can be periodic only if the velocity of the
formed droplets equals the speed of infinitesimal waves on
the surface. Far from the edge, the linearized Euler equation
applies:

�v
�t

= −
�p

�x
. �6�

Comparing Eqs. �5� and �6� gives the relation

p = cv . �7�

As c=v at the edge where the breakup occurs, this yields
a second relation between radius and velocity. We get

v2

2
= 0.2, r = 2.5. �8�

This result is derived by purely phenomenological reason-
ing. Its validity is tested by numerical simulations described
in the following sections. In contrast, if the rim does not
detach from the film, a similar derivation gives v2 /2=0.5
�14�.

III. DISCRETIZATION SCHEME

Numerical simulation of the breakup requires solving Eu-
ler and continuity equations �Eqs. �3� and �4��. The basis of
our algorithm is an equidistant finite difference grid. Since
for Euler equation a scheme with all variables defined at the

same nodes is not stable �15�, we use a staggered grid
scheme, where velocity nodes are shifted for half a grid spac-
ing with respect to thickness and pressure nodes �Fig. 1�. The
discretization of the required spatial derivatives involves
three adjacent nodes. Symmetric central differences are used
for simple derivatives. The product terms are discretized
with formulas, adjusted to match the exact expressions to the
highest possible order in Taylor expansion �16�:

�v
�v
�x
�

i
=

1

2�x
vi�vi+1 − vi−1� , �9�

� �vh

�x
�

i

=
1

2�x
�vi+1/2hi+1 − vi−1/2hi−1 + hi�vi+1/2 − vi−1/2�� .

�10�

The handling of boundary conditions will require a time-
explicit scheme. Nodes, used to make a time step for each
equation, are shown in Fig. 1.

The continuity equation �Eq. �4�� is modified by a surface-
smoothing dissipation term, which ensures stability of the
scheme,

�h

�t
+

�hv
�x

= �
�2h

�x2 . �11�

The second derivative of the thickness provides a diffusion-
like effect and conserves the volume. Conservation of energy
in the original equation, however, results in marginally un-
stable numerical scheme and the additional term shifts the
balance just enough to cancel out the effects of discrete grid.
According to von Neumann analysis �16�, values higher than
��64�t3 /�x6 are needed for the purpose. In the simulations,
smaller values can be used, relying on nonlinear effects and
boundary conditions to provide the necessary stabilization.

For pressure, the exact three-point formula for curvature
is used, to yield correct behavior at the edge, where the slope
of the surface is significant,

p = −
D2h

�1 + �D+h�2�1 + �D−h�2�1 + �D0h�2
. �12�

Subscribed symbols D in the denominator stand for right,
left, and central first differences, respectively, and D2 is the
central second difference.

IV. FLOATING BOUNDARY CONDITIONS

The main concern of our numerical experiment is a
scheme, capable of handling droplet separation and joining.

t

t + δt

hi−1 hi hi+1vi−0.5 vi+0.5

Continuity equation

vi−1 vi vi+1
pi−0.5 pi+0.5

Equation of motion

FIG. 1. Explicit discretization scheme for Euler and the conti-
nuity equation on the staggered grid. Velocity nodes are shifted with
respect to thickness and pressure nodes.
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In these processes, the domain, occupied by the liquid,
changes in time and is not simply connected. Dynamic grids
or two-component computational fluid dynamics schemes
like volume of fluid algorithm �17� are routinely used for this
purpose.

As the problem is one dimensional, there is no need to use
complicated and programming-intensive methods. Instead,
we modify the staggered grid evolution by including an ad-
ditional step that handles free edges in a physically correct
way.

Surface tension ensures that the surface of the film is
smooth everywhere, even at the edge. The edge has approxi-
mately cylindrical shape with a vertical tangent, where the
discretization of thickness derivatives ultimately fails for any
grid resolution. An additional problem arises with pressure
calculation. Three-point formula should be applied to three
adjacent nodes on the surface, but the nodes outside the edge
are not part of the liquid. Moreover, the edge position uncer-
tainty equals the grid spacing.

We solve the problem by a separate treatment of the liquid
at free edges. Two different approaches to the problem are
described below.

A. Parabolic edge

The shape of the surface at the edge can be approximated
by a circular arc or, rather, a square-root parabola. As the
discretization scheme fails at the edge, we adopt an approxi-
mate edge position by finding the first nonzero thickness
node. The thickness values at the last four nodes are then
replaced with those from an analytical expression of a
square-root parabola with the same volume and width
�Fig. 2�. The velocities are averaged and the pressure at the
edge is expressed by the parameters of the parabola �for the
definition of used symbols, see Fig. 2�,

p =
2i��x

hi+4
2 . �13�

This replacement has the same effect as a very fast relaxation
of the edge to the static equilibrium shape, disregarding the
interaction with other parts of the film.

The nodes outside the fluid domain are set to h=0 and are
skipped in the calculation of the next time step. This is the
reason why time-implicit schemes cannot be used.

B. Regularization variable

Another way of handling the singularity at the edge is
substitution of a new variable. The thickness h behaves as a
square root at the edge, so the new variable

z = 1
2h2 �14�

is regular everywhere and behaves linearly at the edge.
Negative values can be assigned to the parts without the
liquid. In retrieving h, the square root reproduces the root-
type singularity and removes negative parts �Fig. 3�.

As thickness is not present in Euler equation, the substi-
tution only affects the continuity equation, which gets an
additional term,

�z

�t
+

�zv
�x

+ z
�v
�x

= 0. �15�

The pressure formula transforms into

p = −

2z
�2z

�x2 − � �z

�x
�2

�2z + � �z

�x
�2	3/2 . �16�

This expression is defined on a larger domain than the origi-
nal. It is also smooth at the edge, which eliminates the nu-
merical problems.

With the regularized edge, we have to ensure that z is
tame in the negative part. There is no need to calculate pres-
sure there, but we need to ensure that z does not pop back
into the positive domain and that it remains smooth enough,
not to disturb the positive parts via interaction through the
edge.

This is ensured by using a different dynamics for the
negative part,

i− 3 i− 2 i− 1 i i+ 1 i+ 2 i+ 3 i+ 4 i+ 5 i+ 6

x

h(x)

vi+3.5vi+2.5

i∗

FIG. 2. Edge handling for the parabolic approximation ap-
proach. In each time step, h values at four edge nodes are replaced
with a square-root function with equivalent volume, and the veloc-
ity is set to the average of two marked nodes.

x

z = 1
2
h2

h(x)

edge

FIG. 3. Edge handling for the regularization approach. Variable
z is regular everywhere, and the edge singularity only shows when
we extract the thickness profile.
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�z

�t
= �

�2z

�x2 − 	 . �17�

The first term ensures the smoothness and the second part
ensures negativity. By trial and error, the parameters are set
to �=0.005 25 and 	=5�.

The advantage of this approach over the parabolic ap-
proximation is in the local treatment, with the only modifi-
cation that the equation for z depends on its sign. As there is
no stitching of different functions, the results are smoother,
with fewer residual shocklike disturbances.

V. RESULTS AND COMPARISON

The initial state of the simulation is set to a stationary
planar film of uniform thickness h=1, with a free edge on the
left. The parameters are fixed to

�x = 0.05, �t = 0.0005, � = 0.025. �18�

Fine tuning of parameters such as the node weights in
velocity-averaging and negative-z parameter 	 is performed
to optimize volume and energy conservation and to improve
stability in worst-case initial conditions.

After tuning, both approaches give the same results. Not
only is the qualitative behavior similar, but also the results
stay in a very good synchrony for longer periods of time.

The time evolution of the height profile, as seen in Fig. 4,
shows that the fluid film breaks apart into two-dimensional
droplets in uniform time intervals and that the droplets are
uniform in size. On average, they are perfectly circular, ow-
ing to the exact expression for curvature. The waves further
along the film move with the same velocity as the droplets,
exactly like predicted in analytical estimates. Despite the
one-dimensional approximation, the droplets show realistic
quadrupolar vibrations after the breakoff �compare frames in
Fig. 4�.

Velocity and pressure profiles stay in phase for the entire
interval of computation �Fig. 5�, confirming the proportion-
ality p=cv, predicted by the linear wave approximation
�Eq. �7��. The two approaches differ in the smoothness of

pressure profile: the parabolic edge approach shows high-
frequency noise around the edge, a consequence of stitching
the parabolic segment to the numerical data �Fig. 6�.

The average droplet velocity and radius, obtained from
both methods are in very good agreement with the analytical
prediction �Eq. �8��. Their compliance with energy conserva-
tion �Eq. �2�� can be checked by comparing the left-hand side
of the equation with the exact value:

Simulation Theory

v 0.62
0.01 0.632

r 2.65
0.01 2.5
2
r + v2

2 0.947 1

The 5% energy loss is mostly due to droplet oscillation.
The momentum of the entire body of fluid grows linearly in
time:


v� = at, a = 0.004 06. �19�

Newton’s law for the given volume of fluid �490 for this
simulation� yields the force F=Vd
v� /dt=Va=1.989. This

t=0.2 vol=244.971 v=0.0011

t=6.1 vol=244.979 v=0.0250

t=20.1 vol=244.962 v=0.0819

t=25.1 vol=244.967 v=0.1020

0 20 40 60 80 100

t=40.1 vol=244.853 v=0.1623

-4
-2
0
2
4

x

FIG. 4. Thickness profile at different times, given by numerical
simulation. We can see periodic droplet pinchoff, the motion of
individual droplets, and their vibrations. Labels show simulation
time, current volume, and average velocity.
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FIG. 5. Comparison of pressure and velocity profiles on the
same scale shows that they are in phase, which is in agreement with
the approximate proportionality, predicted by comparing wave and
Euler equations �Eq. �7��.
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FIG. 6. Comparison of both numerical approaches. Regulariza-
tion approach gives a smoother pressure profile and is less prone to
high-frequency instabilities seen on the profile given by the para-
bolic endcap approach.
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result is justified by a simple reasoning. At the edge, a pres-
sure of p=1 /r acts on the widest cross section of the forming
droplet with diameter 2r. The resulting force is F=2rp=2,
which is almost exactly the result given by simulation.

VI. CONCLUSION

We present two simple one-dimensional approaches for
evolving dynamics of a thin liquid film with a free edge,
leading to tearing and breaking of the film. Both approaches
are based on the basic staggered grid scheme, with added
steps for edge handling. The methods perform extremely
well by criteria of energy and volume conservation, as well
as consistency of results in intercomparison.

The methods are used to investigate droplet formation at
the free edge of the liquid film, with encouraging results. Our
results reproduce the crude analytical estimations to a few
percent, which leads to a conclusion that the breakup is a
robust process and mostly independent of exact hydrody-
namic details.

Past simulations have shown �12,13� that in the presence
of finite viscosity, there is no droplet formation on the small
scale; instead, a thick rim of fluid forms at the retracting
edge, breaking up eventually into large and fast droplets. Our
calculations and simulations show that in the inviscid case
the breakup occurs uniformly and periodically, forming small
droplets, comparable to the film thickness. Droplet formation
is a borderline process, and a small viscous term is enough to
prevent the droplet pinchoff. Low-viscosity profiles com-
puted by Zavaleta �13� resemble our profiles away from the
edge, but the droplets fail to detach.

The method can be applied to the viscous case, although
multiple-edge handling is not so important in that case, as the
breakup into droplets is less likely. It can be extended to
cylindrical geometry, e.g., to reproduce the Rayleigh insta-
bility. The substitution method has some potential for exten-
sion into two dimensions. Our contribution gives an insight
into the mechanics of droplet formation and phenomenologi-
cal descriptions lying behind the propagation of a free liquid
edge.
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