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The operator fidelity is a measure of the information-theoretic distinguishability between perturbed and
unperturbed evolutions. The response of this measure to the perturbation may be formulated in terms of the
operator fidelity susceptibility �OFS�, a quantity which has been used to investigate the parameter spaces of
quantum systems in order to discriminate their regular and chaotic regimes. In this work we numerically study
the OFS for a pair of nonlinearly coupled two-dimensional harmonic oscillators, a model which is equivalent
to that of a hydrogen atom in a uniform external magnetic field. We show how the two terms of the OFS, being
linked to the main properties that differentiate regular from chaotic behavior, allow for the detection of this
model’s transition between the two regimes. In addition, we find that the parameter interval where perturbation
theory applies is delimited from above by a local minimum of one of the analyzed terms.
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I. INTRODUCTION

Given a classical system in which chaotic dynamics arise,
a fundamental problem is to understand the behavior of the
corresponding quantum analog of this system. A starting
point for this comparison is the observation that while clas-
sical dynamical chaos can typically be described in terms of
the divergence of initially neighboring trajectories in phase
space, the unitary evolution of closed quantum systems does
not allow such a characterization. So, how does classical
chaos manifest in a quantum system? Is quantum chaos re-
flected in the distribution of the energy levels of the corre-
sponding quantum system, for example, or in terms of the
temporal evolution of suitable expectation values? For the
past several decades, intense effort has been devoted to the
study of quantum chaos �1�. A variety of approaches has
been taken, including random matrix theory �2�, quantum
motion reversibility �3�, stability �4�, fidelity �5�, entangle-
ment �6�, and recently measures of phase-space growth rates
�7�. All of these techniques successfully address specific as-
pects of quantum chaotic behavior. The fidelity, a quantity
commonly encountered in the context of quantum informa-
tion theory, has been used extensively in the form of the
Loschmidt echo to study quantum chaos by Prosen and Žni-
darič �5� and others �see Ref. �8� for an extensive review of
the fidelity approach to quantum chaos�. The response of this
quantity to infinitesimal perturbations, what we call the op-
erator fidelity susceptibility �OFS�, was formulated from a
differential-geometric perspective in �10,11�. This quantity
has been studied in the context of quantum chaos in �9�,
where the state- and level-dependent contributions to the
OFS were distinguished. The operator fidelity and OFS are
the generalizations of the ground-state fidelity and fidelity
susceptibility, respectively, which have been fruitfully used
�12–14� over the past years to characterize another important
class of phenomena encountered in many-body quantum
physics: quantum phase transitions. The state fidelity ap-

proach is based on the idea that one can detect quantum
critical points by employing a geometric measure of distin-
guishability between ground states corresponding to neigh-
boring parameters. The OFS is a natural extension of this
approach from the space of states to operators. In an analo-
gous fashion to the ground-state case, the OFS gives a mea-
sure of the rate of distinguishability between “neighboring”
members of a family of operators. Here we consider the uni-
tary evolution operators U�=e−iH���t generated by a family of
time-independent Hamiltonians H���=H0+�V. With this
choice, the OFS measures the rate of separation between the
unitary evolutions induced by U� and U�+��, where ��V is
an infinitesimally small perturbation to the Hamiltonian.

The reason why the OFS ���� allows one to distinguish
the transition from a regular to a chaotic regime of a quan-
tum system is twofold. First of all, the theoretical study of
���� carried out in �9� and based on random matrix theory
arguments �2� has shown on general grounds that for systems
characterized by random perturbations V drawn from proper
ensembles, the quantum chaotic evolutions can be character-
ized as those which have the highest resilience to these per-
turbations. This can be seen by expressing the OFS in terms
of an autocorrelation function of the perturbation �8�. In this
form, when the system is chaotic the correlation function
may decay more rapidly than in the regular regime, leading
to a slower decay of the fidelity. Furthermore, as described in
�9,11� and as will be reviewed in Sec. II, the OFS can be split
into two terms ����=��1����+��2����: one that depends on
the variation of the energy levels and the other on the varia-
tion of the eigenvectors. In particular, the first term depends
on the variation of the eigenvector and is directly related to
the spacings between energy levels. In this respect, ��1���� is
analogous to the ground-state fidelity susceptibility �12,14�, a
quantity which depends on the energy gap between the
ground and first-excited states. This property links the OFS
to one of the main paradigms for the definition of quantum
chaos: the statistics of the spacings sn=En+1−En between
neighboring energy levels. Indeed, in a seminal paper Bohi-
gas et al. �15� proposed that certain universal level spacing
statistics encountered in random matrix theory �2� also arise
in the spectra of regular or chaotic quantum systems. In par-*Corresponding author; ntj@usc.edu
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ticular, regular systems are expected to have Poissonian level
spacing statistics, P�s�=e−s. In this case the most probable
value is s=0 since frequent crossings between members of
uncorrelated subsets of energy levels may occur. This prop-
erty is a direct consequence of the integrability of the system,
corresponding to the existence of a sufficiently large number
of conserved quantities. On the other hand, with the exact
form of the distribution depending on the few existing sym-
metries of the model, chaotic systems may display the
Wigner-type statistics, P�s��s� exp−s2. In this case level
crossings are suppressed as a result of correlations between
the energy levels due to a lack of symmetry in the system.
The sensitivity of the eigenvector part of the OFS to these
level statistics has already been successfully tested in �9�,
where it described the transition to chaos in the Dicke model.
The same basic ideas have subsequently been used to define
a simplified version of the OFS that has been applied to spot
the avoided crossings in some Bose- Hubbard systems �16�.

In this paper we employ the operator fidelity susceptibility
to investigate a system of two nonlinearly coupled two-
dimensional harmonic oscillators. The importance of this
model arises from its equivalence to a prototypical system
for which the regimes of classical and quantum chaos have
been well-documented theoretically and for which experi-
mental data exist and agree exceptionally well with theoret-
ical predictions: the hydrogen �or hydrogenlike� atom in a
time independent and uniform external magnetic field
�17–20�. In order to spot the transition from regularity to
chaos, we compute for the oscillator problem both parts of
����. Our analysis, besides providing a further test of the
applicability of the OFS, will allow us to compare their dif-
ferent behavior in the transition and to give an interpretation
of the full OFS.

In Sec. II we briefly review the operator fidelity and op-
erator fidelity susceptibility. In Sec. III we explain how the
model is derived, describe the algebraic representation allow-
ing for its efficient diagonalization, and detail the numerical
procedure adopted. In Sec. IV we outline the level spacing
statistics for the model and give the results of the operator
fidelity susceptibility analysis. We conclude in Sec. V.

II. OPERATOR FIDELITY

Due to the preservation of inner products under unitary
evolution, the classically useful notion of the divergence of
trajectories in phase space resulting from sensitivity to initial
conditions does not apply for quantum systems. One may
instead compare the unitary evolution operators correspond-
ing to nearby points in parameter space. This approach al-
lows the problem of discriminating between the regular and
chaotic regimes of a given quantum system to be cast into
the information-theoretic idea of statistical distinguishability
between states representing evolution operators.

We start our discussion by recalling that the overlap be-
tween quantum states belonging to a D-dimensional Hilbert
space H generalizes to the space L�H� of linear operators
acting on H in a simple way. Supposing, for example,
that �=�ipi�i�	i� is the density matrix of a given quantum
system, one can identify any operator X�H with the state

�X��H � H defined in terms of the purification of �, ����

=�i

pi�i� � �i��H � H, as

�A� � A � I����. �1�

The � fidelity between two operators X ,Y is then the �bipar-
tite� state fidelity,

F��X,Y� � �	X�Y��� = �Tr��X†Y�� , �2�

where 	X �Y�� defines an Hermitian scalar product over
L�H�. In this work, as in �9,11�, our starting point is to
compute the � fidelity between members of the one-
parameter family of unitary time-evolution operators, U��t�
=e−itH�, corresponding to slightly different Hamiltonian pa-
rameters � ,�+��. The second-order expansion �U�+����

= �U���+�����U���+��2���
2U��� /2 of the state representing

the perturbed evolution, together with the relations obtain-
able by the identity ��

2	U� �U���=0, allows the second-order
expansion of the fidelity to be written as

F��U�,U�+��� = 1 −
��2

2
����� �3�

in terms of the OFS �11�,

����� ª 	��U���U�� − �	��U��U����2. �4�

In this work we always choose states � which commute with
the Hamiltonian, H�=H0+�V. The spectral decomposition of
� in a basis of energy eigenstates of H� and the application of
time-dependent perturbation theory �11� allows the OFS to
be decomposed into two parts, �����=��

�1����+��
�2����, where

�21�

��
�1���� = 2�t �

n,m=1

m�n

D

�n�	n���H�m��2Gt�En − Em� , �5�

��
�2���� = t2��

n=1

D

�n�	n���H�n��2 − ��
n=1

D

�n	n���H�n��2 ,

�6�

where D is the dimension of the Hilbert space and Gt�x�
�2 sin2�tx /2� /�tx2. Following the discussion in Ref. �11�,
��

�1� is associated with the change of the eigenvectors and ��
�2�

the eigenvalues �21�. Note that the OFS may alternatively be
expressed in terms of a dynamical two-point autocorrelation
function of the perturbation �8�.

From the explicit form of ��
�1,2����, one may identify how

the OFS reflects the chaotic behavior of the system. In par-
ticular, we will be interested in the long-time behavior of the
OFS. Observe that for ��

�1����, at large times t the function
Gt�x� acts as a filter selecting the contributions due to neigh-
boring levels in sum �5�. In fact, since limt→	 Gt�x�=��x�,
the largest contributions to ��

�1� come from small gaps sn
=En+1−En
1 / t. Therefore, for large t ��

�1���� becomes
highly sensitive to the specific level spacing distribution
that characterizes the model for a given �. As for the
second term of the OFS, it displays a quadratic dependence
on time and may be written as ��

�2����= t2��
2Vd, where
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��
2Vd= 	Vd

2��− 	Vd��
2 is the variance of the diagonal part Vd of

the perturbation V in the energy eigenbasis.
We remark here on the domain of validity of the OFS

approximation for the fidelity. In order for expansion �3� to
be valid, it is necessary that F��1. Since the rate of growth
of the OFS is at most quadratic in time, it is thus necessary
that �t���2�1. Provided this holds, it is also desired that the
factor Gt�En−Em� in ��

�1� have a narrow-enough peak that it
samples primarily the nearest-neighbor level spacings. If this
is satisfied, ��

�1� is expected to be sensitive to the level spac-
ing statistics. Given the set of energy levels in the support
of � and defining some typical level spacing �typ
= 	En+1−En�typ, the time scale in which Gt�x� samples prima-
rily the nearest- neighbor level spacings is given by 1 / t
��typ.

In our analysis we consider two kinds of initial states,
restricting ourselves to a single parity sector of the model in
order to allow comparison with the universal level spacing
statistics. On one hand, we will use a maximally mixed state
�D= I /D, defined as a truncated version of the exact state �
whose range will be the D- dimensional space of numerically
well-converged states in the even sector. On the other hand,
we consider � to be a �truncated� Gibbs thermal state over
the even sector, ��=e−�H� /Z�, where Z�=Tr�e−�H��. This
will allow us to establish the extent to which the introduction
of temperature in the system modifies the behavior of the
OFS.

III. MODEL

The hydrogen atom in a uniform external magnetic field is
one of the simplest time-independent systems exhibiting
quantum chaos and has been studied in detail analytically,
numerically, and experimentally �17–20�. The Hamiltonian
of a nonrelativistic hydrogen atom in a uniform cylindrically
symmetric external magnetic field has the form

H =
p2

2
−

1

r
+



2
Lz +

2

8
�x2 + y2� , �7�

where  is a dimensionless parametrization of the magnetic-
field strength and Lz is the component of angular momentum
along the magnetic-field axis. This component of angular
momentum is conserved, and we restrict ourselves to the
Lz=0 sector. For weak magnetic fields a nonzero angular-
momentum quantum number simply results in a uniform
shift of the energy levels within a given sector, the Zeeman
effect.

The application of a magnetic field to the classical hydro-
gen atom gives rise to the possibility of richly complex elec-
tron orbits. Two principal orbital modes of the electron can
be seen: a “rotational” mode in the z=0 plane and a “vibra-
tional” mode along the z axis �17�. An effect of a sufficiently
strong magnetic field is to make trajectories near these
modes unstable. For the classical model, it can be seen from
scaling arguments that the degree of regularity or chaos is
determined chiefly by the single parameter �̃=E−2/3 given
by the energy E and magnetic-field strength , where the
limiting cases are �̃→−	 ��̃→	� for the Coulomb �Landau�
regimes �17�. The degree of chaos is dependent on the rela-

tive strengths of the Coulomb attraction to the nucleus and
the diamagnetic interaction of the electron with the magnetic
field. For �̃ less and less negative, the perturbation due to the
magnetic field begins to dominate, and the phase space be-
comes increasingly chaotic. Note that the analysis here con-
siders only the bound spectrum.

Returning to the quantum-mechanical hydrogen atom,
with a suitable change to “semiparabolic” coordinates �
=
r+z and �=
r−z, the Schrödinger equation for the hydro-
gen atom of energy E may be written as

�D� + D� − E��2 + �2� +
2

8
�2�2��2 + �2� − 2���� = 0,

�8�

where D��−1 /2��2 /��2+ �1 /���� /���� and similarly for
D�.

If one now performs another coordinate transformation to
“dilated” semiparabolic coordinates �18�, u= �−2E�1/4� and
v= �−2E�1/4�, the Schrödinger equation takes the form

�Du + Dv +
u2 + v2

2
+

2

8�− 2E�2u2v2�u2 + v2� −
2


− 2E
����

= 0.

Here it can be seen that the hydrogen atom is equivalent
to a pair of coupled two-dimensional harmonic oscillators,
each having identical angular momenta which are in this case
zero. If we now define �=2 / �−2E�2 and �= �−2E�−1/2, the
final form for the Schrödinger equation is

�Du + Dv

2
+

u2 + v2

4
+

�

16
u2v2�u2 + v2����� = ���� . �9�

The problem we aim to solve in this work is to find the
eigenvalues � corresponding to the choice of coupling pa-
rameter �. This is called the oscillator problem. Notice that
our choice of � fixes the ratio  /E, so the oscillator problem
essentially corresponds to finding the hydrogen atom ener-
gies E intersecting a curve of constant  /E in the -E plane.
Alternatively, one may solve the hydrogen problem for the
energies E for a given magnetic field . This is a generalized

eigenvalue problem of the form Â���=�B̂��� �Eq. �8��. In
Ref. �18� both approaches have been taken, with similar re-
sults for the level spacing statistics.

Algebraic representation and numerical procedure

The problem of finding an efficient solution to the eigen-
value problem for the hydrogen atom and to the equivalent
nonlinearly coupled harmonic oscillators has been discussed
in several papers. In particular, Delande and Gay were able
to solve the problem elegantly by giving a dynamical group
approach representation of the model �19�. In the following
we briefly review their results. One begins by defining the
operators

Sx

z
=

1

4
��� �2

�u2 +
1

u

�

�u
 + u2� ,
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Sy =
i

2
�1 + u

�

�u
� , �10�

which generate the so�2,1� algebra and fulfill the commuta-
tion relations �19�,

�Sx,Sy� = − iSz, �11�

�Sy,Sz� = iSx, �12�

�Sz,Sx� = iSy . �13�

In terms of these operators, the Schrödinger equation �Eq.
�9�� can be written as

�Sz + Tz +
�

2
V − ����� = 0,

where

V = �Sx + Sz�2�Tx + Tz� + �Sx + Sz��Tx + Tz�2

and Tx,y,z has the same form as Sx,y,z, except with u replaced
by v. Note that �T� ,S��=0 ∀ �, �� �x ,y ,z�. With this rep-
resentation, the natural basis to use is the tensor product of
the eigenbases of Sz for each oscillator. That is, the set of
states ��n� � �m��n,m�N, where

Sz�n� = �n + 1
2��n� ,

S+�n� = �n + 1��n + 1� ,

S−�n� = n�n − 1� , �14�

and S��Sx� iSy. In this representation, S�→S� � I and T�

→ I � S�. The Hamiltonian for the oscillator problem may
then be written as

H� = Sz � 1 + 1 � Sz + �V , �15�

where

V = 1
2 ��2

� � + � � �2� �16�

and ��Sx+Sz=Sz+ 1
2 �S++S−�. Notice that the Hamiltonian is

symmetric under interchange of the subsystems. Namely, de-
fining the parity �or swap� operator P acting in the oscillator
occupation basis as P�n� � �m�= �m� � �n�, we have �H , P�
=0.

With this in mind, we now define an orthonormal basis

�en,m� = � 1

2

��n� � �m� + �m� � �n�� �n � m�

�n� � �n� �n = m� ,
�

�dn,m� =
1

2

��n� � �m� − �m� � �n�� �n � m� ,

where ��en,m�� ���dn,m��� span the even �odd� parity subspaces.
Since the parity operator P and Hamiltonian H commute, the
Hamiltonian can be block diagonalized over the even- and
odd-parity subspaces. From now on we restrict ourselves to
states � which have support only over the even subspace in

order to better compare the fidelity analysis with the level
spacing statistics. Indeed, in general, for studies of quantum
chaos it is useful to identify the symmetries of the problem
and focus on individual symmetry subsectors. In the chaotic
regime, for example, if the energy levels from several sym-
metry subspaces are included the level spacing statistics may
take a nonuniversal form arising from the superposition of
universally distributed subsets of levels.

While, in general, the system to be analyzed has to be
represented in an infinite-dimensional Hilbert space H, in
order to handle the problem numerically one must truncate
the original Hamiltonian into one which acts on a finite-
dimensional space HK and appropriately represents the low-
energy physics of the exact model. The above described al-
gebraic representation of the pair of two-dimensional
harmonic oscillators easily allows for such a truncation.
Here, the Hilbert space truncation is implemented as an up-
per bound on the total allowed oscillator occupation, requir-
ing n+m�K, where K is our truncation parameter. The fol-
lowing is the truncated Hilbert space dimension for the even
sector in terms of K:

dim�HK
even� = ��

K

2
+ 12

, K even

�K + 1

2
�K + 1

2
+ 1 , K odd.�

However, the eigenenergies of the truncated Hamiltonian
poorly approximate the exact values near the top of the trun-
cated spectrum. We address the inaccuracies introduced by
the truncation by extending the truncation and measuring the
corresponding changes in the energy spectrum, so that for a
given truncation size we may determine the set of levels
sufficiently well converged to the true values for our pur-
poses. We find that as the coupling grows the necessary trun-
cation dimension also must increase to provide the same de-
gree of convergence. This effect is due to shielding from the
influence of the magnetic field due to strong Coulomb attrac-
tion for lower energy levels. For weaker magnetic fields a
larger number of eigenvalues will be well converged, but to
be consistent we include only those levels which are well
converged over the entire coupling interval of interest.

Recall that the parametrization of the coupling between
the oscillators, �, is related to the hydrogen atom problem
through �=2 / �−2E�2, where  and E were the external
magnetic-field strength and energy of the hydrogen atom,
respectively. In this work since we are studying the oscillator
problem, we only vary the oscillator coupling � and do not
independently adjust the external magnetic field parametriz-
ing the hydrogen problem. As previously mentioned, the
quantity �=��2 was found to characterize the degree to
which the phase space of the classical model is chaotic �18�.
In particular, for ��1 the phase space is almost entirely
regular while for ��60 the phase space becomes entirely
chaotic �18�. It is known for this model that the character of
the level spacing statistics is reflected in the proportion of the
classical phase space which is chaotic. As we will observe
now, where � is small the level statistics is Poissonian,
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P�s�=e−s, while for larger � the level statistics transforms
into a Wigner-Dyson form, P�s�=� /2se−��/4�s2

.

IV. RESULTS

A. Level spacing statistics

With these well-converged levels in hand, we now com-
pute the level spacing statistics and compare them with the
results previously obtained in extensive studies of the level
spacing statistics of this model performed by Delande and
Gay �18� as well as Wintgen and Friedrich �20�. Gradually
increasing the coupling from the perturbative regime �Fig.
1�a�� through the so-called n -mixing regime, where levels
from neighboring sectors begin to cross �Fig. 1�b�� until the
quantum chaotic regime �Figs. 1�c� and 1�d��, the level spac-
ing statistics smoothly evolve from Poisson-like to Wigner-
Dyson-like. Note that whereas the level statistics presented
in �18� are the superimposed statistics for several coupling
strengths, we have evaluated the level spacings for individual
couplings. Our statistics include 800 well-converged eigen-
values, with a truncation of K=120.

In Fig. 2 the eigenenergies are plotted as a function of
coupling for two representative intervals of couplings and
energies. The changing character of the energy spectrum as a
function of the coupling strength is evident. For small cou-
plings, degeneracies are lifted and levels from neighboring
sectors begin to cross as the n-mixing regime is entered. As
the coupling strength increases further still, the regular
n-mixing regime evolves into quantum chaos as level avoid-
ance begins to dominate.

B. �(1) term

Having reviewed the behavior of the level spacings, let us
now examine the operator fidelity susceptibility. We start by
analyzing ��1�, first discussing the cutoff approximation,

��1��Dc� =
2�t

Z�Dc,���n=1

Dc

exp�− �En�CDc
�n� , �17�

where CDc
�n���m=1,m�n

Dc �	n�V�m��2Gt�En−Em�, �=1 /T, and
Z�Dc ,����n=1

Dc exp�−�En�. Here, ��n�� are the
� K

2 +1�2-dimensional or � K+1
2 �� K+1

2 +1�-dimensional �for K
even and odd, respectively� energy eigenvectors of the even
parity block of the Hamiltonian HK. The number of states
included in the sum is called the cutoff dimension, Dc. Note
that if the odd sector was included as well, since the pertur-
bation V preserves parity the sum in Eq. �17� would be sim-
ply the linear combination of ��1� computed over each parity
sector. The dependence of all factors on both the coupling �
and truncation dimension K has been left implicit. In our
calculations we include only the states corresponding to
well-converged eigenvalues, namely, levels which vary little
under additional growth of the truncation dimension K. Tak-
ing K=120, for example, we retain Dc=800 out of the 3721
total levels in the even parity sector for the strongest cou-
pling considered, �=10−2. Again, though the number of well-
converged levels is maximal for smaller couplings, for con-
sistency in our calculations we include the worst-case set of
levels for the entire region of interest.

For finite temperature, contributions to the OFS from
higher energies are exponentially suppressed due to the co-
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FIG. 1. �Color online� Level spacing distributions for �a� �
=2.5�10−4, approximately the location of the local minimum of
��1����, �b� �=1.75�10−3, approximately the peak of ��1����,
�c� �=3.0�10−3, in the tail of the peak, and �d� �=1.0�10−2,
far into the quantum chaotic regime. Here all 800 well-converged
levels are included in the statistics. The Poisson statistics are given
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�solid curve�.
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efficient �n=exp�−�En� in the outer sum of Eq. �17�. This
serves to give more weight to the low-energy part of the
spectrum for low temperatures, while for high-enough tem-
peratures all levels are included. In Fig. 3 we show the par-
tial sum ��1��Dc� as a function of Dc for up to 800 well-
converged energy levels for four different couplings �. For
example, we can see that a temperature of about T=4.5 is
sufficient to provide a well-converged result for ��1�, with the
result being better converged for larger coupling. This is due
to an expansion of the energy spectrum toward larger ener-
gies as the perturbation strength increases. From now on, we
define ��1� as partial sum �17� with Dc=800.

Let us now look at the parameter dependence of the quan-
tity ��1���� for finite temperature, plotted in Fig. 4. Recall
from Ref. �11� that ��1���� characterizes the variation of the
eigenstates and as shown in Eq. �5� is a function of all level
spacings or gaps. The plot is jagged due to the strong con-
tributions of individual level crossings or near misses. How-
ever, one may identify two inflection points. For small cou-
plings there is a local minimum of ��1�, while for
progressively larger couplings a global maximum appears.
Past the global maximum, ��1� decreases as level avoidance
begins to appear. From then on, as the couplings grow fur-
ther ��1� continues to decrease.

Our explanation is the following. For vanishing coupling
the nearly degenerate subsectors of the spectrum give a large
contribution to ��1� due to small arguments to Gt�En−Em�
and significant couplings �	n�V�m�� between neighboring lev-
els. However, a slight increase of the coupling lifts those
degeneracies, taking the system to the regime where pertur-
bation theory applies since level crossings are rare �see Fig.
2�a�� and consequently ��1� is reduced. Continuing to in-
crease the coupling, the energy levels between subsectors
now begin to cross as one enters the so-called n-mixing re-
gime. With sufficiently large coupling the system finally en-
ters the quantum chaotic regime, where couplings between
neighboring levels now lead to avoided level crossings, in-
frequent level crossings, and a consequent decrease in ��1�.
Note that the perturbative regime, for example, persists for a
wider range of couplings for low energies than for higher
energies, so the system is never entirely in one regime or
another. This can be seen by comparing the energies and

couplings with the classical chaos parameter �=��2. For the
hydrogen atom, higher energies result in a greater suscepti-
bility of the electron to the external magnetic field over the
Coulomb potential.

In addition to taking a finite-temperature Gibbs state �
=e−�H /Z, another natural choice for the density matrix � is to
consider the limit T→	. In this case our density matrix be-
comes proportional to a projector P over the subspace
spanned by those eigenstates having well-converged eigen-
values. Acting on this well-converged subspace, the state will
have the form �	= I /Dc. The result for �	

�1� is plotted as a
function of � in Figs. 4 and 5. With this form of the state we
see that the contrast between the various regimes is en-
hanced. Moreover, this state uniformly weights the contribu-
tions of many more levels than the low-temperature case,
suggesting that variation of �	

�1� may more closely mirror the
level spacing statistics. It turns out that increasing the tem-
perature strictly increases the magnitude of ��1�, so that the
“infinite”-temperature case of �= I /Dc has the largest value.
Moreover, the location of the initial local minimum for small
couplings shifts toward smaller values as temperature is in-
creased. This is due to the sampling of higher energy levels,
for which smaller couplings are required to traverse the vari-
ous regimes.

We can thus conclude that, as has already been found for
the Dicke model in �9�, the ��1� part of the OFS correctly
incorporates information about the level spacing statistics for
the case of the nonlinearly coupled oscillators. As shown in
Fig. 5, modifying the time t does not qualitatively change the
plot of ��

�1�. Noting the definition of Gt�x� following Eq. �5�,
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FIG. 3. �Color online� Partial sum ��1��D ,D� as a function of D
for temperature T=4.5 and �=9.2�10−5, 2.5�10−4, 2.0�10−3 and
1.0�10−2.
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FIG. 4. �Color online� The first term of the OFS, ��1����, with
K=120, Dc=800, and t=100 for �a� small temperatures and �b�
higher temperatures. Notice that ��1� grows with temperature.
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where limt→	 Gt�x�=��x�, a larger time enhances the contri-
butions to the sum due to level crossings or quasilevel cross-
ings. The growth of ��1� for larger times thus reflects its
sensitivity to the presence �absence� of level crossings and
hence the transition from regularity to chaos.

C. �(2) term

So far we have treated the part of the OFS, ��1����, which
reflects the variation of the eigenstates and depends on the
level spacings. The other term, ��2����, is proportional to the
variance of the diagonal elements of the perturbation V
=��H with respect to � in the energy basis. In Fig. 6 one sees
that ��2� rapidly decreases with coupling strength. The values
of ��1� and ��2� in both the regular and chaotic regimes differ
by about two orders of magnitude, and this is not qualita-
tively affected by temperature change. This consideration al-
lows us to conclude that for this model the dominant contri-
bution to the overall OFS is given by the fluctuations of the

diagonal part of the perturbation V̂. However, though the
contribution from ��1� in this case is relatively small, it pos-
sesses a richer functional dependence on the coupling. In
particular, while ��2� decreases monotonically in the studied
parameter interval, ��1� reflects the transition through the
three described regimes.

In the special case where the diagonal part of the pertur-
bation in the energy basis, Vd, is zero, this second term will

clearly vanish �8�. Thus, for an experiment or theoretical
treatment in which it is desired that ��

�1� be isolated, choosing
a perturbation of this form will eliminate ��

�2�.
Our results show that the behavior of the total OFS as a

function of the parameter that drives the transition from the
regular regime to a chaotic one encodes the already-
mentioned resilience of the quantum evolutions to small non-
random perturbations even for specific systems. Indeed, for
our model the statistical distinguishability between neighbor-
ing evolutions decreases with �, showing that the resilience
of the system to perturbations dramatically increases when it
becomes chaotic.

V. CONCLUSION

In this work we have used an operator-geometric quantity,
the operator fidelity susceptibility �OFS�, to study the transi-
tion from regularity to quantum chaos for a pair of coupled
two-dimensional harmonic oscillators. This model is equiva-
lent to a hydrogen atom in a uniform external magnetic field,
one of the prototypical systems for which both the regimes
of classical and quantum chaos have been well documented
theoretically and experimentally. We have seen that, by com-
puting the state-dependent part of the OFS, denoted ��1����,
as a function of the coupling strength � one may distinguish
three regimes in parameter space: perturbative, n mixing, and
quantum chaotic. A local minimum for small coupling
strength corresponds to the boundary between the perturba-
tive and n-mixing regimes, while the global maximum coin-
cides with the occurrence of level crossings typical of a regu-
lar regime. As the level spacing statistics transform from
Poisson �maximum likelihood of level crossing� to Wigner-
Dyson �vanishing probability of level crossings�, ��1���� cor-
respondingly decreases. We may therefore conclude that
��1���� incorporates the information relative to the statistics
of the spacings between neighboring energy levels and the
information-theoretic notion of distinguishability between
quantum evolutions. Our analysis shows that both the dis-
tinct elements of the OFS and the OFS as a whole are there-
fore effective tools for discriminating the different charac-
ters, i.e., regular vs chaotic, of the various regimes of a
system’s parameter space.

0.000 0.002 0.004 0.006 0.008 0.010
109

1010

1011

1012

χ(2
) (λ

)

λ

T=10
T=20
T=40
Infinite T

FIG. 6. �Color online� The second term of the OFS, ��2����,
taking K=120, Dc=800, and t=100. Note that this quantity in-
creases with temperature.
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FIG. 5. �Color online� The first term of the OFS, ��1����, with
K=120, Dc=800, and various high temperatures at �a� t=200 �b�
t=400. Again, observe that ��1� grows with temperature.
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We would like to remark that while the OFS approach
may not be as efficient computationally as other more direct
techniques, i.e., the level spacing statistics, the main goal in
this work is to see whether the notion of resilience to pertur-
bation, quantified by the OFS, is a useful one in the context
of this well-known model. In the future, it would be interest-
ing to experiment with this approach on models where the
connection between classical chaos and energy-level statis-
tics breaks down, such as in the odd-parity sector of the
lithium atom �22�. Indeed, does the ability of ��

�1� to detect
the transition from regularity to chaoticity solely depend on a

corresponding change in the level spacing statistics or can it
serve as a measure for chaoticity in systems without this
property?
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