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We investigate numerically stationary convection and traveling wave structures of binary fluid mixtures with
negative separation ratio in the Rayleigh-Bénard system filled with a porous medium. The bifurcation behavior
of these roll structures is elucidated as well as the properties of the velocity, temperature, and concentration
fields. Moreover, we discuss lateral averaged currents of temperature and concentration. Finally, we investigate
the influence of the Lewis number, of the separation ratio, and of the normalized porosity on the bifurcation
branches.
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I. INTRODUCTION

Binary fluid mixtures such as ethanol-water, 3He-4He, or
various gas mixtures show already at small heating rates a
rich variety of convection patterns when heated from below,
which cannot be observed in pure fluids. In such mixtures,
the concentration field enters the dynamics via the so-called
Soret effect, i.e., the driving of concentration currents due to
temperature gradients. A popular setup to investigate pattern
formation and bifurcation scenarios in binary mixtures is the
Rayleigh-Bénard system. The system consists of a fluid layer
bounded by two horizontal plates which are held at constant
but different temperatures. A great deal of experimental as
well as theoretical research has been focused on this system
and many different convection patterns have been found. For
a review see, e.g., �1–3�.

In this paper, we investigate a modification of the
Rayleigh-Bénard system: the gap between the plates is filled
here by a porous medium which is saturated by a fluid. For a
pure fluid, first investigations of this system have been per-
formed by Horton and Rogers �4� as well as by Lapwood �5�
who investigated the stability of the ground state. Later on,
Straus �6� and Juárez and Busse �7� theoretically investigated
so-called Bénard rolls or steady overturning convection
�SOC� structures and their stability. Roll convection was also
observed in experiments with a pure fluid in a system filled
with a porous medium by Shattuck et al. �8� and Howle et al.
�9�.

Further research concerning binary mixtures in porous
media has been done by Charrier-Mojtabi et al. �10�, Elhajjar
et al. �11�, and Sovran et al. �12�. They investigated the
ground state and found two kinds of stability thresholds: a
stationary one and an oscillatory one. The latter arises only
for negative Soret coupling, i.e., when the heavier compo-
nent tends toward regions of higher temperature, e.g., toward
the lower plate.

The understanding of the spatiotemporal behavior of bi-
nary fluid convection in porous media is of relevance for
industrial applications, e.g., for the modeling of oil and gas
reservoirs �13–15� or for transport processes in geothermal
reservoirs �16�. Unsatisfactory modeling with a lack of
knowledge of the basics of convective structure formation
can lead to suboptimal efficiency for the description or pre-
mature exploitation of reservoirs. Furthermore, flow in po-

rous media is of interest in chemical and engineering indus-
tries, e.g., in absorption and adsorption processes, heat
storage, nuclear reactors, and spacecraft thermal manage-
ment systems �17�. Moreover, convection in porous media is
also of interest from the viewpoint of basic science: filling
the standard Rayleigh-Bénard system with a porous medium
can give rise to new instability mechanisms and possibly
new convection structures �18�.

Here, we investigate binary mixtures with negative Soret
coupling. For such fluids many convection patterns are
known to be realized in the Rayleigh-Bénard setup without
porous medium: there are spatially extended traveling waves
�TW� and spatially localized traveling waves �LTW�
�19–32�, standing waves �SW� �33�, and spatially localized
SOC structures �34,35�.

The knowledge about binary mixtures showing a negative
Soret effect in the system with porous medium is less devel-
oped. Brand and Steinberg �36� investigated the stability of
the ground state using a simple perturbation model. Knob-
loch �37� discussed bifurcation scenarios using amplitude
equations. Numerical investigations on the stability of the
ground state have been performed by Charrier-Mojtabi et al.
�10�, Elhajjar et al. �11�, and Sovran et al. �12� as mentioned
above.

As a guide to the investigation of convection structures in
systems with a porous medium that is filled with a binary
mixture with negative Soret effect we found it useful to look
first for convection patterns that are known from the com-
mon Rayleigh–Bénard system without porous medium. In
order to do so, we carried out numerical studies focusing on
two simple spatially periodic structures: stationary overturn-
ing convection �SOC� and traveling waves �TW�, both in the
form of straight rolls without spatial variation along the di-
rection of the roll axes. These flows are two-dimensional and
the pattern associated with the convection structure is one-
dimensional. Its wave vector is oriented perpendicular to the
roll axes and it is constant in space and time. Roll convection
in binary fluids with positive Soret coupling in the presence
of a porous medium has been studied recently by the authors
of this paper �18�.

The paper is organized as follows: in Sec. II we discuss
the system, the fields, the governing equations and the nu-
merical methods. Moreover, we discuss the impossibility of a
mean flow. We give a short review of the ground state, and
we introduce some order parameters. In Sec. III, we discuss
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the bifurcation behavior of TW and SOC solutions and the
field properties of velocity, temperature, and concentration in
TWs and the lateral currents in a TW for an exemplary set of
parameters. The influence of the Lewis number L, separation
ratio �, and normalized porosity �� on the bifurcation behav-
ior is the subject of Sec. IV. We conclude in Sec. V.

II. FOUNDATIONS

A. System and basic equations

Here we give only a brief summary of the system and the
governing equations. For more details see �18�. We consider
two infinite parallel plates perpendicular to a homogeneous
gravitational field in z direction. Both plates are impermeable
and perfectly heat conducting. The temperature at the plates
is fixed. The space between the plates is filled with a porous
medium which is considered to be isotropic and homoge-
neous. The porous medium is saturated with a binary fluid
mixture. Moreover, we assume local thermal equilibrium be-
tween the fluid and the porous medium.

We used the following nondimensional balance equations

� · u = 0, �1a�

�a�tu = − �p − u + �� + c�ez, �1b�

�t� + u · �� = Rw + �2� , �1c�

���tc + u · �c = R�w + L�2�c − ��� , �1d�

assuming the Oberbeck-Boussinesq approximation to be
valid. Here, convection is described by the Darcy velocity
u= �u ,v ,w�, the deviation � of the temperature field T from
its linear ground state profile Tcond, the deviation c of the
concentration field C from its linear ground state profile
Ccond, and the pressure p. For roll convection with axes ori-
ented in y direction all these fields do not depend on y and
furthermore v=0. In the conductive ground state, the fields
of velocity, temperature, and concentration are

ucond = 0, Tcond�z� = T0 − Rz, Ccond�z� = C0 + R�z ,

�2�

respectively.
The parameters are the Lewis number L which is the quo-

tient of solutal and thermal diffusion time, the Rayleigh-
Darcy number R which measures the temperature difference
between the plates, and the separation ratio � which mea-
sures the strength and direction of the Soret effect. The pa-
rameters �a and �� are specific for the system with a porous
medium. �a consists of the ratio of the time scale corre-
sponding to the friction term −u and the temperature diffu-
sion time of the whole medium �38� multiplied by a correc-
tion factor which is needed for the sake of consistency
between a description by the Darcy equation and experimen-
tal results �39�. �a is usually very small and its exact value
has therefore no relevant influence on the dynamics. It is
fixed to 0.0001 for all calculations presented in this paper.
Changes for even smaller �a turned out to be negligible. The

normalized porosity �� is the product of the porosity and the
ratio of the heat capacities of the fluid and the whole system.
Multiplying the time derivative of concentration in Eq. �1d�,
�� sets the time scales for changes in c relative to those in �.
�� falls between 0 and 1.

The assumption of impermeable and ideal heat conduct-
ing plates leads to the boundary conditions �18�

w = � = �z�c − ��� = 0 at z = �
1

2
. �3�

B. Mean flow dynamics

In binary fluid mixtures without a porous medium, TW
convection induces a lateral mean flow �40–42�. In this sub-
section we study whether a mean flow can also be generated
without imposing a pressure gradient in the system with a
porous medium. To that end we decompose the velocity field

u�x,z,t� = û�x,z,t� + U�z,t�ex, �4�

where U�z , t�ex= �u�x ,z , t��x is the mean flow contribution
and û�x ,z , t�=u�x ,z , t�−U�z , t�ex, i.e., �û�x ,z , t��x=0. Here,
� . . . �x denotes the lateral average in x-direction. By taking the
lateral average of the x-component of Eq. �1b� and assuming
that there is no pressure gradient imposed onto the system,
we get

�a�tU�z,t� = − U�z,t� �5�

as equation of motion for the lateral mean flow. Conse-
quently, any mean flow will be quickly damped exponen-
tially. Unlike the nonlinear Navier-Stokes equation the linear
momentum balance �Eq. �1b�� in the porous medium does
not allow for nonlinear Reynolds stresses that could sustain a
mean flow. Not being interested in transients, we thus take
U=0.

C. Numerical method

As mentioned before, the impermeability of the plates
yields the boundary condition

�z�c − ��� = 0, �6�

which couples � and c. In order to get independent boundary
conditions, one introduces the field

� = c − �� . �7�

The corresponding balance equation can directly be derived
by combining Eqs. �1c� and �1d�.

In addition, one can simplify the numerical treatment of
Eq. �1b� by introducing two scalar potentials 	 and 
 such
that u can be written as

u = � � � � �	ez� + � � �
ez� , �8�

which is possible because of the incompressibility condition
�Eq. �1a��. Equations for 	 and 
 can be derived by apply-
ing the curl to the momentum balance Eq. �1b� once or twice
and taking the z-component in both cases. This yields

�a�t�xy
 = − �xy
 , �9a�
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�a�t�
2�xy	 = − �2�xy	 − �xy�� + c� , �9b�

with �xy =�x
2+�y

2. Note that these equations do not contain a
pressure term anymore. As mentioned before, we do not in-
vestigate the behavior of fast transients. Therefore we can fix

�0 and neglect Eq. �9a�.

According to the boundary condition for u, the boundary
condition for 	 is given by

	 = 0 at z = �
1

2
. �10�

1. Traveling waves

Here we discuss temporally and spatially periodic TW
structures. To obtain such solutions, we used a Galerkin
method with the ansatz

X�x,z� = �
m

�
n

�Xmneim�kx−
t� + c.c.�fn�z� �11�

for the fields X=	 ,� ,�. Here k is the wave number and 

the frequency of the TW state. The lateral index m starts
from 0 for � and � and from 1 for 	. To fix the phase of a
TW structure we choose 	11�R.

The functions fn�z� appearing in Eq. �11� represent an
orthonormal set of trigonometrical functions that fulfill the
boundary conditions at the plates. We choose

for 	, � : fn�z� = 	
2 cos�n�z� if n = 1,3,5. . .


2 sin�n�z� if n = 2,4,6. . .
�

�12�

for � : fn�z� = �

2 sin�n�z� if n = 1,3,5. . .


2 cos�n�z� if n = 2,4,6. . .

1, if n = 0.

 �13�

In Eq. �11�, we can take advantage of some known sym-
metries of traveling waves �42�: �i� in a comoving frame of
motion, TWs are stationary, i.e.,

X�x,z,t� = X�x − vpt,z,0� �14�

with the phase velocity vp= 

k . �ii� Right and left traveling

wave solutions are symmetry degenerate. In this paper, we
consider only right traveling waves. �iii� TWs are spatially
periodic structures such that

X�x +
2�

k
,z,t� = X�x,z,t� . �15�

�iv� Furthermore, the TW structures also fulfill the so-called
mirror glide symmetry �42�

X�x,z,t� = − X�x +
�

k
,− z,t� . �16�

This symmetry can be used to eliminate one half of the
modes in Eq. �11�.

These “macroscopic” symmetries of the TW solutions of
the continuum balance equations can be expected to hold

despite the anisotropic and inhomogeneous character of the
porous medium: we assume that the characteristic macro-
scopic length scale for convection, i.e., the layer height is
much larger than the “microscopic” length scales that char-
acterize the porous medium. Then inhomogeneities and
anisotropies on the microscopic length scales can be ex-
pected not to disturb the macroscopic structure of TW
convection.

For too large indices n ,m, we truncate the expansion. Ac-
cording to our truncation scheme, all �- and �-modes with
n+m�N and all 	-modes with n+m�N /2 are being ne-
glected, where we choose N=32 if not otherwise specified.
The fact that the ansatz consists of less modes in 	 than in �
and � is motivated by the work of Hollinger �44�.

2. Stationary overturning convection

In this paper we also investigate, albeit more briefly, sta-
tionary roll solutions for negative separation ratios. SOC
structures for positive separation ratios have been discussed
by Umla et al. �18�.

Stationary rolls fulfill like TW structures the spatial peri-
odicity �Eq. �15�� and mirror glide symmetry �Eq. �16��.
Moreover, SOC structures are mirror symmetric in
x-direction for an appropriate choice of x=0 and they do not
possess any time dependence. Therefore, to find roll solu-
tions we use the ansatz

X�x,z� = �
m

�
n

Xmn
cos cos�mkx�fn�z� , �17�

with fn as defined above. The amplitudes Xmn of Eq. �11� and
Xmn

cos of Eq. �17� fulfill Xmn
cos=2 Re�Xmn�. For further details on

the Galerkin method see �43�.

D. Ground state

The stability of the ground state has already been investi-
gated by Sovran �12� and Mojtabi �10,11�. We reproduced
their results by using a Galerkin expansion.

Figure 1 shows the critical Rayleigh-Darcy number Rc,
the critical wave number kc, and the Hopf frequency 
c of
the oscillatory stability threshold as a function of � for dif-
ferent normalized porosities ��. Here, we choose L=0.01
which is a typical value for many liquids. For other values of
L, the behavior of the oscillatory stability boundary was
found to be similar.

As shown, the critical Rayleigh-Darcy number Rc in-
creases with decreasing � as well as with decreasing ��. The
same holds true for the Hopf frequency 
c but not for the
critical wave number—kc is only weakly dependent of � for
��=1 except for values of � near zero. As �� decreases, kc
decreases for small values of ��� and increases for larger
values of ���. We do not include in Fig. 1 the stationary
stability boundary which diverges for ��−0.01 for the cho-
sen L as can be shown analytically �11�.

E. Order parameters

We use the following order parameters to describe con-
vective structures:
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�1� The leading amplitude w11=k2	11 characterizes the
vertical velocity field.

�2� The Nusselt number

Nu =
�jT,z,tot�x

�jT,z,cond�x
�18�

measures the total vertical heat current density �jT,z,tot�x rela-
tive to the conductive vertical heat current density �jT,z,cond�x.
Here, � . . . �x denotes the lateral average in x-direction. Note
that the Nusselt number does not depend on z as long as we
only consider SOC solutions and TW solutions which are
stationary in the appropriate frame of reference. For struc-
tures which can be described by the ansatz �Eqs. �11� and
�17��, respectively, the Nusselt number at the plates can be
calculated from

Nu − 1 = −
2
2�

R
�
n=1

N

�− 1�nn�0,2n. �19�

The behavior of Nu−1 and w11
2 is qualitatively the same; we

will mostly present and discuss plots for Nu.
�3� The mixing number

M =

�C2� − �C�2


�Ccond
2 � − �Ccond�2

�20�

is the variance of the concentration field relative to its vari-
ance in the conductive state. Here, � . . . � denotes the spatial
average over the whole fluid layer. By definition, the value of
M is equal to 1 in the ground state and M vanishes when the
components of the binary fluid are perfectly mixed.

�4� TW states are furthermore characterized by their fre-
quency 
.

III. GENERAL PROPERTIES OF TW AND SOC STATES

To discuss some basic properties of TW- and SOC-
solutions we fix the parameters to L=0.01, �=−0.4, ��=1,
and k=� in this section. As mentioned before, L=0.01 is a
typical value for many liquids and �=−0.4 can easily be
realized using an ethanol-water mixture �45�. A wave number
of k=� is close to the critical wave number, cf. Fig. 1. ��

=1 corresponds to the case of a vanishing influence of the
porous medium. In this case, the basic Eqs. �1� are almost the
same as for a system without porous medium and infinite
Prandtl number � �43� except that the diffusion term �u in
the velocity equation is replaced by a friction term −u.

A. Bifurcation behavior

Figure 2 shows the Nusselt number Nu and the mixing
number M of the TW- �solid line� and of the SOC-structure
�dashed line� for the chosen parameters as well as the TW-
frequency 
 as a function of R. For comparison, we also
present the Nusselt number of a pure fluid �dotted line�
which has already been investigated by Straus �6� and Juárez
�7�. In the pure fluid case, TWs do not exist and SOCs bi-
furcate forward out of the ground state at the critical
Rayleigh-Darcy number Rc

0=4�2�39.48 with the critical
wave number kc

0=�.
For binary mixtures with negative separation ratio, the

situation is more complicated. The SOC solution branch is
not connected anymore to the ground state as the stationary
stability boundary of the ground state diverges already at
much smaller values of ���. Close to onset, i.e., for Nu�1,
the SOC branch runs backward until it reaches a saddle
point. Afterward, Nu increases with increasing Rayleigh-
Darcy number R. The mixing number M of the SOC struc-
ture is already relatively small on the backward branch and
remains almost constant after the saddle point.
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FIG. 1. Onset of oscillatory convection. From top to bottom the
critical values of the Rayleigh-Darcy number, Rc, of the wave num-
ber, kc, and of the Hopf frequency, 
c, are plotted versus � for
different normalized porosities ��. The Lewis number is in each
case L=0.01.
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FIG. 2. Bifurcation behavior of TW- and SOC-solutions. From
top to bottom we show Nu−1 �Eq. �19��, the TW-frequency 
, and
the mixing number M �Eq. �20�� versus the Rayleigh-Darcy number
R. Parameters are L=0.01, �=−0.4, and ��=1.
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The TW branch bifurcates backward out of the ground
state with a Hopf frequency of 
H�16. For all parameter
combinations discussed in this paper, the TW bifurcation is
backward. This is in accordance with the results by Brand
and Steinberg �36� who used an isosolutal boundary condi-
tion, c=0, at the plates, however. The TW branch soon
reaches a first saddle point at R�62.11 and proceeds for-
ward until it reaches a second saddle point at R�62.44. The
frequency of the TW structure along this short part of the
solution branch is still rather large. Following the TW solu-
tion branch further on, we find a third saddle point at R
�56. Finally, the TW branch ends at the SOC branch at R�

�67 with zero frequency. The mixing number M of the TW
structure as a function of R shows qualitatively the same
behavior as the frequency 
 but ends at the SOC branch.

A very similar behavior of Nu, M and 
 has already been
described in the common Rayleigh–Bénard system without
porous media, see e.g., �41,42�. In particular, Hollinger et al.
�46� found a bistability of slow and fast traveling waves.
Considering the similarities between the systems, we can
suppose that, e.g., for values of the Rayleigh-Darcy number
about 62, three of the six structures we found are stable: The
conductive ground state, a fast TW structure with a phase
velocity vp of approximately 4.1, and a slow TW structure
with vp�0.36.

B. Structure of the fields

In this section we study the fields of temperature, concen-
tration, and velocity of a TW along its bifurcation branch.
Figure 3 shows the leading amplitude w11 of the vertical
velocity as well as the phase velocity vp=
 /k. The Nusselt
number shows qualitatively the same behavior as w11

2 .
States marked by dots labeled a–d in Fig. 3 are studied in

more detail in the corresponding subfigures �a�–�d� of Fig. 4.
Therein we show T and C as well as streamlines observed
from a reference frame that is comoving with the TW. Addi-
tionally, Fig. 4 shows the lateral profiles of T, C, and w at
midheight, i.e., at z=0.

First, we discuss the lateral profiles. In Fig. 4�a�, for the
smallest amplitude, there is a phase difference between ver-
tical velocity, temperature, and concentration. This phase dif-

ference shrinks with growing amplitude �Figs. 4�b�–4�d��
and finally vanishes as the TW solution merges into the SOC
state at R�. The lateral temperature profile is nearly harmonic
for all four states whereas the lateral profile of the vertical
velocity component shows some anharmonicity at the
maxima and minima in Figs. 4�c� and 4�d�. The lateral profile
of the concentration field shows the greatest changes. While
it is harmonic in the states a and b, it becomes trapezoidal in
c. In state d it is mainly constant apart from peaks where the
fluid flows downward and dips where it flows upward. Note
that the concentration profile Figs. 4�c� and 4�d� is multiplied
by a factor 10 for better visibility.

The first row of Figs. 4�a�–4�d� shows the temperature
distribution. Starting from the linear ground state profile, it
becomes more and more modulated. Although the thermal
driving in Fig. 4�d� is quite strong at R=67, the temperature
field can still be well described by taking into account only a
few modes.
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FIG. 3. The leading amplitude w11 of the vertical velocity field
and the phase velocity vP of TW solutions versus the Rayleigh-
Darcy number R. The points labeled by a–d identify TW states for
which fields and lateral profiles are shown in the corresponding
subfigures of Fig. 4. Parameters are L=0.01, �=−0.4, and ��=1.

FIG. 4. Spatial structure of the TW solutions. The subfigures
�a�–�d� correspond to the TW states that are identified by the points
a–d in Fig. 3. In each subfigure we show from top to bottom the
temperature distribution, the concentration distribution, the stream-
lines in a comoving frame, and the lateral profiles of w �full line�, T
�dashed line�, and C �dotted line� at midheight, z=0. In �c� and �d�
the concentration in the lateral profiles is multiplied for better vis-
ibility by a factor of 10. Light �dark� regions correspond to regions
with high �low� temperature. Same holds true for the concentration
distribution. Parameters are L=0.01, �=−0.4, and ��=1.
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The concentration field is shown in the second row of
each subfigure in Fig. 4. The concentration isolines look
similar to the streamlines of the TW structure in a comoving
frame as shown in the third row of Figs. 4�a�–4�d�. This
similarity can be explained by the smallness of the Lewis
number L �47,42�: the nondimensionless equation for the

concentration field C̃ reads

�ũ · �̃�C̃ = L�̃2�C̃ − �T̃� . �21�

Since the Lewis number L is small, the diffusive term on the
right hand side of Eq. �21� can be neglected. Thus, gradients

of C̃ have to be perpendicular to the direction of ũ, i.e., the

isolines of C̃ are approximately identical to the streamlines
of ũ. Therefore, in order to explain the development of the
concentration distribution along the TW bifurcation branch,
we investigate the behavior of the streamlines. To simplify
matters, we use a single-mode representation of the velocity
field for the explanation. According to our ansatz �Eq. �11��
and for k=�, the velocity field ũ in a comoving frame is
given by

ũ = w11 sin��x�sin��z� − vp, �22�

ṽ = 0, �23�

w̃ = w11 cos��x�cos��z� . �24�

With this we can define a stream function 
 as


̃ = − vpz −
w11

�
sin��x�cos��z� . �25�

Closed streamlines arise when local extrema of 
̃ appear,
which is equivalent to �vp /w11��1. Moreover, the positions
of the centers of closed streamlines can be determined to be
x= �4n+1� /2, z=arcsin�vp /w11� and x= �4n+3� /2, z
=arcsin�−vp /w11�, n�Z, z� �−0.5,0.5�. Together with Fig.
3, this already explains the form of the streamlines in Fig. 4
very well. In state a we have vp�w11, so there are no closed
streamlines. The TW b is located close to the intersection
point of vp and w11. Here, w11 is only slightly larger than vp.
Therefore, the closed streamlines cover only small regions
near the plates and do not intersect the line z=0 while open
streamlines meander around and between them. The roll-like
regions of closed streamlines grow with decreasing phase
velocity vc �Figs. 4�c� and 4�d��. Vice versa, the regions of
open streamlines diminish until the only open streamlines
remaining are the separatrices between the rolls of the final
SOC state.

To explain the behavior of the concentration field, we take
into account that there is approximately no exchange of con-
centration between regions of closed and regions of open
streamlines. In the ground state, the Soret effect causes a
concentration surplus at the upper plate �light gray in Fig. 4�
and a lack of concentration at the lower plate �dark gray in
Fig. 4�. Thus, the rolls at the upper plate are fed only by fluid
with high concentration and the rolls at the lower plate only
by fluid with low concentration. Consequently, we observe in
Fig. 4�b� two regions of almost homogeneous concentration

at two different levels. While the phase velocity vp de-
creases, the regions of closed streamlines grow toward the
opposite plate and the area of open streamlines shrinks. The
concentration difference between adjacent rolls diminishes
�Fig. 4�c��. Finally, the fluid becomes homogeneously mixed
everywhere except in the narrow boundary layers at the
plates and between the rolls �Fig. 4�d��. The peaks and dips
in the lateral profile of the concentration in Fig. 4�d� origi-
nate from these boundary layers.

The above explanation is based on the smallness of the
Lewis number L and the assumption that the concentration
can thus be considered as a passively transported scalar. In
particular, it is not valid if the diffusive term in Eq. �21�
cannot be approximately neglected. In liquids L�1 is typi-
cally fulfilled.

C. Lateral currents

Unlike SOC structures, TW states lack the left-right mir-
ror symmetry between oppositely turning rolls. This allows
the existence of lateral heat or concentration currents even
though there is no mean flow in the system, see Sec. II B.

The lateral average of the lateral heat current density
�jT,x�x is given by

�jT,x�x = �uT + �xT�x. �26�

Expressed in terms of 	 and � one has

u = �zx	�x,z� , �27�

T = T0 − Rz + ��x,z� . �28�

Inserting the representation Eq. �11� into Eq. �26� yields

�jT,x�x = �
m=1

M	

�
n=1

N�

�
l=1

N	

4mk�Im��mn�Re�	ml�

− Re��mn�Im�	ml��fn�z��zf l�z� . �29�

Here, Re denotes the real part and Im the imaginary part of a
quantity with fn and f l as defined in Eq. �12�. Obviously
�jT,x�x does vanish if all lateral modes are in phase. The same
holds true for the lateral concentration current �jC,x�x, 	 and
c.

Figure 5 shows the laterally averaged lateral currents of
heat, �jT,x�x, and of concentration, �jC,x�x, respectively, for the
TW states a–d of Fig. 3. Both currents fulfill the symmetry

�jx�x�− z� = − �jx�x�z� , �30�

which follows from Eq. �29� and from the mirror glide sym-
metry �Eq. �16��. Consequently, the total averages �jT,x�x,z
and �jC,x�x,z vanish. In the upper half of the system, the heat
current is parallel to the direction of propagation of the TW
whereas the concentration current is antiparallel. These rela-
tions are reversed in the lower half.

The heat current �jT,x�x always vanishes at z= �0.5 as a
consequence of the boundary condition �=0. However, the
concentration current �jC,x�x does not vanish in general at the
plates because of the different boundary conditions �Eq. �3��
for c.
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Following the TW branch from its bifurcation out of the
conductive state up to R�, the amplitudes of �jT,x�x and of
�jC,x�x grow at first with growing amplitude of 	, �, and �
modes. But then—say, beyond point c in Fig. 3—the ampli-
tudes of the lateral averaged currents decrease again and the
currents vanish as the TW branch ends at R� in the SOC
branch.

IV. INFLUENCE OF PARAMETERS

In this section, we discuss the consequences of changing
the Lewis number L, the separation ratio �, or the normal-
ized porosity �� on the bifurcation behavior, the frequency,
and the mixing behavior of TW states. The wave number k of
all discussed TW structures remains fixed to �.

As noted already is the behavior of Nu−1 and w11
2 similar.

However, the Nusselt number of a binary mixture usually
grows larger than the Nusselt number of a pure fluid whereas
the leading amplitude w11 of the vertical velocity in a binary

mixture with ��0 never exceeds the corresponding quantity
in a pure fluid. We discuss in this section only Nu.

A. Variation of L

The influence of changing the Lewis number L on the
bifurcation behavior is shown in Fig. 6. There, we plot the
Nusselt number Nu of a SOC structure �dashed� and of a TW
structure �solid� versus the Rayleigh-Darcy number R for
different Lewis numbers. The dotted line denotes the Nusselt
number of a pure fluid. Figure 7 shows the frequency of the
TW structures along the TW branches that are shown in Fig.
6. The separation ratio and the normalized porosity is fixed
throughout this subsection at �=−0.4 and ��=1, respec-
tively.

The SOC branches in Fig. 6 look similar for all Lewis
numbers. Their saddle points are shifted toward larger
Rayleigh-Darcy numbers and larger Nu with increasing L.
The influence of changing L on the TW structure is stronger.
The Rayleigh-Darcy number Rosc of the bifurcation threshold
grows with increasing L. The R-range of fast TW structures
shrinks as L grows. When L becomes large enough, there are
no forward oriented fast TW solutions anymore as can be
seen in Fig. 6 for L=0.25 and L=0.5. Moreover, the bifur-
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FIG. 6. Influence of the Lewis number L on the bifurcation
behavior of TW and SOC solutions. Shown are diagrams of Nusselt
number versus Rayleigh-Darcy number for different values of L
with �=−0.4 and ��=1 held fixed. For comparison, we plotted also
the Nusselt number of a pure fluid �dotted�.
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FIG. 7. Frequency 
 of TW convection versus Rayleigh-Darcy
number R for different values of the Lewis number L with �=
−0.4 and ��=1 held fixed.
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FIG. 5. Vertical profiles of averaged lateral currents sustained by
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respond to the TW states that are identified by the points a–d in Fig.
3. Parameters are L=0.01, �=−0.4, and ��=1.
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cation point R� approaches the SOC saddle point such that
the region of forward curved slow TW solutions shrinks too.
Finally, for L=0.5, the TW branch merges backward into the
SOC branch and a forward oriented branch does not exist
anymore.

As mentioned in Sec. III A, the behavior of the frequency

 and of the mixing number M is qualitatively the same as in
the system without porous medium �2,46�. For this system,
numerical �46,48,49� as well as analytical investigations �48�
have shown that M is approximately a linear function of 
.
Therefore, we plotted M versus the TW frequency 
 scaled
by the Hopf frequency 
H of the oscillatory bifurcation
threshold for different Lewis numbers in Fig. 8. For large
frequencies, the curves differ only slightly and can be ap-
proximated by linear functions. For small frequencies, this
does not hold anymore as a consequence of the boundary
layers that arise �see Sec. III B�. As in the ordinary Rayleigh-
Bénard system �50�, these layers prevent the value of the
mixing number to fall below a certain value which grows
with increasing Lewis number.

B. Variation of �

Figure 9 shows the Nusselt number and corresponding
TW frequencies for Lewis number L=0.01, normalized po-
rosity ��=1 and different separation ratios �. The SOC so-

lution branches look similar to the one for �=−0.4, thus they
are not depicted.

The TW bifurcation branch as a whole is shifted toward
smaller R as � approaches zero. In this process, the R range
of the forward oriented branches of slow and fast TWs
shrinks. However, there is still a small region in which a
forward branch of fast TW solutions exists even for �=
−0.05. When ��� is reduced further, another qualitative
change in the bifurcation behavior happens as can be seen in
Fig. 10. The TW branch �solid� merges backward with the
lower SOC branch �dashed� such that a forward branch of
slow TW structures does not exist anymore. However, a for-
ward branch of fast TW structures still exists in an R-interval
of about 0.002.

We found the mixing number M as a function of the re-
duced frequency 
 /
H to be almost linear for all values of �
as already depicted in Fig. 8 for varying L.

C. Variation of ��

The influence of the normalized porosity on the TW state
is the most interesting one since there is no such parameter in
the Rayleigh-Bénard system without porous medium. Figure
11 shows the bifurcation behavior of TW solutions for Lewis
number L=0.01, separation ratio �=−0.1, and several nor-
malized porosities ��. The SOC solution branch shown by a
dashed line is independent of ��. The corresponding fre-
quencies 
 are also shown in Fig. 11.

As already seen in Fig. 1, the bifurcation threshold Rosc as
well as the Hopf frequency 
H increases with decreasing ��.
Moreover, the end point R� of the TW solution branch moves
with decreasing �� downward along the SOC branch to
smaller values of Nu thereby crossing the SOC saddle. For
���0.2, no forward oriented part what so ever of the TW
solution branch can be found anymore. The extension of the
forward oriented branch of fast TWs close to Nu−1�0.04 is
already small for ��=1 and vanishes for ���0.7.

As long as the normalized porosity is not too small, the
mixing number M is again approximately a linear function of

0.2

0.4

0.6

0.8

1

N
u-

1

ψ = -0.4
ψ = -0.2
ψ = -0.1
ψ = -0.05

40 45 50 55 60 65
R

5

10

15

ω

FIG. 9. Influence of the separation ratio � on the bifurcation
behavior of TW convection. Shown are diagrams of the Nusselt
number �top� and of the frequency �bottom� versus Rayleigh-Darcy
number for different values of the separation ratio � with L=0.01
and ��=1 held fixed.
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comparison, we also plotted the Nusselt number of the correspond-
ing SOC structure �dashed�.
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the reduced frequency 
 /
H. However, for small values of
�� deviations from this linear relation appear. Furthermore,
the curve of mixing number versus reduced frequency is
shifted upward.

V. CONCLUSION

In this paper we investigated numerically the Rayleigh-
Bénard system with porous medium saturated by a binary
fluid mixture with negative separation ratio. We considered
convection structures consisting of straight parallel rolls that
are either stationary �SOC� or are traveling laterally �TW�.

For an exemplary parameter set �L=0.01, �=−0.4, ��

=1, k=��, we discussed a typical bifurcation scenario in
terms of the Nusselt number versus Rayleigh-Darcy number.
Therein, the SOC solution branch is not connected to the
quiescent, conductive ground state—it goes backward at
small values of Nu until passing a saddle point and then it
proceeds forward for larger Nu. The TW branch bifurcates
backward out of the ground state and shows three saddle
points. Here we can distinguish between slow and fast stable
TWs as in the common Rayleigh-Bénard system without po-
rous medium.

We investigated the behavior of velocity, temperature, and
concentration fields along the TW branch. The temperature
field is harmonic for all investigated values of R. On the
other hand, the concentration field changes significantly with
the advective flow amplitudes because of the strong connec-
tion between the concentration field and the streamlines in a
reference frame that is comoving with the TW. The fact that
the concentration field is largely determined by advection
and almost behaves like a passive scalar is due to the small-
ness of the Lewis number, i.e., the smallness of concentration
diffusion. To understand and to discuss the behavior of the
streamlines that were determined with a full fledged nonlin-
ear numerical analysis we used a single-mode stream func-

tion. In this way we found that closed streamlines arise when
the velocity amplitude becomes larger than the phase veloc-
ity. The occurrence of closed streamlines in the x−z plane of
the comoving frame marks a dramatic change in the shape of
the concentration distribution—the profile of C develops for
closed streamlines strong lateral anharmonicities.

We also investigated the vertical profiles of the laterally
averaged horizontal currents of heat and concentration in a
TW and found them to be nonzero. On the other hand, the
TW does not support a mean lateral flow given that the linear
Darcy law prevents Reynolds stresses. The currents vanish
when all lateral modes of the fields are in phase, i.e., when
the TW branch merges with the SOC branch. Due to its
mirror symmetry in lateral direction, there can be no such
currents in a SOC structure.

The qualitative features of the SOC branch do only
change in the case of large Lewis numbers and separation
ratios close to zero for which the SOC branch is connected to
the ground state. The influence of parameter changes on the
TW branch is stronger. When ��� decreases, the TW bifurca-
tion branch as a whole is shifted toward smaller values of R
without qualitative changes as long as the Lewis number L is
small and the normalized porosity is large. With increasing
L, the bifurcation threshold Rosc increases, the merging point
R� of the TW branch with the SOC solution branch ap-
proaches the SOC saddle point, and the R range of forward
proceeding TWs decreases until there are no more saddle
points along the TW branch. A similar behavior can be ob-
served when decreasing the normalized porosity ��. In addi-
tion, when �� is decreased, the Hopf frequency of the TW
structure grows. As in the Rayleigh-Bénard system without
porous medium, the mixing number M is approximately a
linear function of the frequency 
. Differences from this
linear relation for large L and small 
 can be explained to be
due to boundary layers �50�.
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