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We use Monte Carlo simulations to examine the simplest model of a room-temperature ionic liquid �RTIL�,
called the “restricted primitive model,” at a metal surface. We find that at moderately low temperatures the
capacitance of the metal-RTIL interface is so large that the effective thickness of the electrostatic double layer
is up to three times smaller than the ion radius. To interpret these results we suggest an approach which is
based on the interaction between discrete ions and their image charges in the metal surface and which therefore
goes beyond the mean-field approximation. When a voltage is applied across the interface, the strong image
attraction causes counterions to condense onto the metal surface to form compact ion-image dipoles. These
dipoles repel each other to form a correlated liquid. When the surface density of these dipoles is low, the
insertion of an additional dipole does not require much energy. This leads to a large capacitance C that
decreases monotonically with voltage V, producing a “bell-shaped” curve C�V�. We also consider what hap-
pens when the electrode is made from a semimetal rather than a perfect metal. In this case, the finite screening
radius of the electrode shifts the reflection plane for image charges to the interior of the electrode, and we
arrive at a “camel-shaped” C�V�. These predictions seem to be in qualitative agreement with experiment.
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I. INTRODUCTION

Room-temperature ionic liquids �RTILs� are molten salts
made from ions which are large enough that their Coulomb
interaction is relatively small, so that they remain in a fluid
state at relatively low temperatures. Essentially, a RTIL is a
solvent-free electrolyte, which means that RTILs can be ide-
ally suited for applications which require a thin or intensely
concentrated layer of ionic charge. RTILs are already being
used for batteries and “supercapacitors” �1�, as well as for
gating of new electronic materials. It has therefore become a
subject of great interest to understand the nature of the inter-
face between a RTIL and a metallic electrode.

In its simplest form, the question of how a RTIL behaves
in the vicinity of a charged metal surface seems remarkably
straightforward. While real-life experiments probing the
structure of the ionic double layer can be marked by a num-
ber of complications �2�, the essential description is encap-
sulated in a very simple model: an infinite planar metallic
electrode is placed in contact with a semi-infinite volume
that contains a total concentration N of mobile positively and
negatively charged hard spheres, each with the same diam-
eter a and the same absolute value of charge e. Such a model
of the RTIL is called the restricted primitive model �RPM�;
one can think that it reflects the properties of a real RTIL
reasonably well because typical ion sizes in a RTIL,
a�1 nm, are much larger than atomic sizes. We set the
dielectric constant of the RTIL equal to unity since we are
considering a model of nonpolarizable ions in a solvent-free
environment. If a voltage V is applied between the electrode
and the bulk of the RTIL, how large is the charge density �
of the metal surface? In other words, what is the capacitance
per unit area, C�V�=d� /dV, of the interface?

The answer to this question is well known in the limit of
large temperature and low applied voltage. In this case the
ionic double layer is well described as a diffuse screening
layer with a characteristic size equal to the Debye-Hückel
�DH� screening radius

rDH =� kBT

4�e2N
. �1�

Here, kBT is the thermal energy �Eq. �1�, and the remainder
of this paper, uses Gaussian units�. The diffuse layer of coun-
tercharge effectively comprises the second half of a parallel-
plate capacitor of thickness rDH, so that the capacitance per
unit area is equal to CDH=1 /4�rDH. At large density
Na3�1 this result for capacitance is valid as long as the
temperature is high enough that T�T0�e2 /kBa and the volt-
age is small enough that eV�kBT.

More generally, one can characterize the capacitance by
the effective thickness of the double layer d�=1 /4�C. In the
DH limit, d�=rDH. In realistic situations, however, the char-
acteristic temperature T0 is very large and the DH approxi-
mation fails at room temperature. One can think that as a
result ions become more strongly bound to the charged elec-
trode and the size of the double layer shrinks, so that d�

decreases and the capacitance grows. One may ask, then,
how thin the double layer can be or, in other words, how
large the capacitance can be. The apparent answer to this
question goes back to Helmholtz �3�, who imagined that in
an extreme case a neutralizing layer of ions could collapse
completely onto the electrode surface, thereby forming the
second half of a plane capacitor at a distance equal to the ion
radius a /2. The result is a double layer of size d�=a /2 and a
capacitance per unit area equal to the “Helmholtz capaci-
tance”

CH = 1/2�a . �2�

In classical mean-field theories of the electrostatic double
layer �4–6�, and in the recent influential theory of the metal-
RTIL capacitance which accounts for the excluded volume
among ions �7�, CH plays the role of a maximum possible
capacitance per unit area. Monte Carlo �MC� simulations
�8–10� seem to confirm this statement. However, these and
the majority of other simulations make the simplification of
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replacing the metal electrode with a uniformly charged insu-
lating plane. We argue below that in this way the essential
physics of image charges in the metal surface is lost �see also
Refs. �11–13��.

It is the purpose of this paper to demonstrate that capaci-
tance C�CH is possible or, in other words, that the effective
thickness of the double layer can be smaller than the ion
radius. Our previous work �14� has demonstrated that capaci-
tance C�CH can occur for highly asymmetric RTILs �where
the cation has a much smaller radius than the anion, or vice
versa�. Here, we show that even in the RPM, where cations
and anions have equal diameter, capacitance significantly
larger than the Helmholtz value is possible. As we describe
below, the metallic nature of the electrode—specifically, the
ability of ions to form image charges in the metal surface—
plays a key role in the development of large capacitance. We
present the results of MC simulations of the restricted primi-
tive model of a RTIL at various temperatures and densities,
and we suggest a basic theoretical explanation of these re-
sults based on the weak repulsion between dipoles composed
of bound ions and their images in the metal surface.

We note that the critical role of image charges for the
structure of the double layer has in fact been recognized by
previous authors �15�, who performed similar simulations
which account explicitly for the electronic polarization of the
electrode. However, Ref. �15� explored only very low ion
density Na3=0.01, where C�V=0��CH. Another paper �16�
studied the capacitance of a RTIL between two identical
metal plates and obtained large capacitance C�0��2CH, but
this study used a much more complicated model of the RTIL.

The remainder of this paper is organized as follows. In
Sec. II we present our MC results for C�T� at small voltage
and describe our MC procedure. Section III is devoted to our
analytical theory, including both temperature and voltage de-
pendences of the capacitance C�V ,T�. Section IV considers
the role of the electrode material on C�V ,T�. We conclude in
Sec. V with a summary of our main results.

II. TEMPERATURE DEPENDENCE
OF THE CAPACITANCE AND MONTE

CARLO SIMULATION METHOD

Figure 1 shows the zero voltage capacitance C�0� /CH, as
measured by our MC simulations, as a function of reduced
temperature T�=T /T0 for three different dimensionless ion
densities Na3. The points correspond to results from
the MC simulation and solid lines are a fit to the form
C /CH=A�T��−1/3, where A is a numerical constant. The mo-
tivation for this �T��−1/3 dependence is explained in Sec. III.
For all three values of the density that we examined, the
capacitance at low temperature is significantly higher than
the Helmholtz value.

These results should be contrasted with previous simula-
tion studies �8,9� of the capacitance of the RPM, in which the
metallic electrode was replaced with a charged insulator with
uniform charge density �. These studies report a capacitance
C�V=0,T� that grows with decreasing T� before reaching a
peak at T�=Tp

� and then collapsing rapidly at T��Tp
�. For

Na3=0.08 and 0.64, Tp
� �0.17 and 0.28, respectively.

The collapse of the capacitance at low temperatures
T��Tp

� was interpreted by the authors of Refs. �8,9� as the
result of strong binding of positive and negative ions to form
neutral pairs. Such binding leads to an extreme sparsity of
free charges in the RTIL, so that their total concentration
Nf �N. Substituting Nf for N into Eq. �1� at T��1, we arrive
at a large screening radius rDH and therefore much smaller
capacitance C�0�. These arguments are generic and convinc-
ing. Why, then, does the capacitance in Fig. 1 continue to
grow with decreasing temperature?

This question is the main focus of our discussion in Sec.
III. The remainder of the present section is devoted to de-
scribing our Monte Carlo procedure and may safely be
skipped by those not interested in the details of our simula-
tion method.

In our MC simulations, a canonical ensemble of Ma an-
ions and Mc cations is placed in a square prism cell of di-
mensions L�L�L /2 and corresponding volume 	=L3 /2.
The metallic electrode coincides with one of the cell’s square
faces. Every charge within the cell forms an electrostatic
image in the electrode surface �z=0�, i.e., a charge q= 
e at
position �x ,y ,z� has an image charge −q located at
�x ,y ,−z�. The total electrostatic energy E of the cell is cal-
culated as 1/2 times the energy of a system twice as large
composed of the real charges and their images, so that

E =
1

2 	

i,j�

Mt

u�di,j� , �3�

where the indices i , j label the set of all particles in the
system �ions and images�, Mt=2�Ma+Mc� is the total num-
ber of these particles, di,j is the distance between particles i
and j, and the two-particle interaction energy u�di,j� is

u�di,j� = �� , di,j � a

qiqj/dij , di,j � a .
 �4�

Here, qi= 
e is the charge of particle i.
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FIG. 1. The capacitance of the metal-RTIL double layer at zero
voltage as a function of the dimensionless temperature T�, plotted
for three values of the dimensionless ion density Na3. Symbols
represent results from the MC simulation and solid lines show a
best fit to the form C /CH=A�T��−1/3 for each density. Error bars are
smaller than the symbol size.
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The charge of the electrode is varied by changing the
number of anions Ma and cations Mc in the system by equal
and opposite amounts, so that the total number of ions
Ma+Mc=N	 remains fixed for a given overall density N.
The corresponding electronic charge �in the form of image
charges� in the electrode is Q=e�Ma−Mc� and the capaci-
tance dQ /dV can be determined from the resulting voltage.
We use the system size L=20a everywhere.

At the beginning of each simulation, positive and negative
ions are placed within the simulation cell in such a way that
they do not overlap with each other or with the metal sur-
face. The MC program then selects an ion at random and
attempts to reposition it to a random position within a cubic
volume of �2a�3 centered on the ion’s current position. The
change in the energy E associated with this move is then
calculated, and the move is accepted or rejected based on the
standard Metropolis algorithm. For one in every 100 at-
tempted moves, the MC program chooses the random posi-
tion from within a larger volume �10a�3 as a means of over-
coming the effects of any large local energy barriers. The
simulation cell is given periodic boundaries, so that an ion
exiting one face of the cell reenters at the opposite face. To
ensure thermalization, 2500 moves per ion are attempted be-
fore any simulation data are collected. After thermalization,
simulations attempt 2�104 moves per ion, of which
15–50 % are accepted.

The voltage of the electrode is measured by defining a
“measurement volume” near the back of the simulation
cell—occupying the range −L /4�x�L /4, −L /4�y�L /4,
and L /4�z�3L /8, where the origin �x ,y ,z�= �0,0 ,0� is lo-
cated at the center of the electrode surface—inside of which
the electric potential is measured. After performing thermal-
ization, the total electric potential is measured at 500 equally
spaced points within the measurement volume after every
3�Ma+Mc� attempted moves. These measured values of po-
tential are then averaged both temporally and spatially to
produce a value for the voltage V of the electrode relative to
the bulk. There was no noticeable systematic variation in
electric potential across the measurement volume. The ca-
pacitance C�V=0� is determined from the discrete derivative
�Q /�V at sufficiently small values of Q that the relationship
Q vs V is linear.

Our results are shown in Fig. 1. For all Na3 studied, the
lowest value of T� in Fig. 1 is larger than the corresponding
liquid-gas or liquid-solid coexistence temperature. For com-
parison, the triple point in the phase diagram of the RPM
ionic liquid is located at Na3=0.5 and T�=0.025, while the
gas-liquid critical point is at Na3=0.02 and T�=0.05 �17�.
We verified for each simulation that there was no phase sepa-
ration within the simulation cell.

In order to quantify the finite-size effects of our simula-
tion cell, we examined the capacitance at zero voltage,
C�0,T��, obtained from three simulation volumes of sizes
L=10a, 20a, and 30a. For Na3=0.4, C�0,T�� was seen to
scale linearly with 1 /L at all values of the temperature that
we examined �T�=0.042, 0.072, and 0.14�. In each case, the
value of C�0,T�� obtained by extrapolation to infinite system
size was within 20% of the value of C�0,T�� corresponding
to L=20a. These results allow us to conclude that the simu-
lation cell with L=20a provides a reasonable approximation

of an infinite system. All MC results presented below corre-
spond to this choice.

III. INTERPRETATION OF THE CAPACITANCE
GROWTH AT SMALL VOLTAGE AND TEMPERATURE

Our goal is to interpret the large capacitance of the metal-
RTIL interface at T��1. In this section we suggest an ana-
lytical semiquantitative theory of a mechanism which pro-
duces such large capacitance. This theory operates in the
limited range of temperature 0.05�T��1, where the RTIL
does not freeze. Thus, our theory �as any theory of the liquid
state� does not have any true asymptotically small param-
eters and should be considered only semiquantitative.

We begin by observing that when the electrode is metal-
lic, the energy of an ion binding to its image charge, −e2 /2a,
is exactly half the energy of a bound ion pair, −e2 /a. This
fact implies that if an ion pair is separated in the bulk and
then both ions are brought to the metal surface there is no net
change in electrostatic energy. Thus, even in the absence of
applied voltage there are plenty of free charges at the metal-
lic surface. Roughly speaking, this allows the double layer to
be very thin and leads to the large capacitance shown in
Fig. 1.

The zero-energy process of ion pairs dissociating and
sticking to their images on the metal surface implies that at
low temperatures T��1 effectively all ions in the system are
either paired in the bulk or bound to their images on the
electrode �18�. At zero applied voltage, equal numbers of
positive and negative ions are bound to the metal surface.
The area density n0 of these ions can be estimated from the
requirement that the chemical potential of pairs in the bulk is
equal to the chemical potential of ions at the surface, which
gives ln�2 /Na3��2 ln�1 /n0a2�, so that n0��N /2a.

As the voltage V of the electrode is increased from zero,
some number of pairs in the system is separated, so that the
free counterion can come to neutralize the electrode surface.
The corresponding density of these “excess ions” n on the
metal surface is related to the charge density � by
n= ��� /e. If ��0, then n represents an excess of anions on
the surface; if ��0 the excess ions are cations. Naturally,
excess ions condensed onto the metal surface repel each
other. Since each ion on the metal surface is separated by a
distance a from its image charge in the metal, ions and their
images constitute compact ion-image dipoles with dipole
moment ea, and so excess ions repel each other via a dipole-
dipole interaction

udd�n� =
e2a2�n�3/2

2
. �5�

Excess ions at the metal surface are surrounded by n0 other
ions per unit area, which effectively neutralize each other by
forming n0 /2 bound pairs. These n0 /2 bound pairs, along
with bound pairs in the bulk, may serve to modify the effec-
tive dielectric constant for the interaction of excess ions. We
comment on this possibility later in this paper.

At low temperatures, the excess ions will seek to maxi-
mize their distance from each other while maintaining a
given density n. One can hypothesize a zero-temperature
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description of the resulting positional correlations, where ex-
cess ions form a strongly correlated liquid reminiscent of a
two-dimensional Wigner crystal. The corresponding total
electrostatic energy per unit area of the system is

U = �nudd�n� − enV , �6�

where � is a numerical coefficient which describes the struc-
ture of the lattice of excess ions; for a triangular lattice,
��4.4 �19�. The term −enV describes the work done by the
voltage source.

The voltage V which corresponds to a given charge den-
sity �=en can be found by the equilibrium condition
�U /��en�=0, which gives

V =
5�ea2

4
�n�3/2. �7�

The resulting capacitance per unit area C=d� /dV
=e�dV /d�n��−1 is

C�n� =
8

15�a�na2
. �8�

Substituting Eq. �7� into Eq. �8� gives the capacitance in
terms of voltage:

C�V� =
8

3
� 1

10�
�2/3� e

aV
�1/31

a
� 1.3� e

aV
�1/3

CH. �9�

The expression of Eq. �9� implies that C can be signifi-
cantly larger than CH when V is small. At such small volt-
ages, the fractional coverage of excess ions on the electrode
surface na2�1, so that it is incorrect to think of the double
layer in the mean-field way: as a series of uniform layers of
charge. Rather, the neutralizing ionic charge consists of dis-
crete ion-image dipoles. The correlated nature �20� of these
dipoles allows for lower energy than what is possible in
mean-field descriptions and therefore larger capacitance that
is not limited by the physical distance a /2 between the elec-
trode and its countercharge.

Of course, the validity of Eqs. �5�–�9� is limited to the
range of voltage where na2�1. By Eq. �7�, this corre-
sponds to a dimensionless voltage V�=V / �e /a��5� /4
�5.5. At large enough voltages that na2�1, excess ions
constitute a uniform layer of charge, and therefore the ca-
pacitance approaches CH. At even larger voltages, the capaci-
tance declines as complete layers of counterions accumulate
next to the electrode and the double layer becomes thicker.
This leads to a mean-field capacitance C�V−1/2 at large volt-
ages, as described in Ref. �7�.

Formally, Eq. �9� diverges as the voltage goes to zero. Of
course, this expression neglects entropic effects of the excess
ions, which tend to destroy the lattice structure of excess ions
on the metal surface. Such effects will truncate the low-
voltage divergence of Eq. �9�, resulting in a finite capaci-
tance at zero voltage. Intuitively, one would expect that the
value of this capacitance maximum can be estimated by
evaluating the capacitance at the point where udd�n�=kBT.
This procedure gives

Cmax�T� =
A

�T��1/3CH, �10�

where A�0.6. In other words, the effective thickness
d�=a�T��1/3 /2A. At T��1, we find that d��a. The corre-
sponding voltage at which the capacitance plateaus is Vc

�

�11T�.
Figure 2 shows the capacitance as a function of V�, as

measured by our MC simulation, at density Na3=0.4 and at
two values of the temperature T�. The inset shows the dimen-
sionless charge density ��=�a2 /e of the electrode as a func-
tion of the voltage V� for the temperature T�=0.042. The
capacitance is determined by a numerical derivative of the �
vs V curve. Here, e /a2 is the maximal density for a square
lattice of ions on the metal surface, so that �� can be inter-
preted as a filling factor of the first layer of ions. Note that
the capacitance drops substantially even at low filling factor
��, so that the capacitance is already reduced by a factor of 2
at ��=0.5. This suggests that for V��2 the decline in ca-
pacitance is not driven by the excluded volume effects em-
phasized in the theory of Ref. �7�.

The conclusion Cmax�T�� �T��−1/3 can also be reached by
an analytical description of the metal surface which is appro-
priate for small charge density �, where the excess ions can
no longer be described as a strongly correlated liquid.
When the density of excess ions is small enough that
na2� �T��2/3, the total free energy F per unit area can in-
stead be written using a virial expansion:

F � Fid + �n�2kBTB�T� − enV . �11�

Here, Fid=nkBT ln�na2� is the free energy of a two-
dimensional ideal gas, B�T� is the second virial coefficient,
and −enV is the source work term. B�T� is calculated from
the dipole-dipole interaction energy udd�r� between two ion-
image dipoles as

B�T� =
1

2
�

0

�

�1 − e−udd�r�/kBT�2�rdr �12�

� � �
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FIG. 2. The capacitance as a function of the dimensionless volt-
age V�=V / �e /a� at two different temperatures for a system with ion
density Na3=0.4. The inset shows a plot of the dimensionless
charge density ��=�a2 /e as a function of the voltage V� measured
by the MC simulation at the temperature T�=0.042.
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�2.65� e2a2

kBT
�2/3

. �13�

As before, we can use the equilibrium condition
�F /��en�=0 to define the voltage with respect to the den-
sity of excess ions n, which gives

V� � T��5.3na2�T��−2/3 − ln�1/na2�� . �14�

In the limit V�→0, the two terms on the right-hand side of
Eq. �14� become equal, and the corresponding capacitance
d�en� /dV is Cmax�T��ACH / �T��1/3. Hence, this approach
arrives at the same conclusion as that of Eq. �10�, although it
gives a somewhat different estimate for the constant
A�1.2.

The prediction of Eq. �10� provides a good fit to the ca-
pacitance measured by our MC simulation over a range of
ion densities, as shown in Fig. 1. The value of the coefficient
A is found to be 0.6, 1.1, and 1.2 for Na3=0.08, 0.4, and
0.64, respectively, which is consistent with our earlier esti-
mates. The dependence of the constant A on the ion density,
which produces larger capacitance at larger Na3, is perhaps
an indication that the dipole interaction suggested in Eq. �5�
is weaker at higher ion density. One possible explanation is
that at high densities ion pairs in the vicinity of two excess
ions can polarize in the direction of the electric field, thereby
producing an effective dielectric constant between them. If
such a dielectric constant �� is added to Eq. �5�, then we find
that A�0.6����2/3. The values of the constant A from above
suggest that for bulk densities Na3=0.08, 0.4, and 0.64, the
value of �� is 1.0, 2.4, and 2.9, respectively. These values are
consistent with our interpretation that the effective dielectric
constant should increase with ion density, driving the capaci-
tance upward. This increase is also reflected in Fig. 2, where
the capacitance at finite voltage is somewhat larger than pre-
dicted by Eq. �9�, consistent with the increase in the constant
A.

Based on our arguments from this section about the de-
pendence of the capacitance on voltage and temperature, we
can hypothesize a general scaling relationship C�V� ,T��
which reproduces Eqs. �9� and �10�:

C�V�,T��
CH

=
�1

���2T��2 + �V��2�1/6 . �15�

Here, �1 and �2 are numerical coefficients. Applying this fit
to the curves shown in Fig. 2 gives a reasonably good fit with
�2�8, suggesting the capacitance plateaus at about
V�=8T�, as compared to the theoretically estimated value
Vc

�=11T�.

IV. ELECTRODE MATERIAL: FROM PERFECT
TO POOR METAL

So far we have assumed that the electrode is a perfect
metal or, in other words, that the screening radius b of the
metal is much smaller than the ion diameter a. This assump-
tion is justified for RTILs with large ions and electrodes
made from a good metal. Experiments on such systems have
indeed reported large capacitance that declines with absolute

value of voltage �21� �the C-V curve is ‘‘bell shaped’’�. How-
ever, for smaller ions and for electrodes made from semi-
metals, such as graphite or glassy carbon, experimental val-
ues of C�V=0� are smaller and the C�V� curves are ‘‘camel
shaped,’’ i.e., the capacitance grows parabolically near V=0
�21–23�.

In order to interpret this difference qualitatively, let us
recall that in such poor metals the density of states at the
Fermi level is relatively small, and the screening radius b of
the metal may become comparable to a /2. As a result, the
image potential changes. When b�a /2 one can think that
the electric field produced by ions at the metal surface is
relatively weak and slowly varying. In such a case the
screening charge of the metal is effectively situated at the
distance b away from the metal surface, i.e., at z=−b. There-
fore, the reflection plane for the image charge is at z=−b, so
that an ion at distance z from the surface experiences a
smaller attraction −e2 /4�z+b� to the surface, rather than the
standard −e2 /4z for a perfect metal. At the distance of closest
approach z=a /2, the ion-to-surface attraction energy be-
comes −e2 /2�a+2b�. This leads to a finite energy cost E0 for
dissociating a bulk ion pair and bringing it to the metal sur-
face, given by E0=e2 / �a−1− �a+2b�−1�−1. Thus, a finite volt-
age is necessary to break pairs in the bulk and obtain free
ions which can provide screening. This means that, for an
electrode with finite screening radius b, the bell shaped C�V�
curve splits into two peaks located at V= 
E0 /e, thereby
becoming camel shaped, in agreement with the above-
mentioned data.

The capacitance C�V� at V�E0 /e can be estimated with
the help of the theory in Sec. III leading up to Eq. �9�. In this
case, however, the voltage V in Eq. �9� should be replaced
with V−E0 /e and the dipole arm a should be replaced with
the longer arm a+2b. These substitutions give

C�V� = 1.3� e

�a + 2b��V − E0/e��
1/3 a

a + 2b
CH, �16�

for V�E0 /e. Since the dipole-dipole repulsion is much
stronger due to the longer dipole arm, C�V� is
substantially smaller and reaches its geometrical
limit CH�b�=CHa / �a+2b� at a smaller voltage
V−E0 /e=5�e /4�a+2b� or V�−E0 / �e2 /a��5.5 / �1+2b /a�.
Starting from this voltage the capacitance saturates at the
level of CH�b�.

Only at even larger voltage V�−E0 / �e2 /a�
� �5.5a2+8�b�a+b�� / �a�a+2b�� do counterions comprise a
full layer at the surface, after which the theory of multilayer
arrangement of ions �7� becomes applicable. This same be-
havior for C�V� is expected in the case where a good metal is
covered by a thin insulating layer, for example, its own ox-
ide.

In order to verify this theory we repeated our MC calcu-
lations for T�=0.04 and Na3=0.5 using a relatively large
b=a /2, which is at the limit of applicability for linear
screening by the electrode surface. For simplicity, we have
also assumed that the metal ion lattice has the same dielectric
constant as our RTIL. Results are shown in Fig. 3, plotted as
a function of V� and ��. As expected, the peak at V=0 is split
into a camel-like structure �we show only the positive half of
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the symmetric C-V curve�. The characteristic dimensionless
voltage of the peak is Vp

� �0.5, in agreement with the above
estimate for E0=e2 /2a. Note that the capacitance maximum
occurs at ��=0.1 and is apparently not related to excluded
volume effects among counterions. As predicted by Eq. �16�,
the peak capacitance C�Vp

�� is approximately 2.5 times
smaller than at b=0 �recall that CH�b� in Fig. 3 is twice
smaller than CH in Fig. 2�.

V. CONCLUSION

To summarize, this paper is concerned with Monte Carlo
simulations of the restricted primitive model of a RTIL at a
metal interface. Within this model, we obtain capacitance at
zero voltage as large as 3CH. We also find that for a good
metallic electrode at small voltage, C decreases with T as
T−1/3. When the temperature is fixed and is relatively small,
C�V� decreases as 1 /V1/3 �the C-V curve is bell shaped�. On
the other hand, when the electrode is made from a semimetal
the C-V curve is camel shaped, meaning that the capacitance

first grows with V and then goes through a maximum and
decays as 1 /V1/3. We interpret these results with the help of a
semiquantitative analytical theory based on the weak repul-
sion between ion-image dipoles. Our conclusions are in
qualitative agreement with experimental data.

While there are a number of effects ignored by the primi-
tive restricted primitive model—asymmetry of anion and cat-
ion sizes, polarizability of ions, and disorder at the electrode
surface, to name a few—our results may be quite relevant for
real-world experiments on room-temperature ionic liquids. A
typical ionic liquid has anions and cations with diameter
a�1 nm, which apparently corresponds to a Helmholtz ca-
pacitance CH�2 �F /cm2 and a dimensionless temperature
T��0.02. This temperature is extremely low, and within the
assumptions of the RPM would imply crystallization of ions
in the bulk. However, in real RTILs the ions are polarizable,
which means that the bulk of the RTIL has a dielectric con-
stant ��1 that reduces the magnitude of interactions at long
distances; typically ��3. Thus, T� should generally be re-
placed with �T��0.06 and CH with �CH�6 �F /cm2. In
this sense, our result that in the RPM the capacitance can be
as large as 3CH should be taken as an indication that polar-
izable RTILs can have C�3�CH=18 �F /cm2, a value that
is in agreement with typical capacitance measurements on
RTILs �21–23�. The typical electrochemical stability window
of about 6 V corresponds to ��V���12, which is well within
the range of our predictions �24�.

Finally, we note that if both ionic species have the same
polarizability, then our basic description of the interface re-
mains valid. Polarizability of ions modifies both the attrac-
tion energy between ions and the attraction energy between
an ion and its image. However, the attraction energy of a pair
of oppositely charged polarizable ions in the bulk is still
equal to the sum of the attraction energies of the two ions to
the metal surface, so that at zero voltage the metal surface is
highly populated by dissociated ions. At small finite voltage,
excess ions seek to maximize their distance from each other,
and the resulting correlations allow C�CH in the way de-
scribed by Sec. III.
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