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This paper investigates surface roughness characteristics of localized plastic yield surface in a perfectly
plastic disordered material. We model the plastic disordered material using perfectly plastic random spring
model. Our results indicate that plasticity in a disordered material evolves in a diffusive manner until macro-
scopic yielding, which is in contrast to the localized failure observed in brittle fracture of disordered materials.
On the other hand, the height-height fluctuations of the plastic yield surfaces generated by the spring model
exhibit roughness exponents similar to those obtained in the brittle fracture of disordered materials, albeit
anomalous scaling of plastic surface roughness is not observed. The local and global roughness exponents ��loc

and �, respectively� are equal to each other, and the two-dimensional crack roughness exponent is estimated to
be �loc=�=0.67�0.03. The probability density distribution p��h���� of the height differences �h���= �h�x
+��−h�x�� of the crack profile follows a Gaussian distribution.
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I. INTRODUCTION

The effect of statistical heterogeneity on the ductile frac-
ture behavior of materials has been a major field of research
in the last two decades �1,2�. Unlike brittle fracture, ductile
materials develop plasticity as the loading continues to in-
crease. From a macroscopic point of view, continuum plas-
ticity is modeled as a smooth irreversible deformation pro-
cess using yield surfaces and flow rules derived from flow
potential �3�. On the other hand, at microscopic level, plas-
ticity in crystalline materials is explained by the motion of
dislocations under an applied stress. Recent theoretical and
experimental investigations suggest that crystal plasticity is
characterized by large intrinsic spatiotemporal fluctuations
with scale-invariant characteristics �2�. Specifically, defor-
mation proceeds through intermittent temporal bursts with
power-law size distributions, while spatial deformation pat-
terns and deformation-induced surface morphology are char-
acterized by long-range correlations and self-affine rough-
ness �2�.

Coupling these microscopic spatiotemporal fluctuations
with the macroscopic continuum plasticity theories has been
a challenge for decades. Application of general continuum-
based elastoplastic fracture mechanics theories cannot cap-
ture the material heterogeneity driven fluctuations in the
strength and fracture surface profiles. Statistical models are
necessary for this purpose as these models consider the dis-
order explicitly. In this sense, these statistical models can be
used to model material microstructure explicitly �4,5�. More-
over, these models introduce an explicit microstructural
length scale that stabilizes the governing continuum equa-
tions, which eliminates the usual mesh dependencies ob-
served in fracture simulations using finite element methods.
Finally, statistical models play an important role in charac-
terizing the fracture surface roughness. Consequently, over
the years, statistical models have been used at the micro-
scopic level to study material yielding in the presence of
disorder and to capture these scale-invariant characteristics
such as the avalanche bursts and self-affine fracture morphol-
ogy �1,6–8�.

Traditionally, the localization surface obtained in plastic
disordered media in the perfect plastic limit is considered to
be analogous to the minimum-energy surface �6,9� in a dis-
ordered medium. Based on this analogy, the localization sur-
face in a plastic disordered media is expected be a self-affine
object with a roughness scaling exponent of �= 2

3 . Alterna-
tively, a well-established technique to study localization sur-
face roughness is the lattice model where the medium is
described by a discrete set of bonds with randomly distrib-
uted thresholds �10,11�. The bonds can be chosen to be either
elastic or elastoplastic in nature. The random thresholds sig-
nify either the failure strength of a particular bond in the case
of an elastic brittle bond or the yield strength beyond which
the behavior of the bond changes from elastic state to plastic
state. Recent studies �1� using perfectly plastic random fuse
model �PPRFM� suggest that the localization surface ob-
tained in the perfectly plastic limit may not coincide with the
minimum-energy surfaces. Specifically, the authors of Ref.
�1� note that the yield surfaces obtained using PPRFM ex-
hibit multiaffine scaling below a cutoff length scale, albeit
the roughness scaling exponent above this cutoff length scale
is in good agreement with that obtained using minimum-
energy surface analogy. In terms of lattice models, PPRFM is
the simplest scalar representation of elastoplastic continuum.
Although the scaling of fracture surfaces using scalar and
vectorial representation models such as random fuse, spring,
and beam models �12–14� has been shown to be similar for
elastic brittle fracture simulations, it is not a priori clear
whether the same behavior extends for plasticity. Conse-
quently, in this study, we analyze roughness of localization
surfaces using perfectly plastic random spring model
�PPRSM�, which accounts for vectorial representation of
elastoplastic continuum.

In addition to the scaling of localization surfaces, we also
study localization features of plasticity evolution. Plasticity
accumulation in a plastic disordered media is controlled by
two competing aspects: disorder and stress concentration or
mitigation effects in the vicinity of a plastic bond. When the
disorder is strong, plasticity evolves in an uncorrelated man-
ner in the initial stages and thus resembles percolation. As
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plasticity accumulates and the yield surface starts to develop,
some degree of correlation can be expected due to plasticity
localization. A natural question to ask concerns the relevance
of these correlations as plasticity develops. If correlations are
irrelevant one should observe percolation scaling up to mac-
roscopic yielding of the lattice, as in the case of infinite
disorder. The interesting question is whether plasticity accu-
mulation follows percolation scaling up to macroscopic
yielding, and if not, when does long-range correlations de-
velop and what is its scaling? An understanding of these
plastic damage fluctuations at the microscopic scale is nec-
essary for accurately capturing their relevance at macro-
scopic scale.

This paper is organized as follows. Section II presents the
details of perfectly plastic random spring model, which is a
vectorial representation of elastoplastic medium. Section III
describes the process of plasticity evolution, and Sec. IV
presents the surface roughness properties of the yield sur-
face. Section V concludes this paper with a summary of the
work presented here. Finally, we note that a complete plas-
ticity behavior of materials is not considered in this paper. In
particular, the model presented in here does not consider re-
peated loading and unloading cycles and strain hardening
behavior. This would involve an extension of the present
algorithm and will be considered in subsequent study.

II. PERFECTLY PLASTIC RANDOM SPRING MODEL

We consider a PPRSM to investigate surface roughness
characteristics of localized plastic yielding surface in a per-
fectly plastic disordered material. In the PPRSM, we con-
sider an intact two-dimensional diamond-shaped lattice of
size L�L with 45° inclined bonds. The load-displacement
characteristics of each of the bonds is described by a per-
fectly plastic behavior such that the bond is elastic as long as
the force in the bond is less than the yield threshold, and it
transitions into the plastic state once the force exceeds the
yield threshold. Moreover, we assume that once a bond en-
ters plastic state, it remains in perpetual plastic state; that is,
there is no unloading of a plastic bond due to stress redistri-
butions and loading �see Ref. �6��. The main difference be-
tween traditionally used random spring model �RSM� for
brittle fracture �10,13� and the PPRSM is that once the force
threshold in the bond is reached, the force in the PPRSM
bond remains constant at its threshold value, while the force
in the traditional RSM drops to zero. Further increase in
external loading does not increase forces in bonds that are
already in “plastic” state. Once a connected yield surface is
developed, any further increase in loading causes the lattice
to “flow.” At this point the lattice is declared to have reached
its macroscopic plastic limit and the surface with all yielded
bonds is called the yield surface.

In the PPRSM, we start with a fully intact lattice system
with bonds having the same conductance until the yield
threshold and zero conductance there afterward. Bond yield
thresholds t are randomly distributed based on a threshold
probability distribution p�t�. In this paper, we assume a uni-
form distribution between �0,1� for bond thresholds; that is,
p�t��1. Periodic boundary conditions are imposed in the

horizontal direction, and a constant unit displacement differ-
ence is applied between the top and the bottom of lattice
system.

In the following, we adopt the tangent algorithm proposed
in Ref. �6� to simulate plastic yielding in a lattice system. At
the beginning of the simulation, we initialize the forces f j

�0�

in each of the jth spring to zero. Subsequently, during each
of the �n+1�th load step �where n=0,1 ,2 , . . .�, a unit dis-
placement �=1 is applied at the top of the lattice system and
the equilibrium equations are solved to determine the force
in each of the springs. For each bond j, the ratio between the
force f j obtained during the �n+1�th step and the remaining
breaking threshold �tj − f j

�n�� is evaluated, and the state of the
bond jc having the largest value, �=maxj�f j / �tj − f j

�n���, is
changed from elastic to plastic. Subsequently, forces in each
of the elastic springs are updated as f j

�n+1�= f j
�n�+ �f j /��. For

the next step, the bond jc that became plastic is removed
from lattice system irreversibly since we assume that once a
bond enters plastic state, it remains in that state forever, and
consequently cannot sustain any further increase in its mem-
ber force. This step is equivalent to removing the jc bond
contribution from the global stiffness matrix. This process of
yielding one bond at a time is continued until a connected
plastic surface forms such that the entire lattice starts to flow
even under infinitesimal external force. That is, the lattice
stiffness becomes zero at this point.

Figure 1 shows a typical yield surface obtained using the
PPRSM for a lattice system of size L=512. At each load
step, we solve the equilibrium equations using the multiple-
rank sparse Cholesky factorization updating algorithm pre-
sented in Ref. �15�. In comparison with the Fourier acceler-
ated iterative schemes used for modeling lattice breakdown
�16�, this algorithm significantly reduced the computational
time required for solving large lattice systems. In this paper,
we consider lattice system sizes up to L=256 for studying
the surface roughness scaling laws in plastic disordered me-
dia. For all the lattice system sizes, the number of sample
configurations, Nconfig, used is excessively large �Nconfig
=10 000� to reduce the statistical error in the numerical re-
sults.

III. PLASTICITY EVOLUTION

In the following, we investigate plasticity evolution and
its localization by analyzing plasticity profiles at different
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FIG. 1. Yield surface obtained using the RSM for a lattice of
size L=512.
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stages of simulation. For the uniform disorder case, our
PPRSM simulations show a substantial amount of plasticity
accumulation prior to macroscopic yielding of lattice. Figure
2 presents snapshots of plasticity evolution and the yield
surface formation in a typical diamond lattice system of size
L=64. A total of 2260 bonds have become perfectly plastic
before macroscopic yielding of the lattice occurs. The solid
line in the last snapshot in Fig. 2 represents the macroscopic
yield surface.

Figure 3 displays the damage profile p�y� at failure in a
typical simulation. Based on the data from a single sample, it
is difficult to assess from these curves the extent of localiza-
tion. It is clear that plasticity evolves in a diffusive manner in
the initial stages of loading as plasticity evolution at this
stage is dominated by material disorder. If the effects of

stress modification around the plastic tips were to be signifi-
cant, it is conceivable that we observe localization during
later stages of loading. Consequently, we have plotted the
plastic damage profiles during the late stages of loading. Fig-
ure 4 presents the evolution of plasticity during the later
stages of loading in a typical sample. Even at this stage,
localization is not apparent to the naked eye.

To investigate this further, in the following, we present a
quantitative description of the localization process by aver-
aging different realizations over many samples. Averaging
the profiles is a delicate task since localization, even if it
occurs, does not necessarily take place in the center, but can
in principle occur anywhere along the length of the lattice.
Thus, one cannot perform a simple average because this
would yield a flat average profile irrespective of the indi-
vidual profile shapes in a single realization. In Ref. �17�, the
authors proposed to first shift the profiles, so that they are
centered at the maximum and then average. This method
emphasizes the noise too much, yielding a spurious cusp in
the center. Another possibility is to shift instead by the center
of mass of the plasticity damage or, to avoid any effects due
to shifting, one can use the Fourier method �18�.

We first consider the plasticity accumulated up to macro-
scopic yielding by shifting the data by the center-of-mass
method. The result displayed in Fig. 5 for the uniform disor-
der distribution clearly shows that there is no localization at
macroscopic yielding. Although the profile is not completely
flat for small scales, it flattens more and more as the lattice
size is increased. We tend thus to attribute the apparent pro-
file for small systems to system size effects.

To obtain additional confirmation of these results, we per-
form a Fourier analysis of the p�y� profiles, thus avoiding
any possible bias due to center-of-mass shifting. We first
compute the magnitude of the Fourier transform for each
realization and then average over disorder. If the plastic dam-
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FIG. 2. �Color online� Snapshots of plasticity evolution and the
yield surface in a typical simulation of size L=64. A total of 2260
bonds have entered perfectly plastic state before macroscopic yield-
ing. Boxes �a�–�d� represent the snapshots of plasticity in the lattice
after nb bonds have become perfectly plastic. �a� nb=500, �b� nb

=1600, �c� nb=2000, and �d� nb=2260 �macroscopic yield line ap-
pears�. The solid line in box �d� signifies the macroscopic yield line.
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FIG. 3. �Color online� Evolution of plasticity in a lattice of size
L=256. In each of the subplots, the abscissa refers to the y coordi-
nate of the lattice section and the ordinate is the number of plastic
springs in that section. In this simulation a total of 35 593 springs
became plastic before the lattice yielded. Plot �a� refers to damage
profile after the first 10 000 springs yielded. �b� Between 10 000
and 20 000 springs yielded. �c� Between 20 000 and 30 000 springs
became plastic. �d� Between 30 000 and the macroscopic yield of
the lattice �35 593 springs are plastic�. The two vertical lines show
the range in which the final yield surface developed. No localization
of plasticity is observed in these figures.
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FIG. 4. �Color online� Evolution of plasticity in the late stages
of simulation in a lattice of size L=256. In each of the subplots, the
abscissa refers to the y coordinate of the lattice section and the
ordinate is the number of plastic springs in that section. �a� Between
the last 500 and last 300 springs that yielded. �b� Between the last
300 and last 150 springs that entered plastic state. �c� Between last
150 and last 50 springs that entered plastic state. �d� Last 50 springs
before final yield of the lattice. Once again, the two vertical lines
show the range in which the final yield surface developed. No effect
of stress concentration is observed even during these late stages of
yielding.
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age profiles were to be really uniform, we expect to see a
delta distribution in the Fourier space. This result applies to
infinite system and finite-size deviations, and other problems
of the discrete Fourier transform are expected to affect the
data. Nonetheless, as shown in Fig. 6, we note that all the
curves follow a delta distribution reasonably well, while the
tails represent the boundary effects due to nonperiodicity of
plastic damage profiles in the y direction.

In addition to the above analysis of plastic damage pro-
files, at the end of simulation, we have also analyzed the
plastic damage profiles at regular intervals. Specifically, we
have divided the simulation into six equal segments and av-
eraged the corresponding plastic damage profiles over differ-
ent samples. As before, averaging is done by shifting the
plastic damage profiles by the center of mass. Figure 7 pre-
sents the averaged plastic damage profiles at regular intervals
of PPRSM simulation. The data in Fig. 7 show that there is
no localization even in the late stages of simulation. The
plastic damage profiles flatten out as the lattice system size is
increased, and the apparent profile for small systems is due
to system size effects.

IV. YIELD SURFACE ROUGHNESS

In this section, we investigate the roughness of the yield
surface obtained from PPRSM simulations. Once the sample
has failed, we identify the final crack, which typically dis-
plays dangling ends and jumps in the profile �see Fig. 8�. We
remove them and obtain a single valued crack line h�x� as
shown in Fig. 1, where x� �0,L�, and h�x� represents the
local transverse position of the crack line at each x. For
self-affine cracks, the local width w������x�h�x�
− �1 /���Xh�X��2�1/2, where the sums are restricted to regions
of length � and the average is over different realizations,
scales as w���	�� for ��L and saturates to a value W
=w�L�	L� corresponding to the global width. The power

spectrum S�k���ĥkĥ−k� /L, where ĥk��xh�x�exp i�2�xk /L�,
decays as S�k�	k−�2�+1�. When anomalous scaling is present
�19–21�, the exponent describing the system size dependence
of the surface differs from the local exponent measured for a
fixed system size L. In particular, the local width scales as
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FIG. 5. �Color online� Average plastic damage profiles at mac-
roscopic yielding obtained by first centering the data around the
center of mass of the plastic damage and then averaging over dif-
ferent samples. The data correspond to uniformly distributed
disorder.
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FIG. 6. �Color online� Average power spectra of plastic damage
profiles at macroscopic yielding. Fourier transform of each of the
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FIG. 7. �Color online� Average plastic damage profiles at six
regular intervals of simulation. Averaging of the profiles is done by
first centering the data around the center of mass of the plastic
damage and then averaging over different samples. The data show
that localization of plastic damage does not occur even in the late
stages of simulation.
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FIG. 8. �Color online� Jumps in crack profile that arise due to
solid-on-solid projection of yield surface.
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w���	��locL�−�loc, so that the global roughness W scales as L�

with �	�loc. Consequently, the power spectrum scales as
S�k�	k−�2�loc+1�L2��−�loc�.

Figure 9 presents the scaling of yield surface width w���
with window size �. The data presented in Fig. 9 indicate
that the local roughness exponent is �loc=0.67, while the
global roughness exponent has a value of �=0.68. We have
also investigated the power spectra S�k� of the crack profiles
�see Fig. 10�. Collapse of the power spectra for different
system sizes can be observed. The slope of the plots in Fig.
10 is obtained as −�2�loc+1�=−2.29, which implies that the
local roughness exponent from the power spectrum analysis
has a value of �loc=0.65 and is consistent with the roughness
exponent estimation based on yield surface width data shown
in Fig. 9.

The self-affine property of the yield surface profile also
implies that the probability density distribution p��h���� of
the height differences �h���= �h�x+��−h�x�� of the yield
surface profile follows the relation

p��h���� 	 ��h2����−1/2f
 �h���
��h2����1/2� . �1�

Noting that periodicity in yield surface profiles is analogous
to return-to-origin excursions arising in stochastic processes,
we propose the following ansatz for the local width
��h2����1/2 in height differences �h���:

��h2����1/2 = ��h2�L/2��1/2

 �

L/2� , �2�

with ��h2�L /2��1/2=L�. For periodic profiles, the function

� �

L/2 � is symmetric about �=L /2 and is constrained such
that 
� �

L/2 �=0 at �=0 and �=L, and 
� �
L/2 �=1 at �=L /2.

Based on these conditions, a scaling ansatz of the form

� ��h2����1/2

��h2�L/2��1/21/�loc

+
�� − L/2�2

�L/2�2 = 1, �3�

similar to stochastic excursions or bridges, can be proposed
for ��h2����1/2, which implies a functional form



 �

L/2� = �1 − 
 �� − L/2�
L/2 �2�loc

, �4�

for 
� �
L/2 � that is satisfied to a good approximation by our

numerical results. This scaling ansatz results in anomalous
scaling when �loc��. Upon further simplification, Eq. �4�
results in



 �

L/2� = 4�loc
 �

L
��loc
1 −

�

L
��loc

, �5�

which along with ��h2�L /2��1/2=L� and Eq. �2� shows how
anomalous scaling arises and how local and global roughness
exponents �loc and � can be computed based on numerical
results.
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FIG. 9. �Color online� Scaling of yield surface width w��� with
window size � for system sizes L=32,64,128,256. The analysis
are conducted on the original yield surface profiles with jumps. The
local and global roughness exponents are obtained as �loc=0.67 and
�=0.68, respectively. The very close resemblance between the val-
ues of local and global roughness exponents proves that there is
very little anomalous scaling present in the yield surface profile
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yield surface profile for system sizes L=32,64,128,256. The jumps
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well for different system sizes. The local roughness exponent is
obtained as �loc=0.65, which is very close to that observed using
yield surface width analysis as shown in Fig. 9.
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Figure 11 presents the scaling of ��h2����1/2 based on the
above ansatz �Eqs. �2� and �4��. Collapse of the
��h2����1/2 / ��h2�L /2��1/2 data for different system sizes L
= �32,64,128,256� and window sizes ��L onto a scaling
form given by Eq. �4� with �loc=0.64 can be clearly seen in
Fig. 11.

The global roughness exponent of the yield surface pro-
files can be estimated by analyzing ��hq�L /2��1/q scaling.
Figure 12 presents the scaling of ��hq�L /2��1/q for q=1 to
q=6. The data presented in this figure indicate that the slopes
of the data for moments q=1–6 of �h�L /2� are identical. It
should also be noted that ��hq�L /2��1/q	L�, with �=0.67.
Considering the margin of error in the calculations, the meth-
ods of estimation, and the approximately similar values for
local and global roughness exponents, we conclude that yield
surface profiles do not exhibit anomalous scaling. This is in
contrast with traditional two-dimensional fracture simula-
tions �12�, where anomalous scaling of two-dimensional
fracture profiles has been observed.

In addition to the above anomalous scaling analysis, in the
following, we investigate multiaffine scaling of yield surface
profiles. Figure 13 presents the ��hq����1/q / ��hq�L /2��1/q

data for q=1 to q=6. The data collapse is not perfect espe-
cially for small window sizes ��L /2, albeit a reasonable
collapse of the data is observed at length scales above a
cutoff length. Scaling of the data at these intermediate length
scales suggests that a local roughness exponent of �loc
=0.64, same as that obtained from Fig. 11, represents an
adequate fit for the data. As pointed out in Ref. �12�, noncol-
lapse of the data at smaller length scales ��L /2 might arise
due to jumps in the yield surface profile. The removal of
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FIG. 12. �Color online� Scaling of ��hq�L /2��1/q with system
size L with a scaling exponent of �=0.67. The global roughness
exponent is consistent with the roughness exponent ��=0.68� ob-
tained in Fig. 9.
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symmetric about �=L /2. Hence, window sizes of only up to �
=L /2 have been shown in the figure. Fanning out of the data below
a cutoff length scale suggests multiscaling, albeit the reason behind
this effect may be the jumps in the profile �see Ref. �14��.
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FIG. 15. �Color online� Plots of cumulative probability distribu-
tions P��h���� of the height differences �h���= �h�x+��−h�x�� of
the yield surface profile h�x� for various bin sizes � on a normal
paper. �−1 denotes inverse Gaussian. This P��h���� distribution is
obtained for a system of size L=256 with window lengths �
= �2,4 ,8 ,16,32,64,128�. The collapse of the profiles onto a
straight line with unit slope indicates that a Gaussian distribution is
adequate to represent P��h����. The deviation of some data points
from the straight line with unit slope can be attributed to the pres-
ence of the small jumps within the yield surface profiles.
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these jumps from the yield surface profiles often eliminates
this artifact of multiaffine scaling.

To further investigate multiscaling behavior of surface
roughness, we study the scaling of the qth-order correlation
function Cq���= ��h�x+��−h�x��q�1/q. Figure 14 shows the
scaling of data for q=1 to q=6. The window length � ranges
from �=2 to �=L /2. Because of periodicity the data for �
	L /2 are symmetric about �=L /2. Figure 14 shows that the
data fan out at smaller length scales below a cutoff length
scale. This feature is a characteristic signature of multiaffine
scaling and is in agreement with the data shown in Fig. 13.
Multiscaling at small scales was also observed in the per-
fectly plastic random fuse model simulations �1�. However,
as in traditional fracture simulations, we believe that multi-
scaling vanishes once the jumps in the profile are removed.

In the following, we investigate the probability density
p��h���� of height differences �h���. In Refs. �22–24�, the
p��h���� distribution is shown to follow a Gaussian distri-
bution above a cutoff length scale, and the deviations away
from Gaussian distribution in the tails of the distribution
have been attributed to finite jumps in the crack profiles.
A similar behavior from the yield surface profiles obtained
using the PPRSM can be expected. Self-affine scaling
of p��h���� as given by Eq. �1� implies that the
cumulative distribution P��h���� scales as P��h����
	 P��h��� / ��h2����1/2�. Figure 15 presents the raw data of
cumulative probability distributions P��h���� of the height
differences �h��� on a normal or Gaussian paper for bin
sizes �L. The data are for a system size of L=256 with
window lengths �= �2,4 ,6 ,8 ,16,32,64,128�. The collapse
of the data onto a straight line with unit slope indicates the
adequacy of Gaussian distribution for P��h����. Deviations
from the Gaussian pattern are observed at the tails of the
distribution, which is once again due to the presence of
jumps within the yield surface profiles.

V. DISCUSSION

In summary, the analysis and results presented in this pa-
per indicate that surface roughness characteristics of local-
ized plastic yield surface in perfectly plastic disordered ma-
terial exhibit roughness exponents similar to those obtained
in the brittle fracture of disordered materials, albeit anoma-
lous scaling of plastic surface roughness is not observed. The
local and global roughness exponents ��loc and �, respec-
tively� are equal to each other, and the two-dimensional
crack roughness exponent is estimated to be �loc=�
=0.67�0.03. This result is in agreement with the roughness
estimates obtained using the perfectly plastic random fuse
model �1�. Multiaffine scaling of yield surface lines is ob-
served below a cutoff length scale as shown in Fig. 8. How-
ever, as with brittle random fuse and beam models we have
studied earlier �14�, multiscaling at small scales appears to be
an artifact of jumps in the crack profiles. In Ref. �14�, we
have analyzed the scaling of crack profiles after eliminating
the jumps in the crack profiles. Our observation was that
once we removed the jumps in the profiles, multiscaling van-
ished. In this sense, we conclude that there are no real physi-
cal arguments �physical processes� for the existence of mul-

tiscaling at small scales. The probability density distribution
p��h���� of the height differences �h���= �h�x+��−h�x�� of
the crack profile follows a Gaussian distribution.

In Sec. III, we presented plasticity evolution in a disor-
dered material and noted that accumulation of plasticity is
dominated by disorder. Specifically, we noted that long-range
correlations of plasticity accumulation are absent in these
simulations, i.e., localization of plasticity damage was not
observed even at late stages of simulation. It is in this sense
that plasticity accumulation is akin to percolation with infi-
nite disorder. This is in contrast with fracture and damage
accumulation in elastic disordered media, where damage ac-
cumulation is dominated by disorder up to the peak load of
stress-strain curve and localization of damage dominated by
stress concentration is seen in the postpeak regime �18�.

To further investigate this difference in behavior, we first
decompose the problem into “elastic” and plastic loading
cases and analyze the force distribution in the lattice under
each of these loading scenarios. Whenever a bond enters a
plastic state, it carries current equal to its yield threshold
value, and its “tangent” conductance in the plastic state is
zero. In this state, the problem is identical to replacing the

0 50 100
0

20

40

60

80

100

120

X

Y

−4

−2

0

2

4

6

8

10

12
x 10

−3

(a)

0 50 100
0

20

40

60

80

100

120

X

Y

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

(b)

FIG. 16. �Color online� A typical force distribution within a L
�L spring lattice system of size L=128 under �a� elastic and �b�
plastic loading conditions. In this simulation, a total of 9460 springs
became perfectly plastic when the macroscopic yielding of the lat-
tice occurred. The snapshot of force distribution corresponds to a
scenario when 5000 bonds entered plastic state. The arrow in the
figure identifies the partially formed yield surface segment that is
part of the final yield surface.
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plastic bond with two nodal forces at the corresponding
nodes of the bond. In this sense, the problem is decomposed
into an elastic fracture problem, wherein the plastic bond is
removed, and a plastic problem with only applied forces at
the nodes of the plastic bond. The total force in each of the

bonds is obtained by the superposition of forces in the elastic
fracture problem and the forces from the plastic problem
with nodal loads �25�.

Figures 16 and 17 present typical force distribution under
elastic and plastic loading conditions at intermediate and fi-
nal macroscopic yielding stages of simulation. The force dis-
tributions in Figs. 16�a� and 17�a� indicate that most of the
springs in the lattice show very small force under elastic
loading, although high concentration of forces is observed
around the crack consistent with fracture propagation in elas-
tic disordered material. On the other hand, the plastic force
distribution in Figs. 16�b� and 17�b� is more or less uniform
throughout the lattice, and there is no apparent stress concen-
tration around the final yield surface under plastic loading
conditions. Moreover, the magnitude of forces in Fig. 17�b�
is much higher than that in Fig. 17�a�. Consequently, the
stress concentration around the cracks in Fig. 17�a� is
smeared by the uniform force distribution in Fig. 17�b�. This
explains why there is no localization of plastic damage even
during late stages of simulation. Moreover, localization of
plasticity in continuum materials is observed when the gov-
erning equations of material lose their ellipticity condition.
This is typically the case when the material undergoes large
deformations �such as in sheet rolling�, is under high strain
rate loading, is in the presence of some sort of material soft-
ening �such as phase transitions, microstructural damage due
to nucleation and growth of voids, large irradiated swelling,
etc.�, or when the plastic yield surface exhibits corners. Since
the simulations considered in the present study do not incor-
porate any of the above-mentioned phenomena, localization
of plasticity is not observed in our simulations. On the other
hand, it would be interesting to study whether localization is
observed in disordered materials with brittle damage and per-
fect plasticity.
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