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Activity spread and breathers induced by finite transmission speeds
in two-dimensional neural fields
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The work studies the spatiotemporal activity propagation in a two-dimensional spatial system involving a
finite transmission speed. We derive a numerical scheme in detail to integrate the corresponding evolution
equation and validate the derived algorithm by a study of a spatially periodic system. Finally, the work
demonstrates numerically transmission delay-induced breathers subjected to anisotropic external input.
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Finite transmission speed in physical systems has at-
tracted research for decades. Previous work on heat diffusion
has shown experimentally that the transmission speed (also
called propagation speed in the literature) is finite in certain
media [1,2]. These results do not show accordance to classi-
cal diffusion theory implying infinite transmission speed. To
cope with this problem theoretically, Cattaneo was one of the
first to insert delay terms into the diffusion equation to
achieve a finite transmission speed [3].

Recently, an integral model has been proposed which
takes into account a finite transmission speed as a space-
dependent retardation [4]. It was shown that the Cattaneo
equation can be derived from this model. Interestingly, this
model is well established in computational neuroscience
where it describes the activity evolution in a neural popula-
tion involving finite transmission speed along axonal fibers.
This so-called neural field model has been shown to model
successfully neural activity known from experiments [5,6].
In the recent decades, neural fields have been studied ana-
Iytically and numerically in one and two spatial dimensions
[7,8], while previous studies considered finite axonal trans-
mission speeds in one-dimensional models only [9]. To our
best knowledge, no previous study considered analytically
and numerically finite transmission speeds in two-
dimensional neural fields. The current work fills this gap to
reveal finite transmission speed effects in two-dimensional
systems. To this end, the subsequent paragraphs derive a fast
numerical scheme to simulate the corresponding evolution
equations. Then stimulus-induced activity propagation is
studied numerically to illustrate the delayed activity spread.
Moreover, we find numerically transmission delay-induced
breathers which have not been reported before.

Let us assume a two-dimensional quadratic spatial do-
main () with side length / and periodic boundary conditions.
Then the neural population activity V(x,1), i.e., the mean
membrane potential, at spatial location x € {) and time ¢
obeys the evolution equation
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Ta—tV(x,t) =1(x,1) - V(x,1)

+f dzyK(IX—YI)S{V<y,t—U>], (1)
Q C

with the synaptic time constant 7, the external stimulus
I(x,1), the finite axonal transmission speed ¢, and the non-
linear transfer function S. Moreover, the spatial interaction is
nonlocal and is given by the spatial synaptic connectivity
kernel K(|x—y|) that depends on the distance between two
spatial locations x and y only.

To investigate the activity propagation in detail, we derive
a iteration scheme for the numerical integration of Eq. (1).
Since the integral over space in Eq. (1) is not a convolution
in the presence of a finite transmission speed ¢, one cannot
apply directly fast numerical algorithms such as the discrete
fast Fourier transform (DFT) to calculate the integral. Hence
the numerical integration of Eq. (1) is very time consuming
with standard quadrature techniques. For instance, with a
discretization of the spatial domain by N? grid intervals and
applying the Gaussian quadrature rule for the spatial integral,
it would be necessary to compute N* elements in each time
step what is very time consuming in case of a good spatial
resolution. The present work proposes a fast numerical
method that is based on the DFT and resembles the Ritz-
Galerkin method well established to solve partial differential
equations. To this end, we reformulate the problem by intro-
ducing a delay kernel that in turn allows to write the integral
again as a convolution in space and time.

We extend the integral in Eq. (1) to

A(X,f)=f dzyK(|x—y|)S[V<y’t_ |X—Y|>}
Q c

=f dzyJw dt' L(x-y,t—t)S[V(y,t)] (2)
Q .

- f &y f " Ly DSVt — D], (3)
QO 0

with 7, =1/\2c, the spatial delay kernel L(x,7)
=K(x)8(|x|/c—7) and the delta distribution &(-). These
simple calculations show that A may be written as a spatial
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FIG. 1. The illustrative construction of the delay kernel L(x, 7).
Assuming a spatial kernel (left image), L exhibits rings with radius
c7 (images on the right for different delay times) which is the in-
teraction distance of the system at the delay time 7.

convolution, but with a new delayed spatiotemporal kernel L
that now considers the past activity. Form (2) has been used
previously to study spatiotemporal instabilities in one- and
two-dimensional neural fields [7].

We observe in Eq. (3) that the new delay kernel L is
independent of time ¢ and is computed on the delay interval
only. Hence it represents the contribution of the current and
past activity to the current activity at time 7. In addition, we
observe that A implies multiple delays and the corresponding
delay distribution function depends strongly on the spatial
kernel K. In other words, axonal transmission speeds repre-
sent a distribution of delays, what has been found before in
other contexts [10,11].

Figure 1 illustrates the construction of the kernel: given
the kernel function K in space (Fig. 1, left image), L(x, 7) is
generated by cutting out a ring of radius ¢7 (Fig. 1, images
on the right hand side). In a continuous spatial domain these
rings are infinitely thin, whereas a spatially discretized do-
main yields finite ring widths, see the paragraphs below for
more details.

Now let us derive the rules to compute A numerically. The
periodic boundary conditions lead to discrete wave vectors
k,,,=(k,.k,) with k,=27p/l, pe Z, Then V(x,t) may be
expanded into the Fourier series

1 ~ .
Vioy == 2V (0)el i), (4)

|

with the Fourier vector component V,,(1)=V(k,,.k,.t). In
addition, we find the spatial Fourier transform

_ 1 (2 1”2 A

V() =~ f dx f dyV(x,y,t)e Fmrethn) (5)
L) -2

Inserting Eq. (4) into Eq. (3) and applying Eq. (5), A reads

©

Aley, = 2 el J dTLy(T)S,u(1 = T), (6)
0

m,n=—mo

where L, (1), S,,(7) are the spatial Fourier transforms of
L(x,t) and the nonlinear functional S[V(x,7)], respectively.
In addition, we find

~ c?
Lmn(T) = 7[

—1/2¢ Y -l2¢

12¢ 12¢ .
& - DK (lcd)e ™ m™d> 7. (7)

After obtaining A(x,y,f) in the Fourier space for a
continuous spatial domain, now we discretize the spatial do-
main to gain the final numerical scheme. To this end,
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Q) is discretized in a regular spatial grid of NXN
elements with grid interval Ax=[/N. Hence x—x,
=nAx, n=-N/2,...,N/2—1. By virtue of this discretiza-
tion, we can approximate Egs. (6) and (7) by applying the
rectangular rule [2f(x)dx~AxZN*3 f(x,). The error is
E<(b-a)AxX*f'(£)/24, a<&<b for twice-differentiable
functions f, i.e., the rectangular rule is a good approximation
for smooth functions and large enough N. The same holds
true for the discretization of the time integral and Eq. (7)
reads

NI2

E Lk (Tu)e—iZﬂ(km+np)/N’ (8)
N*At kp=—NI2 ?

Zmn(Tu) =

with the discrete version of the delay kernel L
LkP(Tu) = 5(A T\"’kz + p2’ Tu)K(|XkP|) .

By virtue of the isotropy of the spatial interactions, in addi-
tion we find the simple relation L,,(T,)=K(ucAt), i.e., the
width of the rings in Fig. 1 is cAt. In these latter calculations,
we introduced the time discretization Tkp=(k, p)AT,
Ar=Ax/c¢, T—T,=ult, and 8§7-T)— 6,,/At for 7— 7,
The symbol &(-,-) is identical to the Kronecker symbol and is
introduced for notational convenience.

Although the relation L,,(T,)=K(ucAt) appears quite in-
tuitive and elucidates the discrete ring structure of L, it does
not give directly the condition which grid point (k,p) be-
longs to which delay ring. This condition may be read off the
Kronecker symbol: u is an integer number and hence
SATK +p*,T,)=1 if [ArJk*+p?/Af]l=u with the integer
operation [a] that cuts off the decimal numbers. Conse-
quently the grid points (k,p) that contribute to the delay time
T, obey u=-=\IP+p><u+l, u=0,1,2,... .ty with
Umax =] Tmax/ AZ], 1.€., they lie in a ring with inner and outer
radius (cAt/Ax)u and (cAt/Ax)(u+1), respectively.

From the definition of L,(T,), we can derive some con-
ditions on the numerical parameters. The width of the rings
in Fig. 1 is Ar=cAt/Ax spatial grid intervals. Consequently,
the maximum radius of a ring is //2Ax and hence the maxi-
mum transmission speed that can be implemented is
Cmax=1/\2At. Since ¢y — for At—0, the transmission
speed ¢ >, in the discrete scheme is equivalent to an in-
finite transmission speed in the analytical original model and
the finiteness of c,,, results from the time discretization.
Moreover, ¢ — ¢ yields 7, — 0, i.e., the transmission de-
lay vanishes.

Another consequence of the spatial discretization is the
finite number of spatial Fourier modes in contrast to the in-
finite number of modes in continuous domains. The maxi-
mum wave number is k,,,=27/Ax and, by the definition of
Ax, the number of Fourier modes is limited to N.

Now combining the latter results, Eq. (6) reads

N/2-1

A(-xr’ys’tv) = E

m,n=—N/2

Upax~1

X E Zm}'t(TL4)§mrz(tz)_Tu)~ (9)
u=0

elZﬂ'(mHns)/N
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t=4.85ms t=5.85ms

FIG. 2. Spatiotemporal response activity to the external stimulus I(X,t)=10+e"‘2/ % for the spatial connectivity function K(x) by the
numerical simulation of Eq. (1). Used (dimensionless) parameters are K,=0.1, ¢=10, [=10, k,=107/l, 0=10, 0;=0.2, N=512, 7
=1, Ar=0.005. Moreover, [(=2.0, S[V]=2/{1+exp[-5.5(V-3)]} and V[,=2.000 83. The initial values are chosen to V(x,§)=V, for the
delay interval —I/2c = =0. Introducing the temporal and spatial scale 7=10 ms and A=1.0 mm, the results reflect the spatiotemporal
activity with transmission speed c=1.0 m/s and the domain length /=10 mm, which are realistic values for layer 2/3 in visual cortex. Then
the points A and B are located at a distance d4=2.1 mm and dz=3.8 mm from the stimulus onset location at the origin, respectively. The

bar in the plots is 0.83 mm long.

Utilizing the standard definition of the two-dimensional dis-
crete  Fourier transform Ty [A]=S, A, exp(=i2(nk
+mp)/N),n,me[-N/2;N/2—1] and its inverse (IDFT)
T'PF correspondingly, we find finally

7 |
12 max’
A1) = 5T > TPHL(T)] x TPF[S(1, - T,)] |
u=0

(10)

Some numerical implementations of the DFT assume
that the index n runs in the interval [0;N—1]. In this case,
Eq. (10) is also valid but Tpr [A] is modulated by a factor
e—iﬂ'(k+p) — (_ 1 )k+p'

In practice, T?*[L(T,)] is computed once for all T, in the
beginning of the simulation since it does not depend on the
system activity. Moreover, for N=2", ne N, the discrete
Fourier transform may be implemented numerically by a
Fast Fourier Transform that speeds up the numerical compu-
tation dramatically. This possible algorithm choice represents
the major advantage of the proposed method compared to
other nonconvolution methods.

The discrete version of A can be applied to any explicit or
implicit numerical integration scheme. For instance, the nu-
merical Euler scheme stipulates

- ~ At ~
an(ti + At) = an(ti) + Imn(ti) - an(ti)
T

d
L3
+ ]FE TDF[L(tu)]mn X TDF[S(tu - tu)]mn ’
u=0

(11)

where I,,,(¢) is the Fourier transform of the input /(x,7) and
one obtains V(x,1,) by applying Eq. (4).

In the following, we study analytically and numerically
the response to an external stimulus. At first, let us consider
a small input. Then the response is linear about the systems’
stationary state. Since we are interested in responses that
approach the stationary state after removal of the stimulus, it
is necessary to ensure the linear stability of the stationary
state.

The stationary state of Eq. (1) constant in space
and time implies V,=«S[V,]+1, for a constant input I, with

the kernel norm x= [ oK(x)d*x. Considering small additional

external inputs I(x,7)=I(x,t)—1I,, small deviations u(x,?)
=V(x,1)—V, from this stationary state obey

du(x,t)

P u(x,t) + 1(x,1)

+s’f K(x - y)u(y,t - |x—y|/c)dy?, (12)
Q

with s'=8S[V]/ 8V, V=V, Now expanding u(x,f) into a
spatial Fourier series according to Eq. (4) and applying a
temporal Laplace transform to each Fourier mode amplitude,
we find the characteristic equation

AN+1= f K(x)e®xNxlleg2y (13)
Q

with the wave vector k=(k,,,k,)" and the Lyapunov exponent
\ € C. The stationary state Vj, is linearly stable if Re(\)<0.

Now let us consider the spatiotemporal response of the
system involving the spatially periodic interactions K(x)
=K,>7 cos(kx)exp(=|x|/ o), with k;=k.(cos(¢,),sin(¢,))’,
¢;=im/3. This kernel reflects spatial hexagonal connections
which have been found, e.g., in layer 2/3 of the visual cortex
in monkeys [12]. Stimulating the stable system by a small
external input in the presence of the finite transmission
speed c¢ elucidates the transmission delay effect on the
linear response. This delay effect has attracted some
attention in previous studies on the activity propagation in
the visual cortex [13,14]. For the given kernel, the character-
istic Eq. (13) reads N+1=32.f(\,$)+f_(\,¢), with

=N, ) =1/N(1/ g+ N/ c)>+k>+k> = 2kk, cos(¢;—0)>  and
k=k[cos(6),sin(#)]. The numerical simulation applies pa-
rameters which guarantee the stability of the stationary state.

Figure 2 shows snapshots of the simulated spatiotemporal
response of the system about a stable stationary state apply-
ing the numerical scheme [Eq. (11)]. We observe the lateral
activity propagation starting from the stimulus location in the
domain center. The spreading activity reveals the maxima of
axonal connections close to previous experimental findings
[12]. To validate the numerical results, we take a closer look
to two single spatial locations, denoted A and B in Fig. 2 at
distance d, and dy from the stimulus location in the center.
Before stimulus onset, they show the stationary activity con-
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FIG. 3. (Color online) Transmission delay-induced breathers evoked by an anisotropic external stimulus. The spatial connectivity
function is chosen to K(r)=10 exp(~r/3)/(18m)—14 exp(-r/7)/(98m) and the input magnitude and variances are Iy=10 and 3|
=3, 2521=5, respectively. Further parameters are ¢=100, /=30, N=512, 7=1, At=0.05, and Vijs,=0.005. The initial values are chosen to

V(x, 6)=0 for the delay interval —L/y2c= #=0.

stant in time. After stimulus onset, it takes the activity some
time to propagate from the stimulus location to these distant
points, i.e., the transmission delays d,/c=2.1 ms and
dp/c=3.8 ms with the transmission speed c. In fact, Fig. 2
shows that the activity reaches the locations A and B about
these times as expected. This finding validates the numerical
algorithm proposed above. Moreover, the chosen parameters
are realistic for layers 2/3 of the visual cortex and hence the
results elucidates that the axonal transmission delay is impor-
tant to understand the activity spread in the visual cortex as
pointed out in previous studies, e.g., [14].

Finally, we ask whether the transmission delay may in-
duce oscillatory instabilities in the presence of external input.
The following brief numerical study is motivated by previ-
ous theoretical studies on breathers [15]. In that study, the
authors computed analytically conditions for Hopf-
bifurcations from stimulus-induced stable standing bumps in
a neural model involving spike rate adaption. The corre-
sponding control parameter of these instability studies is the
magnitude of the applied external stimulus. In contrast, the
present model does not consider spike rate adaption and de-
creases the axonal transmission speed, i.e., increases the
transmission delay, to evoke a delay-induced Hopf-
bifurcation while keeping the other parameters constant.

Since an analytical treatment would exceed the aim of the
current Rapid Communication by far, we just apply a nu-

merical study to show this effect. We apply an anisotropic
Gaussian stimulus / (x,t):IOe"‘IYIX/ 2 with the 2 X 2 diagonal
variance matrix 3!, with 2;‘: 1 /of, i=1,2. Moreover the
spatial kernel K(x) represents locally excitatory and laterally
inhibitory connections and the transfer function is the Heavi-
side function S[V]=H[V-Vesn]- The numerical computa-
tion of Eq. (1) applying the numerical scheme [Eq. (11)]
yields delay-induced breathers in two dimensions. Figure 3
shows the temporal sequence of a single oscillation cycle.
Such delay-induced breathers in two dimensions have not
been found before.

Concluding, we have derived analytically and validated
numerically a numerical scheme for two-dimensional neural
fields involving transmission delay that includes a convolu-
tion structure and hence allows the implementation of fast
numerical algorithms, such as fast Fourier transform. More-
over, we have demonstrated numerically a transmission
delay-induced breather that has not been observed before. To
facilitate future applications of the algorithm, the implemen-
tation code for both numerical examples is made available
for download [16]. In future research, the transmission delay
will play an important role in the understanding of fast ac-
tivity propagations whose time scales are close to the trans-
mission delay, e.g., in the presence of ultrafast pulses and/or
at spatial nanometer scales.
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