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We study the influence of white Gaussian noise in a system of two mutually coupled light-controlled
oscillators �LCOs�. We show that under certain noise intensity conditions, noise can destroy or enhance
synchronization. We build some Arnold tonguelike structures in order to explain the effects due to noise. It is
remarkable that noise-enhanced synchronization is possible only when the variances of the noise acting on each
of the LCOs are different.
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Synchronization is a ubiquitous phenomenon present in
natural systems and in manmade devices, which can be de-
fined as an adjustment of rhythms in self-sustained oscilla-
tors due to their interaction �1�. Noise effects have been ex-
tensively studied and one of the more basic observations is
that noise disturbs the coherent behavior of a system �2�.
Furthermore, new insights about noise effects have been pro-
vided, such as stochastic resonance, in which, under certain
circumstances, noise can help rather than hinder the perfor-
mance of some devices �3�, and it is possible to find its
manifestations in a wide variety of systems such as optical
�4�, electronic �5�, and biological �6� ones, especially in neu-
ronal systems �7�. On the other hand, stochastic synchroni-
zation addresses the phenomenon of irregular phase locking
between two noisy nonlinear oscillators or between a nonlin-
ear oscillator and an external driving force �8�. The concepts
of stochastic resonance and stochastic synchronization are
closely related. A strong link between synchronization and
noise has been found in the so-called noise-induced �9� and
noise-enhanced �10� synchronization. The competition be-
tween noise and coupling in the induction of synchronization
is discussed in �11�. A review of noise effects on chaotic
systems is presented in �12�.

In this work, we analyze the case in which the oscillators
are influenced by �-correlated Gaussian noise characterized
by their variances �i

2. The choice of noncommon noises is
related to the fact that in some cases the subsystems have
internal complex mechanisms with elements which are po-
tentially sensitive to noise. Independent electronic devices
are affected internally by noise whether in their active �e.g.,
power supply and diodes� or passive �e.g., resistors and ca-
pacitors� components. Our interesting result concerns the
fact that in a system of two nonidentical pulse-coupled os-
cillators, the variances of the noise acting on each oscillator
must be different in order to observe noise-enhanced syn-
chronization.

Light-controlled oscillators �LCOs� are simple electronic
devices that can be used to study realistic systems such as
neurons, cardiac cells, and fireflies, among others, whose in-
dividual behavior follows an integrate-and-fire model. Our

system is composed of two noisy nonidentical mutually
coupled LCOs that are relaxation oscillators whose �noise-
free� natural periods T0i are given by the sum of the dura-
tions of their charging t�0i and discharging t�0i stages. These
time intervals are determined by the values of the electronic
components: t�0i= �R�i+R�i�Ci ln 2=ln 2 /�i and t�0i
=R�iCi ln 2=ln 2 /�i �13�. Each LCO uses a voltage source
VMi and is made up of photosensors and infrared light-
emitting diodes, optoelectronic components that allow the
LCO to interact with other LCOs by means of light pulses
characterized by the coupling strength �ij �14�. Additionally,
an LM555 timer chip provides the LCO with the ability to
oscillate, since it controls the charge and the discharge be-
tween an upper threshold �2VMi /3� and a lower threshold
�VMi /3�. Our scheme corresponds to parametric noise acting
on the source voltage VMi, causing changes to the LCOs’
amplitude signal that remains constant for non-noisy oscilla-
tors. The equation that describes the model for N LCOs is

dVi�t�
dt

= �i��VMi + �i�t��D� − Vi�t���i�t� − �iVi�t��1 − �i�t��

+ �
i,j

N

�ij�ij�1 − � j�t�� , �1�

where �i�t� represents a random number chosen from a nor-
mal distribution with mean zero and variance �i

2. The noisy
term �i�t��D is determined by the noise variance �i

2, and �ij
indicates whether or not there is an interaction between LCOi
and LCOj, such that �ij =1 when there is an interaction, �ij
=0 when there is no interaction, and �ii=0 always, to denote
no self-interaction. In Eq. �1�, the oscillator state �i�t� is de-
fined by

�i�t� = 1 extinguished LCO �charge� ,

�i�t� = 0 fired LCO �discharge� ,

and the timer chip LM555 acts on the LCOs’ states as

If Vi�t� = 1
3 �VMi + �i�t��D� and �i�t� = 0 then �i�t+� = 1.
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If Vi�t� = 2
3 �VMi + �i�t��D� and �i�t� = 1 then �i�t+� = 0.

�2�

The usual values taken for the LCOs give a ratio of around
2% between the discharging time and the charging one. This
small value for the ratio indicates that we have two time
scales, a typical characteristic of relaxation oscillators. In
order to study the synchronization features of our system, we
define the instantaneous phase of an LCO �with label i� in
accordance with the Poincaré map method �1,15� as 	i�t�
=2
�t− ti

�k�� / �ti
�k+1�− ti

�k��+2
k; with this, we can compute
the instantaneous linear phase difference �LPD� with strobo-
scopic observation between the LCOs as

��12
linear = 	2�t1

�k+1�� − 	1�t1
�k+1�� = 2


t2
�k+1� − t1

�k+1�

t2
�k+1� − t2

�k� , �3�

where ti
�k+1� is the time at which the �k+1�th firing event of

LCOi takes place. The above expression gives the appropri-
ate result in the case of LCOs whether the oscillations are
merely periodic or if they are disturbed by noise, since we
can consider the beginning of the flashing events as the
points lying on the Poincaré section in the phase space. The
normalization of the phase differences in the circle �0:1� al-
lows us to obtain the cyclic phase difference �CPD� defined
as

�	12
cyclic =

1

2

���12

linear mod 2
� . �4�

Using Eqs. �1� and �3� we have studied the influence of
�-correlated Gaussian noise on two mutually coupled LCOs.
In Eq. �1�, we can associate �D to the noise intensity that we
have varied in the interval �0.0, 2.0�. In the case of two
mutually coupled LCOs, the width of the synchronization
region is directly proportional to the coupling strength for
1:1 synchronization �13�, and we expect that in this region
the mean frequencies of the LCOs in the presence of cou-
pling are roughly the same, i.e., 	
1 /
2
�1 �16�. Synchro-
nization domains can be determined, as shown in Fig. 1,
using statistical criteria such as the LPD mean value �	LPD
�
or the CPD variance �varCPD� �17�.

First, we consider two nonidentical LCOs with parameter
values T01=34.0 ms and T02=32.5 ms, which—in the ab-
sence of noise—synchronize for ��400; this result has been
obtained by computing the 1:1 Arnold tongue for this sys-
tem. When Gaussian noise acts on the LCOs, we observe that
the system desynchronizes for determined values of noise
intensity �Fig. 1�.

In Fig. 1�a� the 	LPD
 as a function of noise intensity is
shown for three values of coupling strength � and when the
LCO’s noise variances are such that �1

2��2
2. We see that the

noise destroys the synchronous regime �	LPD
�0� for in-
creasing noise intensities. On the other hand, this effect is
less important when the coupling strength increases. Using
varCPD, it is possible to determine the synchronization region
as well �Fig. 1�b��; in this case, varCPD�0 in the synchro-
nous regime and varCPD�0.083 when the system is not syn-
chronized. Taking a noise intensity value included in the syn-
chronization region for a specific coupling strength and

representing the LPD evolution and the CPD probability dis-
tribution, we verify that the LPD remains almost constant
�Fig. 1�c��, and the CPD distribution has a well-defined
maximum �Fig. 1�f��. For a greater noise intensity value, the
system leaves the synchronous regime, the LPD drops via
several phase slips �Fig. 1�d��, and the CPD distribution
splits with a tendency toward a uniform distribution �Fig.
1�g��. If the noise intensity value is still greater, we find that
the LPD evolution drops �Fig. 1�e�� as in the case of non-
identical uncoupled LCOs with T01�T02 �17�, and the CDP
distribution becomes almost uniform �Fig. 1�h�� showing the
signature of an asynchronous regime. Finally, Figs. 1�i� and
1�j� show the synchronization regions when �1

2��2
2. In this

case, noise does not affect the system considerably, i.e., the
system remains synchronous for a wide interval of noise in-
tensity values.

Only high noise intensity values produce LCOs syn-
chrony loss via phase slips �Fig. 1�l��; when the synchrony is
totally lost, the LPD grows in time as in the case of un-
coupled LCOs with T01�T02 �17� �Fig. 1�m��. This means
that noise induces a decreasing period in LCO1, a situation
that can be easily understood since noise is high and, conse-
quently, the thresholds will be more rapidly reached. The
varCPD criterion shows some regions in which varCPD�0
�Fig. 1�j��. Nevertheless, the corresponding LPD evolution
and the CPD distribution show that synchronization is still
present �Figs. 1�k� and 1�n��.

Determining the synchronization regions as above, we can
construct Arnold tonguelike structures �Fig. 2�. If the noise
variance of the LCO with lower period �LCO2� is greater or
equal to that of the LCO with higher period �LCO1�, then the
synchronous regime is disturbed by noise and, obviously, the
higher the noise intensity, the greater the noise influence over
the system, and this fact can drive the system to leave the
synchronous state �Fig. 2�. Moreover, the noise influence is
more important when the difference between noise variances
is larger and the coupling strength is less �Figs. 2�a� and
2�c��. The relationship between the noise intensity ��D� and
the coupling strength ��� computed at the boundary line
separating synchronous and asynchronous regions is almost
linear. On the other hand, when the noise variance of the
LCO with lower period �LCO2� is less than that of the LCO1,
the synchronous regime is only destroyed for high values of
noise intensity �Figs. 2�b� and 2�d��. One of the differences
with respect to the case in which �1

2��2
2 is the fact that the

slope of the boundary line separating synchronous and asyn-
chronous regions is considerably lower for �1

2��2
2 �Figs.

2�b� and 2�d�� where the slope of the boundary line is almost
null. For equal noise variances ��1

2=�2
2�, we see that the

synchronous regime withstands better the noise effects with
respect to the case in which �1

2��2
2, in the sense that the

synchronization regions are wider �Figs. 2�a� and 2�c��, de-
spite the fact that �1

2 is greater.
Until now, we have considered the noise effects tending to

desynchronize the system. Nevertheless, noise may also en-
hance synchrony when the LCOs do not synchronize in
noise-free situations. As was shown above, it is possible to
determine synchronization regions using 	LPD
. Now, if we
consider the same system of two mutually coupled LCOs but
in a situation in which the LCOs do not synchronize
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���400�, we note that the presence of independent noises
can drive the system to a statistical synchronous state for
certain noise intensity values �Fig. 3�. For defined noise vari-
ances, the synchronization region enlarges with the increas-
ing of � �Figs. 3�a� and 3�b��. From Fig. 3�c� we observe that
for a determined value of �, the noise variances modify the
synchronization region in such a way that for increasing val-
ues of �2

2, the beginning of the synchronization region shifts
toward greater values of noise intensity and the region be-
comes larger. Nevertheless, Fig. 3�d� shows that as �2

2 tends

toward �1
2, the synchronization region vanishes. Hence, the

condition �1
2��2

2 must be fulfilled in order to enhance syn-
chronization.

Depending on the noise intensity values, the system re-
mains in an asynchronous regime or it achieves a synchro-
nous one. However, if the noise intensity is still greater, the
system desynchronizes again but with the characteristic that
the LCOs’ periods behave in such a way that T1�T2.

The shape of the curves in Figs. 3�a� and 3�c� exhibits a
great resemblance to the typical curves obtained from fre-
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FIG. 1. Determining synchronization regions for two nonidentical noisy LCOs and different coupling strengths using as criterion ��a� and
�i�� the LPD mean value and ��b� and �j�� the CPD variance as a function of the noise intensity. The LCOs’ noise variances are �a�–�h�
�1

2=0.0005 and �2
2=0.001, and �i�–�p� �1

2=0.003 and �2
2=0.0003. For a determined coupling strength ��=450�, the corresponding LPD

evolution and the CPD distribution are represented for different noise intensities: �c� and �f� �D=0.20, �d� and �g� �D=0.65, �e� and �h�
�D=1.00, �k� and �n� �D=1.15, �l� and �o� �D=1.80, and �m� and �p� �D=2.00.
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quency difference ��
=
2−
1� vs detuning ���=�2
−�1� plots in 1:1 synchronization, with 
 being the fre-
quency in the presence of coupling and � the natural fre-
quency �1,18�. In �
 vs �� plots, the middle of the syn-
chronization domain represents the situation in which the
frequency mismatch is null ���=0�. Following this, we can
say that in the middle of the synchronization domains shown
in Figs. 3�a� and 3�b� the noise acts on the system in such a
way that the LCOs’ frequencies are roughly the same. More-
over, in Fig. 4 we can observe that in the synchronization
region �	LPD
�0�, as was expected, the mean frequency

ratio is 	
1 /
2
�1, confirming again that this region corre-
sponds to a synchronous one.

As stated above, we can construct Arnold tonguelike
structures to denote the synchronization regions for different
coupling strengths � and show how the noise enhances syn-
chronization �Fig. 5�. The underlying mechanism that per-
mits noise-enhanced synchronization is related to the fact
that for strong noise intensities there is a considerable con-
traction in the phase space, and also the amplitude of one of
the LCOs decreases.

In conclusion, we have shown that we can determine the
synchronization regions of coupled LCOs using statistical
parameters linked to the LPD, in particular the mean value as
a function of the noise intensity exhibits the same shape that
is found in frequency difference vs frequency mismatch
plots. As was expected, inside the synchronization regions,
the LPD remains almost constant in time and the correspond-
ing probability distribution has a well-defined peak. More-
over, 	LPD
�0 is associated to 	
1 /
2
�1. �-correlated
Gaussian noise can destroy synchronous regimes, and this

400 450 500
0

1

2

(a)
400 450 500

0

1

2

(b)

400 450 500
0

1

2

(c)

N
o
i
s
e
i
n
t
e
n
s
i
t
y
D
1
/
2

400 450 500
0

1

2

(d)

Coupling strength β

σ
2

2=0.003

σ
2

2=0.005

σ
2

2=0.01

σ
2

2=0.03

σ
1

2=0.003

σ
1

2=0.005

σ
2

2=0.010

σ
1

2=0.001

σ
1

2=0.0005

σ
1

2=0.0001

σ
1

2=0.0

σ
2

2=0.001

σ
2

2=0.0003

σ
2

2=0.0

FIG. 2. �Color online� Patches representing synchronization re-
gions for different noise variances. �a� �2

2��1
2, �b� �2

2��1
2, with

�2
2=0.001; �c� �1

2��2
2, �d� �1

2��2
2, with �1

2=0.003.

0 0.5 1 1.5 2

−600

−300

0

300

〈L
P

D
〉

0 0.5 1 1.5 2

−400

0

400

800

〈L
P

D
〉

Noise intensity D1/2
0

1
2

0

0.001

0.002

−500

0

500

1000

D
1/2σ

2
2

0
1

2

0

250

500

−500

0

500

D
1/2β

(a) (b)

(c) (d)σ
2

2=0.0

σ
2

2=0.0003

σ
2

2=0.001

β=25
β=166
β=350

FIG. 3. �a� Synchronization regions for specific values of � with
�1

2=0.003 and �2
2=0.0003 and �b� its generalization in a surface. �c�

Synchronization regions for different LCO2 noise variances �2
2 with

�1
2=0.003 and �=166 and �d� its generalization in a surface.

1
1.05

1.1

0

0.5

1

1.5

2
−1000

0

1000

〈 Ω1
/Ω2

〉

D 1/2

〈L
P

D
〉

FIG. 4. 	LPD
 as a function of noise intensity �D and the mean
coupling frequency ratio 	
1 /
2
. The values for noise variances
are �1

2=0.003 and �2
2=0.0003, and for the coupling strength �

=166.

0 250 500
0

0.5

1

1.5

2

(a)

N
o
i
s
e

i
n
t
e
n
s
i
t
y

D
1
/
2

0 250 500
0

0.5

1

1.5

2

(b)

Coupling strength β

σ
2
2=0

σ
2
2=0.0001

σ
2
2=0.00025

σ
2
2=0

σ
2
2=0.0003

σ
2
2=0.001

FIG. 5. �Color online� Patches representing synchronization re-
gions for different noise variances. �a� �1

2=0.001 and �b� �1
2

=0.003.

RAMÍREZ ÁVILA et al. PHYSICAL REVIEW E 82, 056207 �2010�

056207-4



effect is more significant if the noise variance of the lower
period LCO is greater than that corresponding to the other
LCO. Noise-enhanced synchronous regimes are possible
when the noise variance of the higher-period LCO is greater
than that of the other LCO. The synchronization regions can
be characterized by means of Arnold tonguelike structures
onto the �-�D plane. The last allows us to link the concepts
of frequency and noise intensity, i.e., noise acts principally at

the level of frequency modification permitting the change of
regime �synchronous-asynchronous and vice versa� in the
system of coupled LCOs.
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