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An approach based on combining nonparametric Gaussian process �GP� modeling with certain local topo-
logical considerations is presented for prediction �one-step look ahead� of complex physical systems that
exhibit nonlinear and nonstationary dynamics. The key idea here is to partition system trajectories into multiple
near-stationary segments by aligning the boundaries of the partitions with those of the piecewise affine pro-
jections of the underlying dynamic system, and deriving nonparametric prediction models within each seg-
ment. Such an alignment is achieved through the consideration of recurrence and other local topological
properties of the underlying system. This approach was applied for state and performance forecasting in Lorenz
system under different levels of induced noise and nonstationarity, synthetic heart-rate signals, and a real-world
time-series from an industrial operation known to exhibit highly nonlinear and nonstationary dynamics. The
results show that local Gaussian process can significantly outperform not just classical system identification,
neural network and nonparametric models, but also the sequential Bayesian Monte Carlo methods in terms of
prediction accuracy and computational speed.
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I. INTRODUCTION

Prediction of the future states and performance from the
measured signals is becoming crucial for improving monitor-
ing and control of real-world complex systems, including
several biological, physical and engineering systems �1–4�.
Due to the recent advancements in sensors, computing and
communication technologies, abundant data sources in the
form of multidimensional time series are becoming available
for analyzing complex systems. Consequently, the impetus
has shifted toward harnessing information from these data
sources for effective prediction, prognostics, and preventive
control of these complex systems. Significant developments
have taken place in the application of nonlinear dynamic
system theory, and pertinently, recurrence properties of the
attractors of nonlinear systems to improve prediction �5–9�.
These attractor-based prediction methods use the local evo-
lution patterns of neighbors in the state space, and/or the
knowledge of local trajectory divergence rates �7–9�. They
are mostly applicable to deterministic nonlinear systems, as
well as nonlinear systems with stationary noise and/or simple
forms of nonstationarities �e.g., seasonality and such trends
in the first moment� �8,10�. Despite these research efforts,
effective prediction of the future states remains a challenge
because these complex systems exhibit combined nonlinear
and nonstationary dynamics �11�. The structure of the non-
linear dynamic relationship among the measured signals and
states remains unknown if not indeterminable in most cases.
However, most prediction approaches for nonlinear time se-
ries use some form of parametric models, which are only
effective as the mathematical structures of the models used
to capture this relationship. The recent advances in nonpara-
metric modeling approaches offer a unique opportunity to
advance nonlinear system prediction under highly nonsta-
tionary conditions. Among the nonparametric approaches,
Gaussian process �GP� regression �12� is attractive in that the

Gaussian properties can be used to simplify the modeling
efforts.

However, most GP models assume stationarity of the dy-
namics, i.e., the covariance structure remains time invariant
and is identical at all points in the state space. This severely
limits their predictability in many real-world systems which
are highly nonlinear �often chaotic� and nonstationary. To
overcome this limitation, nonstationary covariance functions
have been attempted �13,14�. These can only capture the
simple forms of nonstationarities �e.g., linear trend and sea-
sonality�. Under highly nonlinear and nonstationary condi-
tions, local nonparametric models have been attempted to
improve accuracy and computational efficiency. Although
some statistical clustering methods and surrogate sample
methods have been attempted �see �3� as well as additional
details in Sec. II�, the pertinent issue of how to segment the
state space of a system into different local stationary sub-
systems remains elusive.

In contrast to previous works, local recurrence �15,16�
and such topological properties of nonlinear systems �17� are
used to partition the state space into near-stationary seg-
ments, and a separate GP model is derived for each segment.
The key idea in the present local Gaussian process �LGP�
modeling approach is to align the segments with the piece-
wise affine components of a system’s state space. The result-
ing LGP model was found to outperform several prediction
methods, including the classical system identification and
forecasting methods, global Gaussian process �GGP� model,
and computationally intensive mixtures of Gaussian pro-
cesses �MGP�, recurrent neural network, and sequential
Bayesian particle filtering methods in terms of accuracy.
Also, it is computationally more efficient than GGP because
LGP uses only the samples within a particular segment for
modeling and prediction. Consequently, the data size needed
for training a GP model is greatly reduced, and the compu-
tational efficiency improved. The remainder of this paper is
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organized as follows: Sec. II presents a concise background
of GP regression modeling; recurrence-based local Gaussian
process �LGP� modeling approach is presented in Sec. III;
Sec. IV contains the results from the application of the LGP
and other models for state and performance prediction �fore-
casting� in synthetic and real-world nonstationary and non-
linear systems; conclusions are presented in Sec. V.

II. BACKGROUND

A variety of applications of GP for state and performance
prediction in domains including geophysics, robotics, human
motion tracking and finance have been reported in the litera-
ture �1–4�. A GP model seeks to establish a mapping f of the
form �12�

y = f�x� + � �1�

between the predictor �output� y�R of a complex dynamical
system with an input vector x�Rd, from their historical re-
alizations �also referred to as the training set� S= ��xi ,yi� , i
=1,2 , . . . ,n�.1 Here, ��N�0,�noise

2 � and x may include au-
toregressive terms �past realizations� of y. Defining X
= �x1 ,x2 , . . . ,xn�T and Y = �y1 ,y2 , . . . ,yn�T, we have

Y � N�0,K�X,X� + �noise
2 I� , �2�

where K�X ,X� is the covariance matrix, whose elements
Kij =k�xi ,xj� are the covariance functions, usually given by a
squared exponential form

k�xi,xj� = � f
2 exp�−

1

2
�xi − xj�TM�xi − xj�	 . �3�

Here, � f
2 is the signal variance, M =diag�l�−2, l is a

d-dimensional vector capturing the length scales. Roughly, l
determines the separation along different dimensions of two
input vectors so that the corresponding function values be-
come uncorrelated. Thus, the points that are near each other
in the input space will have similar distribution. For a certain
input set expressed as an n��d matrix X�, the conditional
distribution of the nominal �noise-free� predictions f� is
given in terms of its first two moments as �12�

f̄� = K�X,X��T�K�X,X� + �noise
2 I�−1Y ,

cov�f�� = K�X�,X�� − K�X,X��T�K�X,X� + �noise
2 I�−1K�X,X�� .

�4�

It may be noted that the diagonal elements of the covariance
matrix are the point-wise variances of the predictor. Thus, in
contrast to traditional parametric prediction methods, GP
models not only provide a point estimate but a complete
distribution of the predictor variable.

However, the accuracy of the prediction depends on the
hyperparameters �= ��M� ,� f ,�noise� of the covariance func-
tion �Eq. �3��. These may be estimated by defining a log-
likelihood function

log p�Y
X,��� = −
1

2
YT�K + �noise

2 I�−1Y −
1

2
log
K + �noise

2 I


−
n

2
log�2n� �5�

so that

�� = arg max
�

�log�p�Y
X,���� �6�

The estimation of the optimal hyperparameters �� is also
referred to as the training of a GP. Typically, the log-
likelihood function �in Eq. �5�� tends to be nonconcave with
multiple local maxima. Various numerical methods are re-
ported in the literature for GP training process �12�.

A main drawback of GP models is that they mostly as-
sume stationarity of dynamics, implying that the covariance
structure remains time-invariant, and is identical at all points
in the state space. This severely limits their predictability in
many real-world systems which are known to be highly non-
linear �often chaotic� and nonstationary. Also, computational
efforts toward matrix inversion in Eq. �5� can become pro-
hibitive with large data sets.

Many attempts have been made to address the two issues
of computational overhead and limitation of the stationary
covariance functions. These methods include local GP with a
selected subset of the data points and complex covariance
functions �14,17–19�, sparse Gaussian process �SPGP� �21�,
and mixtures of GP �MGP� models �22–25�. However, GP
with complex nonstationary covariance functions, as well as
MGP models require several additional hyperparameters
compared to stationary GP. This can significantly undermine
the computational efficiency, especially as the input space
dimension increases �d�3�. MGP models can entail less
computational overhead in both modeling �also referred to as
inference or training� and prediction steps compared to a
global GP. But for highly nonstationary systems the compu-
tational costs can be prohibitive �22�. Several SPGP methods
have been investigated for reducing computational overhead
during predictions with large training datasets. The idea is to
select a suitable, small set of induced samples that serves as
a surrogates to the entire training dataset S. Quiñonero-
Candela and Rasmussen �21� provided a review of different
SPGP models. Although SPGP can reduce the computational
overhead, they are still global, i.e., the induced set aims to
capture the global information contained in the original train-
ing data �20�. Also, choosing the induced sets can be cum-
bersome, and statistical approaches typically used for this
purpose can be computationally intensive. Thus, when the
process is highly nonstationary, the SPGP, being global, may
not be suitable. Similarly, computational overhead and large
data requirements would render MGP prohibitive under
highly nonstationary conditions. Also, with purely statistical
methods for selection of the neighborhoods, it is likely that
some useful information is lost during the MGP localization.
Therefore systematic and computationally efficient clustering
methods are necessary to improve prediction under nonlinear
and nonstationary conditions.1For simplicity of the expressions we employ y�R.
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The recurrence-based LGP models presented here can
overcome these drawbacks of the current GP methods by
using the training data within a systematically derived seg-
ment around a prediction point. Consequently, it was found
to improve the accuracy and speed of prediction as described
in the following section.

III. RECURRENCE BASED LOCAL GAUSSIAN
PROCESS (LGP) MODELING

For the prediction of yi+1=y�ti+1� of a nonlinear dynamic
system from its past realizations y1 ,y2 , . . . ,yi, one can in-
voke the Markov property �Markov order d� such that, if xi
= �yi ,yi−� , . . . ,yi−�d−1���T, where � is the time delay �or lag�
and d is the dimension of the reconstructed state space,2 we
have

p�yi+1
yi,yi−1, . . . ,y1� � p�yi+1
xi� , �7�

where xi, reconstructed from the lags of yi, captures the to-
pological properties of the observable subset of the original
state space of the dynamic system �28�.

For example, Fig. 1 shows the Lorenz time series, and the

corresponding attractor A embedded in a d=3 dimensional
reconstructed space. Figure 2 is a two-dimensional �2D� pro-
jection of the reconstructed Lorenz attractor shown in Fig.
1�b�. It is evident from Fig. 2 that the geometry of a Lorenz
attractor can be decomposed into two near-periodic orbits
�U1 and U3� about the foci x̄1 and x̄3, respectively, separated
by a region �U2� with a saddle point x̄2. Such an approxima-
tion can be used to decompose a complex nonlinear attractor
into simple affine segments:

Proposition 1 �29�. Dynamics of a nonlinear system in the
vicinity of an attractor can be represented in terms of piece-
wise affine systems linked by switching laws as follows:

ẋ = F�x� � �
�=1

	

B��s�x��J��x − x̄�� , �8�

where x�Rd is the state vector, 	 is the total number of
affine subsystems, and x̄��Rd are the fixed points associated
with each affine subsystem. Constant Jacobian matrix J� de-
fines the local linear dynamics, s� · � defines the switching
surface, and B� · � is a Boolean function defined so that at any
given time only one affine subsystem is active.

Thus, within each piecewise affine segment the trajecto-
ries sustain a similar evolution pattern, and have a unique �in
practice, similar, as will become evident in the following
section� eigen-system as defined by a Jacobian matrix.

Proposition 2. Let the state space be partitioned into 	

affine segments as in Proposition 1, and let f̄�
U1 be the noise-

free prediction of f� at x��U1 that uses historical realiza-
tions xi

U1 �U1 , i=1,2 , . . . ,n1 for estimation �Eq. �4��, and

f̄�
U1:	 be the estimate obtained using n=n1+n2+ ¯+n	 points

xi�U1�U2� . . . �U�, then ∀x��U1 we have

f̄�
U1:	 − f̄�

U1 = 
 , �9�

where 
 is the prediction error due to the inclusion of train-
ing points outside segment U1, whose closed-form expres-
sion is given in Eq. �A5� of the Appendix, and

 f̄�
U1 − f� �  f̄�

U1:	 − f� . �10�

Thus, whenever all the points in the X matrix are chosen
from the same segment as x�, systemic prediction errors are
not sustained. A numerical study presented in the following
section shows that significant errors could be sustained when
the points from other segments lie arbitrarily close to a
boundary of the current segment U1.

2The time delay � is chosen to minimize the mutual information
�26� among the components of xi and the dimension d is determined
based on the false nearest neighbors test �27�.
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FIG. 1. �Color online� �a� Lorenz time-series and �b� state por-
trait obtained from delay embedding of the time-series, showing a
reconstructed Lorenz attractor embedded in a three-dimensional de-
lay coordinate space �30�.

FIG. 2. �Color online� A 2D projection of a reconstructed Lo-
renz attractor with a schematic illustration of partitioning of the
attractor into three affine segments: U1 and U3 contain trajectories
about foci x̄1 and x̄3, and U2 about a saddle point x̄2.
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In this context, the challenge remains as to how the state
space can be partitioned into near-affine segments. The re-
currence property of nonlinear systems can be used to parti-
tion the state space into these piecewise affine segments. As
stated in the Poincaré recurrence theorem �16�, for any
measure-preserving transformation on an attractor of a dy-
namic system, the trajectories will eventually reappear at the
neighborhood of the former points in the state space. An
unthresholded recurrence plot, sometimes referred to as a
distance plot, can be used to capture this recurrence pattern
in a d dimensional state space �10�. As summarized in Fig.
3�a�, it delineates the distance between every two points x�t1�
and x�t2� in the state space. For instance, color coding at the
coordinate locations �557, 870� and �870, 557� in the recur-
rence plot represents the distance between points x�557� and
x�870� in the state space shown in Fig. 1.

It has been recognized that variations in recurrence pat-
terns can be used to detect certain kinds of nonstationarities
�8–10�. Under stationary conditions, a recurrence plot shows
fairly homogenous patterns, and the quantifiers of the recur-
rence, such as recurrence rate, statistical distribution of the
diagonal patterns remain invariant over the length of the plot
�10�. As the system transitions from one near-stationary dy-
namics to the next, the recurrence patterns and their quanti-
fiers undergo a statistically significant change. Earlier, we
had used certain quantitative pattern analysis of the recur-
rence plot to locate the boundaries between different seg-
ments �30�. We had treated the segmentation between two
near-stationary segments as the detection of vertical/
horizontal edges in a 2D image formed by the recurrence
plot. This procedure consisted of �a� applying a common
image filter based on a Sobel operator �30� at every point in
the recurrence plot to obtain a contrast �binary� image. A
contrast image delineates the points �coordinate locations�
where significant changes in the recurrence patterns take
place, and �b� interrogating at every time index whether the
distribution of the contrast image points at that time index
can constitute a statistically valid edge �vertical line�. A
simple threshold criterion was applied to determine the edges
that formed the boundaries between segments.

Although Sobel operator-based segmentation was able to
detect the statistically significant changes in the recurrence
patterns, it is not evident if it marks the boundaries between
piecewise affine segments. However, piecewise affine seg-
ment partitioning is a precondition for the present approach,
as specified in Propositions 1 and 2. We have therefore in-
vestigated the tracking of the variations in correlation pat-
terns to provide a more systematic means for state space
segmentation. The basic idea is that whenever the system
transitions into a different segment, the local eigensystem �as
captured by the Jacobian matrix�, undergoes a significant
change, as can be implied from Proposition 1. Consequently,
a correlation index �k �e.g., R2 statistic �31�� between the
adjacent columns k and k+1 of the recurrence matrix will
exhibit considerable decrement at the segment boundaries
�see Fig. 3�b��. The increments 
�k in the correlation index
values also tend to attain their local maxima at the bound-
aries between segments �see Fig. 3�c��. Evidently, marking
the boundaries where the correlation change rates 
�k are
unusually high can render the resulting segments to be

aligned with the piecewise affine and stationary components
of the dynamic system. Therefore, we marked a segmenta-
tion boundary whenever 
�k values exceeded a specified
threshold 
��. For statistical consistency, we had used the
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FIG. 3. �Color online� �a� Unthresholded recurrence plot of a
Lorenz attractor with black vertical lines marking the true bound-
aries between two piecewise affine segments; �b� variation of cor-
relation �k between the adjacent columns k and k+1 of the recur-
rence matrix, with the green �light gray� vertical lines marking the
boundaries as in �a�, indicating that the boundaries between two
piecewise affine segments are marked by local minima of the cor-
relation �k; �c� segmentation of the recurrence plot using correlation
change rate 
�k, with the green �light gray� vertical lines represent-
ing the boundaries between different segments. The boundaries are
obtained by applying the segmentation threshold 
�� determined
from the distribution of 
�k values. The results indicate that the
local maxima of 
�k, that are deemed statistical outliers, serve as
effective boundaries between piecewise affine segments. Note that
the method also tends to further partition a piecewise stationary
segment into multiple such segments. However, this does not have
a significant effect on prediction accuracy.
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concept of outlier detection for specifying the segmentation
threshold 
��. In specific, the values of 
�k that exceed 1.5
times the fourth spread �also referred to as upper quartile�, fs
of the specified 
�k samples are deemed as statistical outliers
�31�. Thus we had used 
��=1.5 fs�
�k� as the segmenta-
tion threshold. Our experimental investigations indicate that
the application of this statistical outlier-based application of
this statistical outlier-based threshold leads to near-affine
segmentation of the state space.

A comparison of the segmentation using the correlation
change rate criterion in Fig. 3�c� and the true segmentation of
the recurrence plot of the Lorenz system in Fig. 3�a� shows
that the such a criterion can correctly partition the state space
into piecewise affine segments. It may also be noted that the
application of this criterion tends to further partition a piece-
wise stationary segment into multiple such segments. How-
ever this does not have a significant effect on the prediction
accuracy. When partitioned thus, as a consequence of Propo-
sition 2, it can be shown that accuracy of predicting the

noise-free estimate f̄� can be improved by using the points
within the same segment for estimation, i.e., the columns of
the X matrix in Eq. �4� is constituted by points within the
same segment.

Based on these findings, one may summarize the proce-
dure for recurrence-based LGP as follows:

�i� Use state space reconstruction method to define the
input vector xi and output yi;

�ii� Partition the state space using recurrence analysis to
obtain various segments U1 ,U2 , . . . ,U�;

�iii� Train the GP model within these segments according
to Proposition 2, and obtain the optimized hyperparameters �
for each segment using Eq. �6�;

�iv� For prediction at a certain location x�, identify the
corresponding segment and use the optimized LGP hyperpa-
rameters to predict f� using Eq. �4�.

As stated in Sec. II, step �iii� of the LGP procedure �i.e.,
training a GP model within a segment� can pose significant
computational challenges. We have used a conjugate gradient
method with multiple restarts for training purposes �12�. In
traditional line/gradient search methods, the initial solution
needs to be chosen correctly in order to avoid being trapped
in a local optimum. The use of multiple restarts can alleviate
this issue. Our investigations indicate the use of 20 restarts
was adequate to obtain near-optimal solution for the hyper-
parameters �.

IV. IMPLEMENTATION DETAILS AND RESULTS

The LGP method was compared with other prediction
methods including classical time-series analysis �ARMA�,
GGP, sparse Gaussian process model �SPGP� �20�, mixtures
of Gaussian processes model �MGP� �32�, extended Kalman
filter �EKF� �33�, recurrent predictive neural network �34�,
and a Monte Carlo particle filter �PF� model �35�, using three
benchmarking case studies. Root mean square error �RMSE�
and R2 statistics of one-step look-ahead forecasts are used as
the metrics to compare the prediction accuracies of different
methods.

Case 1 �Synthetic Lorenz-like system prediction�. This
numerical study is aimed at verifying the significance of the
affine segment-based partitions and the resulting prediction
error estimates given in Proposition 2. Toward this end, time-
series were generated from solving a Lorenz-like system of
piecewise affine differential equations �see Fig. 4 and Ref.
�36��. It may be noted that segment boundaries are known a
priori for the time series generated from solving this system
of differential equations. Consequently, the effectiveness of
the present approach can be verified using this time series.
The system of differential equations was constructed as
follows:

ẋ = �ẋ1

ẋ2

ẋ3
� =�� −   0

� − x3+ − 1 − x1+

x2+ x1+ − �
��x1 − x1+

x2 − x2+

x3 − x3+
� x1 tan � + x2 � C

� −   0

� − x3o − 1 − x1o

x2o x1o − �
��x1 − x1o

x2 − x2o

x3 − x3o
� − C � x1 tan � + x2 � C

� −   0

� − x3− − 1 − x1−

x2− x1− − �
��x1 − x1−

x2 − x2−

x3 − x3−
� x1 tan � + x2 � − C

� �11�

where �x1+ ,x2+ ,x3+�, �x1o ,x2o ,x3o�, and �x1− ,x2− ,x3−� are
the fixed points �here, we chose the three fixed points to be
��−14,−12,0�, �0, 0, 5�, and �14, 12, 0�, respectively�, 
=10, �=9, and �=4 are the Jacobian matrix parameters, �
=� /2 and constant C=4 define the location of the switching

surface �i.e., the boundary between the affine segments�. This
system of differential equations is considered to approximate
a Lorenz attractor, as is evident from comparing the gener-
ated time series and the reconstructed attractor in Fig. 4 with
the corresponding plots of Lorenz system shown in Fig. 1.
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This system largely meets the antecedents of Proposition 2.
A 1000 data point long time-series was obtained by uni-
formly resampling the solution �x1�t� ,x2�t� ,x3�t�� of the
aforementioned system. The sampling interval of 0.01 time
units was such that there were roughly 50 data points per
loop �near-orbit about a focus� of the Lorenz-like attractor
shown in Fig. 4.

Verification of the Propositions. Let us suppose that a pre-
diction needs to be made at a point x��U1 as shown in Fig.
5. We chose n1=30 points �shown as green stars in Fig. 5� in
the interior of the segment U1, and n2=3 points close to the
boundary �shown as red squares in Fig. 5�. Evidently, all
points on the reconstructed phase portrait to the left of the
boundary line x1 tan �+x2�−C belong to segment U1. Fur-
thermore, the number of points n1 was chosen so that the
prediction accuracies remained consistent across multiple
replications of this numerical study and did not change sig-
nificantly with further increase in the sample size.

As summarized in Table I, the prediction is very close to
and within 0.01% of the observed realization y�, implying

that the prediction error 
= f̄U1 −y��0 was holding consis-
tently. Next, the n2=3 points near the boundary of segment
U1 were replaced by n2=3 points from segment U2 �shown
as red circles in Fig. 5�, just across the segment boundary

from U1. In this case, we found that a significant prediction

error 
= f̄U1:2 − f̄U1 was sustained, although the new points
were located arbitrarily close to the previous ones, but just

across the boundary. Here, f̄U1:2 represents the prediction ob-
tained using sample points from both segments U1 and U2.
Since the points from U2 are arbitrarily close to the bound-
ary, we used the approximation from Eq. �A8� to estimate
prediction errors. Evident from Table I is that the prediction
errors increase by two orders of magnitude with a slight per-
turbation of a small subset ��10%� of the sample points.
This underscores the sanctity of the affine segment boundary
obtained through the recurrence analysis. From a practical
standpoint, these results indicate that even under sparse data
conditions, a significant improvement in prediction accuracy
is possible through the use of points from the same segment
and avoiding sample points, however few, from other seg-
ments.

Prediction accuracies with Lorenz-like time series. Next,
we studied the effects of nonlinearity and nonstationarity on
the prediction errors. Here, we used the first component of
the 1000 data point long time series. The embedding param-
eters of �=5 and d=3, obtained based on the first minimum
of the mutual information function �26� and the false nearest
neighbors test �27�, respectively, were used to reconstruct the
state space. Under stationary and deterministic conditions,
ARMA, GGP and MGP needed 200 data points �i.e., training
samples� for model consistency, i.e., autocorrelation func-
tions for ARMA, and hyperparameters for GGP and MGP
became fairly insensitive to the composition and size of the
training data. In contrast, SPGP needed just 100 points, and
LGP a total of about 100 points, to ensure model consistency.
The prediction accuracies of all the models were tested at 60
independent points not used for training. The application of
LGP partitioned the time series into ten near-uniform seg-
ments. A segmentation threshold of 
��=0.0003 was ob-
tained from applying the statistical outlier criterion stated in
the previous section on the 
�k values computed for the first
100 points. The test results, summarized in Table II, indicate
that all methods tested, namely, ARMA,3 GGP, SPGP, MGP,
and LGP were effective. Among the methods tested, LGP
was found to yield the least RMSE for one-step prediction.

3The prediction results from an ARMA models depend heavily on
the model order. Here only the results from the best ARMA model
are reported.
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FIG. 4. �a� A 1000 data points long segment of first component
of Lorenz-like system time-series, and �b� 2D projection of its cor-
responding phase portait. Here, the sampling interval is 0.01 time
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FIG. 5. �Color online� Segmentation of Lorenz-like system at-
tractor with a representative point x��U1 �shown as a gray annular
ring� whose evolution needs to be predicted using samples taken
from the interior of the segment U1 �shown as green stars�, at the
boundary of U1 �shown as red squares�, and/or samples from U2
that are just across the boundary from U1 �shown as red circles�.

TABLE I. Prediction error of GP using sample points from dif-
ferent segments, showing that the errors predicted using Eq. �A8�
match well with those actually sustained.

Training set X

x�U1 x�U1�U2

Testing point x� 
= f̄U1:2 − f̄U1 
= f̄U1:2 − f̄U1 
 from Eq. �A8�
1 −0.001 −0.34 −0.41

2 0.009 −0.36 −0.32

3 0.001 −0.30 −0.31
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Subsequently, we studied the performance of the methods
on the Lorenz-like time series randomly chopped and per-
muted, and then contaminated with additive nonstationary
�piece-wise stationary� noise. Here a stationary Gaussian
white noise sequence was added to a time series within a
specified permuted segment. The variance of the Gaussian
noise components for each segment was chosen indepen-
dently of the others. The signal-to-noise ratio �SNR� of the
resulting time-series segments varied between −10 and 40
dB �the noise variance ranged of 2–10�, as summarized in
Fig. 6�a�. We note that the time-series is nonstationary in the
second moment, �i.e., variance and hence signal energy� and
phase �resulting from random chopping�. While much of the
literature in nonlinear time-series prediction address sce-
narios involving nonstationarities in the first and/or the sec-
ond moments, nonstationarities in many real-world time se-
ries, such as heart rate, product flow rate in a production
plant, etc., certainly do not appear to lend themselves to
variations in the first or second moments, let alone having

noticeable, gradual transitions between two wide sense sta-
tionary sets �30,37–39�.

In this work we have taken an approach to generate tran-
sients �i.e., nonstationarities�, which is more aligned with the
present piecewise affine criteria. We assume that a transient
phase can be treated as a concatenation of evolutions of a
system in the vicinity of different stationary sets �i.e., attrac-
tors�. In other words, the system evolution switches among
different segments of �one or more� attractors. This provides
us with some theoretical rationale to formally treat transients,
and derive piecewise �nonparametric� models to capture their
local evolutions. We note that this construct involving ran-
dom permutations also makes the resulting time-series a le-
gitimate solution of a time-varying dynamic system where
the dynamics switches to and from different �albeit simplis-
tic� vector fields intermittently over certain short, random
time segments.

The resulting time series and the 2D projections of the
reconstructed attractor are shown in Figs. 6�b� and 6�c�. The
embedding parameters of d=3 and �=2 were used. The ap-
plication of LGP resulted in 170 segments corresponding to a
segmentation threshold 
��=0.05. Out of these segments,
the 60 test points were chosen from the last 100 segments.
Just as in the previous case, we had trained ARMA, GGP and
MGP with 200 samples, and SPSP and LGP with about 100
samples. The prediction accuracies of the methods for one-
step look ahead were tested at 60 points. In this case, the
prediction RMSE of GGP was significantly �about 50%�
higher than for LGP. Remarkably, LGP yields prediction ac-
curacy R2 of 87.4%, which shows the effectiveness of the
method for nonlinear and nonstationary time-series �see
Table II�.

Prediction accuracies with Lorenz time series. A nonlin-
ear Lorenz system, whose Jacobian matrix is not piecewise
constant, was considered for evaluating the LGP approach.
We had used a Lorenz system whose structure is similar to
that Letellier used to present certain affine decompositions
�35�. We had used the values � ,� ,� ,C�= �10,9 ,4 ,4� for the
Lorenz parameters, and solved the system with an initial
condition of �−20,−20,0� to generate a 50 000 data points
long time series. The last 1000 data points of the resampled
solution of this deterministic and stationary Lorenz system
was used to reconstruct the state space with the embedding
parameters of d=3 and �=5. The application of LGP yielded
13 segments with a segmentation threshold 
��=0.0003.
The prediction results obtained from testing the various
methods at 60 test points are summarized in Table III. For
the stationary series, all the tested methods had R2�85%.
Again nonstationary series were obtained by randomly chop-
ping and permuting the Lorenz time series. The embedding
parameters of d=3 and �=1 were used for state space recon-
struction. The LGP approach partitioned this time-series into
150 segments. We had used 
��=0.006 as the segmentation
threshold. Here, LGP yielded R2=85.3%, compared to
47.6% with SPGP.

It may be noted that SPGP is mostly aimed at improving
the computation efficiency, which in turn depends on the
induced sample set size. If the induced set size in SPGP is
the same as that of the original training data, SPGP will
deliver the same performance as GGP �20�. In our case, we

TABLE II. Comparison of one-step look-ahead predictions for
Lorenz-like system using different models showing that all the
models tested have adequate prediction accuracy �low RMSE and
high R2� when the time-series is stationary, but LGP sustains sig-
nificantly lower prediction RMSE and higher R2 when the time
series is nonstationary.

Method

Stationary series Nonstationary series

RMSE
R2

�%� RMSE
R2

�%�

ARMA�4,4� 4.15 92.1 8.13 75.2

GGP 3.68 95.6 9.74 71.6

SPGP 3.68 95.2 10.62 51.6

MGP 2.94 96.6 11.34 55.3

LGP 1.80 97.6 6.78 87.4
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FIG. 6. �a� A histogram showing the distribution of SNR values
of the noise added to various segments, �b� Lorenz-like nonstation-
ary system time-series, and �c� a 2D projection of the corresponding
phase space. Here the sampling interval is 0.01 time units.
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chose the induced set size to be half of the training data size
used in GGP.

As for MGP, the prediction accuracy depends heavily on
the number of clusters �23�. The MGP model partitions the
input space into different clusters through a rough k-means
clustering technique followed by standard expectation-
maximization �EM� procedure �20�. This procedure is known
to require large training sets whenever heavy transients are
present in the measured time-series. These factors may help
in rationalizing the somewhat inconsistent performances of
SPGP and MGP for nonstationary time series.

Case 2 �Synthetic nonstationary physiological time-series
by Chen et al. �40��. The time series �see Fig. 7� mimics the
24 h record of heart rate fluctuations. The time series shows
larger variations and volatility during the periods of in-
creased stress and physical activity, and small variations dur-

ing rest periods. A 500 data points long segment was consid-
ered for our analysis. The embedding parameters of d=6 and
�=1 were used for state space reconstruction. The applica-
tion of LGP yielded 45 segments with 
��=0.05. It was
noted that about 50% of the segments were less than 5 data
points long, and were not considered for LGP modeling or
prediction. The performance of LGP was compared with that
from ARMA�3,2�, extended Kalman filter �EKF�, particle fil-
ter �PF�, recurrent predictive neural network �RPNN� �34�,
GGP, MGP �32� and SPGP regression models �20�. The pre-
diction accuracies of all the methods were tested at 100 test
points. While ARMA model assumes linearity and stationar-
ity of the process, EKF, PF, RPNN, and GP consider the
underlying nonlinearities. The results indicate that LGP can
outperform these approaches as indicated by significant im-
provements in the prediction R2 and RMSE �see Table IV�.
The SPGP model �here, the induced set size is half of the
original training data size� showed the worst prediction re-
sult, although it should be noted that SPGP only focuses on
the computational efficiency not on modeling the nonstation-
arity. The RMSE of LGP is 50% less than that of
ARMA�3,2� model. In fact, ARMA, GPP, and SPGP had
R2�10%, indicating the inability of these methods to predict
the heart-rate time series. This result implies that one needs
models that explicitly consider the nonlinearity and nonsta-
tionarity for predicting such time series.

Furthermore, the performance of LGP was shown to be
comparable to that of PF and MGP. A PF predictor relaxes
the Gaussian assumption that underpins LGP, yet is known to
be computationally more intensive and needs large amounts
of data for highly nonlinear and nonstationary system predic-
tion. Similarly, MGP involves much high computational
overhead than LGP, and it requires elaborate tuning of the
clusters to achieve acceptable prediction accuracies. The
closeness of one-step predictions from LGP to the corre-
sponding actual observations is evident in Fig. 8. Here, the
gray region denotes the 95% confidence interval of predic-
tion results. Notably, 93% of the points tested are within the
95% confidence interval compared to �70% with MGP.

Case 3 �Real time throughput prediction in an automotive

TABLE III. Comparison of one-step look-ahead predictions for
Lorenz system using different models showing that all the models
tested have adequate prediction accuracy �low RMSE and high R2�
when the time series is stationary, but LGP and MGP have the least
RMSE and highest prediction R2 when time series is nonstationary.

Method

Stationary series Nonstationary series

RMSE
R2

�%� RMSE
R2

�%�

ARMA�7,3� 6.51 90.8 10.98 65.6

GGP 5.98 93.4 7.23 76.4

SPGP 7.73 86.2 13.62 47.6

MGP 3.63 92.4 6.35 83.4

LGP 2.95 96.8 5.48 85.3
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FIG. 7. �Color online� A highly nonlinear and nonstationary syn-
thetic physiological heart-rate signal �top� and the piecewise sta-
tionary segment boundaries marked by green �light gray� vertical
lines obtained from applying the correlation change rate criterion
�bottom�. Here the sampling frequency is set to the average heart
rate of the measured time-series.

TABLE IV. Comparison of the prediction accuracies of different
models for one-step look-ahead forecasting of a synthetic heart-rate
time series showing that the prediction accuracies increase from R2

of less than 10% for classical forecasting approaches to R2 of 71%
for LGP.

Method RMSE
R2

�%�
R2 �bootstrap�

�%�

ARMA�3,2� 1.00 2 3.2

EKF 1.03 1.5 1.1

PF 0.61 66 58

RPNN 0.73 49 46

GGP 0.99 7.5 1.1

SPGP 1.04 1.4 3.7

MGP 0.64 61 51

LGP 0.46 71 61
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assembly line�. The time series in Fig. 9�a� shows the num-
ber of items produced �also called the throughput� in an 8 h
long shift from a station in a hypothetical automotive assem-
bly line. As the figure indicates, the values fluctuate rapidly
and erratically, rendering conventional prediction approaches
unwieldy. There were about 18 different time series, each
corresponding to the throughput from a station in the assem-
bly line. The embedding parameters of d=6 and �=1 were
found to be optimal for all the 18 time series. We note that it
is likely just a coincidence that the values of the embedding
parameters turned out to be the same as those used in the
previous case of synthetic heart-rate data. The application of
LGP for one-step look-ahead prediction yielded about 218
segments �
��=0.05� for the 560 data points long time-
series, of which the last 90 segments were used to testing the
prediction accuracies. It was noted that 80% of the segments
were less than 5 data points long, and they were not consid-
ered for LGP modeling or prediction. The one-step predic-
tions from LGP model and MGP model relative to the obser-
vation values are shown in Figs. 9�c� and 9�b�, respectively.
Here, the PF model did not converge because of high non-
stationarity and data sparsity. Also for similar reasons, GGP’s
performance was worse than that of the ARMA model. Our
investigations also indicate that the prediction accuracies
with radial basis function �RBF� models are comparable to
those of ARMA �30�.

Among the methods tested, LGP and MGP yielded the
least prediction errors, as summarized in Fig. 10. Here, the
red line in the middle of a box represents the median, the
ends of the blue box indicate the lower and upper quartiles of
data distributions, and the flat black line-ends indicate the
extreme values that lay at the 95% of the total range of the
respective values �here RMSE and R2 statistics�. It is note-
worthy the median RMSE as well as its spread were the
lowest for LGP and MGP compared to other methods. Also,

the prediction accuracy was improved on an average by
about 50% compared to the next best method among the
ones tested �i.e., ARMA�. From the comparison of the result
by LGP �Fig. 9�c�� and MGP �Fig. 9�b��, we can see that
about 84% of the tested points are within the 95% confidence
interval using LGP model, while for MGP model, only 51%
points lie within the 95% confidence interval. This indicates
that whereas both LGP and MGP are fairly accurate for cap-
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FIG. 8. �Color online� A representative segment of the synthetic
physiological heart rate signal �red line� with the corresponding
one-step look-ahead prediction from LGP �blue dashed line� and a
95% confidence limit �blue shade� indicating that the LGP model is
able to predict the evolution of the heart rate time-series �R2

=71%�, and that 93% of the actual realizations were within the 95%
of LGP-predicted confidence limits.
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FIG. 9. �Color online� �a� Automobile assembly line throughput
time-series; �b� One-step prediction with 95% confidence interval
for MGP; �c� One-step prediction with 95% confidence interval for
LGP, showing that 84% of the actual realizations lie within the 95%
confidence interval compared to 51% for MGP. Here, each time unit
indicates a production shift �an 8 h period�.
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turing the first moment, LGP is superior to MGP in capturing
the second moment, i.e., the prediction covariance.

V. CONCLUDING REMARKS

Forecasting future states and performance of nonlinear
systems under nonstationarities in higher order statistics �not
just the first and/or second moment� remains an open issue.
Whenever system dynamics is complex and/or unknown,
nonparametric approaches can be attractive, although few of
the current nonlinear time-series prediction approaches em-
ploy nonparametric models. Among nonparametric ap-
proaches, Gaussian process �GP� models offer the advantage
of capturing the nonlinearities without explicit specification
of the underlying vector fields. Successful application of GP
models has been reported various domains, including flexible
robotic systems, weather forecasting, and financial markets.
The salient processes in these domains are known to exhibit
nonlinear dynamics. Consequently, the GP modeling as-
sumption that the residuals as well as the random state vector
are Gaussian at all times t will not hold under any nontrivial
condition. However, if we relax the Gaussian assumption,
one has little recourse than to use sequential Monte Carlo
�e.g., MCMC, particle filter, mixture models�, and such ap-
proaches for prediction. These approaches typically involve
significant computational overhead. Comparatively, GP is
more computationally efficient. Also, as it turns out, for com-
plex real-world systems, especially those in the context of
complex flexible robotics, weather, complex material phase
transformation processes, and physiological process, the
number of sources of uncertainty �noise� tend to be signifi-
cantly large, especially when one attempts to capture the
dynamics in a finite dimensional state space. In other words,
the noise term becomes a superposition of a large number of
independent random variables. Under such circumstances the
Gaussian assumptions may not be too restrictive, and little
advantage can accrue from resorting to elaborate PF and
such computationally involved approaches suitable for pre-
dicting the evolution of the random state vector.

Also pertinently, much of the prior applications of GP
were limited predictions under near-stationary conditions.
The extensions of GP to prediction under nonstationary con-
ditions have had limited success. By using certain local to-
pological properties of nonlinear dynamics, we have ex-
tended the GP for prediction under nonstationary conditions.
The approach is based on the recent results of local affine
representation and recurrence properties of nonlinear sys-
tems. It allows a new means for forecasting future states of
nonlinear �likely chaotic� time series under higher order non-
stationarities �i.e., beyond variations in the first two mo-
ments�.

Our extensive experimental investigations suggest that the
recurrence-based LGP can be used to improve prediction ac-
curacies in nonlinear systems that can be partitioned into
piecewise affine segments. A numerical study involving a
synthetic piecewise affine system and a nonlinear system
with different forms of nonstationarity conditions shows that
as few as 3 out of 33 samples, located arbitrarily close to, but
outside the boundary of an affine segment can increase the

prediction errors by about two orders of magnitude com-
pared to the case with all sample points within the segment.
This supports our proposition that a significant improvement
in prediction accuracies is possible through careful state
space segmentation, and concomitant selection of sample
points for local nonparametric modeling, afforded by the
recurrence-based LGP approach.

Results from the three case studies presented in the fore-
going also indicate that the recurrence-based LGP yields bet-
ter prediction accuracy compared to other conventional and
sophisticated models. On an average, LGP reduces the pre-
diction RMSE by about 40% over ARMA and about 17%
over EKF. Also evident is that the MGP model showed com-
parable RMSE and R2 values for automotive assembly line
throughput prediction. But LGP outperforms MGP for physi-
ological heart rate time series. In fact, for prediction of this
time series only LGP, followed by PF and MGP yield some
reasonable prediction accuracies �R2�60%�. All other meth-
ods tested do not capture the evolution of the time-series
�R2�10%�. Furthermore, R2 with LGP is 10% higher, and
RMSE about 30% lower than with MGP. Remarkably, 93%
of the actual realizations lie within the LGP-predicted confi-
dence limits compared to �70% with MGP.

The assembly line data has high noise levels, which can
pose additional challenges to recurrence-based state space
segmentation. Compared with LGP, SPGP is faster but the
prediction accuracies �R2� are about 20% below that for LGP.
Although MGP and LGP are comparable both in terms of
prediction accuracy �R2 and RMSE� as well as computational
speed for the manufacturing assembly line data, only 51% of
actual realizations lie within MGP-predicted 95% confidence
limits. Comparatively, 84% of the realizations were within
the LGP-predicted 95% limits. In other words, while both
MGP and LGP can yield similar performance for first-
moment prediction, LGP yields significantly better second-
moment estimates. Additionally, the number of clusters in
MGP needs to be elaborately tuned to ensure adequate pre-
diction accuracies. In contrast, consistent criteria, such as the
false nearest neighbors, mutual information, and statistical
outliers exist for choosing the various LGP parameters, as
stated in the foregoing. This can mitigate the need for elabo-
rate parameter tuning in the present recurrence-based LGP
approach. Overall, LGP model appears to be best suited for
one-step look-ahead prediction in scenarios where the pro-
cess exhibits highly nonlinear and nonstationary behavior,
but the noise levels are relatively low ��30%� compared to
the signal energy so that some of the local topological prop-
erties can be leverage. In cases where noise levels are much
higher, one can use elaborate MGP and more generic PF
methods for nonlinear time-series prediction.

It may be noted that the present investigation has focused
on evaluating LGP models for one-step look-ahead predic-
tion in multiple application scenarios. Ongoing efforts are
focused on adapting this approach for multistep look ahead
�often referred to as free running� prediction applications. In
this context, our initial investigations toward adapting LGP
for free running multistep predictions suggest that the fol-
lowing issues are pertinent: �a� the predictions of both the
first and the second moments made at the previous step need
to be recursively used to update the RHS of Eq. �4�, instead
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of just the first-moment information alone, and �b� the pre-
diction accuracies depend on the length of the current near-
stationary segment. In order to improve the selection of local
models at future times we are investigating a high-level
probabilistic model based on discrete state logic �e.g., a Mar-
kov chain or a timed automaton� �41�. This model captures
the likelihoods of transitions among the near-affine seg-
ments.

Furthermore, the two metrics �RMSE and R2� used for
performance comparison in the present study essentially
quantify the variation in the residuals, i.e., the difference
between the one-step ahead predictions and the actual real-
izations. Since stability issues do not arise in the one-step
prediction with LGP and other methods compared, these
metrics are reasonable for quantifying one step look-ahead
performances. In multistep prediction scenarios, the interest
may be in ensuring that certain topological characteristics of
the process dynamics is preserved in the predicted time se-
ries, and the metrics need to just quantify how well the to-
pological characteristics of the predicted time series relate to
those of the attractor segments where the predictions are
made. Coherence and distortion metrics �e.g., see Refs.
�42–44�� may be considered to quantify the similarity of the
characteristics between the predicted and the measured time
series for longer prediction horizons �such as in the free-
running cases�. Also, we are investigating the comparison of
LGP with local nonlinear parametric models, such as opti-
mized radial basis function �RBF� �e.g., �45�� and localized
intrinsic mode functions �46� for prediction applications.
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APPENDIX

The system dynamics within each segment Ui , i
=1,2 , . . . ,	, may be captured using piecewise affine differ-
ential equations of the form

ẋ = Ji�x − x̄i� + � x � Ui �A1�

The system trajectories from a particular initial condition x0
may be obtained as

x = x̄i + �x0 − x̄i�exp�Jit� + � x � Ui, �A2�

where � and � are the noise terms, x̄i is the fixed point for
segment Ui and x0 is the initial state for the dynamical sys-
tem trajectory. For the testing point x� in segment U1, if the

n training points are all located in segments U1,

f̄U1 = �
j=1

n1

wjyj
U1 + �

j=n1+1

n

wjyj
U1 �A3�

Here, the RHS is divided into two parts, since we have n1
training points in the interior of segment U1, and other n
−n1 training points are located near the boundary of segment
U1. If n−n1 training points �plausibly near the boundary� are
replaced by points from other segments,

f̄U1:	 = �
j=1

n1

w̃jyj
U1 + �

j=n1+1

n

w̃jyj
U2:	, �A4�

where yj
U1 and yj

U2:	 are the observation values corresponding
to the training points inside and outside segment U1.

Evidently, the prediction error 
 given in Eq. �9� may be
expressed


 = f̄U1:	 − f̄U1 = �
j=n1

n1

�w̃jyj
U1 − wjyj

U1� + �
j=n1+1

n

�w̃jyj
U2:	 − wjyj

U1�

�A5�

where wj and w̃j are of the form

wj = �K1� . . . Kn1
� . . . Kn��D·,j = �

i=1

n1

Ki�Dij + �
i=n1+1

n

Ki�Dij .

�A6�

Here D·,j represents the elements in column j of the matrix
D, given by

D = �K + �noise
2 I�−1 �A7�

The weight wj and w̃j depends on the covariance matrix, and
thus on the hyperparameters. Points in segment U1 have the
same hyperparameters. When the n−n1 points are close to
each other across the boundary then wj � w̃j since the state
space is continuous, and we can approximate 
 as


 = �
j=n1+1

n

wj�yj
U2:	 − yj

U1� = �
j=n1+1

n

wj� j �A8�

Here,

� j = �x̄i + �xj − x̄i�eJit + �i�1 − �x̄1 + �xj − x̄1�eJ1t + �1�1

�A9�

where � · �1 represents the first element of � · �.
If all the training points lie in the same segment U1 and

when the training data set size n is fairly large, RHS of Eq.
�A8� will be equal to 0 under deterministic conditions, i.e.,
� j→0 as n→�, and the prediction error 
 can be consider-
ably reduced.
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