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Hundred twenty years after the fundamental work of Poincaré, the statistics of Poincaré recurrences in
Hamiltonian systems with a few degrees of freedom is studied by numerical simulations. The obtained results
show that in a regime, where the measure of stability islands is significant, the decay of recurrences is
characterized by a power law at asymptotically large times. The exponent of this decay is found to be �
�1.3. This value is smaller compared to the average exponent ��1.5 found previously for two-dimensional
symplectic maps with divided phase space. On the basis of previous and present results a conjecture is put
forward that, in a generic case with a finite measure of stability islands, the Poincaré exponent has a universal
average value ��1.3 being independent of number of degrees of freedom and chaos parameter. The detailed
mechanisms of this slow algebraic decay are still to be determined. Poincaré recurrences in DNA are also
discussed.
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According to the Poincaré recurrence theorem proven in
1890 �1� a dynamical trajectory with a fixed energy and
bounded phase space will always return, after a certain time,
to a close vicinity of an initial state. This famous result was
obtained in relation to the studies of the three-body gravita-
tional problem which fascinating history can be find in �2�.
While recurrences will definitely take place a question about
their properties, or what is a statistics of Poincaré recur-
rences, still remains an unsolved problem. The two limiting
cases of periodic or fully chaotic motion are well understood:
in the first case recurrences are periodic while in the latter
case the probability of recurrences P�t� with time being
larger than t drops exponentially at t→� �see, e.g., �3,4��.
The latter case is analogous to a coin flipping where a prob-
ability to drop on one side after t flips decays as 1 /2t.

However, the statistics of Poincaré recurrences for generic
two-dimensional �2D� symplectic maps is much richer. Such
systems generally have a divided phase space where islands
of stable motion are surrounded by a chaotic component
�5,6�. In such a case trajectories are sticking around stability
islands and recurrences decay algebraically with time

P�t� � 1/t�, � � 1.5. �1�

The studies and discussions of this behavior can be find in
�7–13� and references therein. According to the above studies
the Poincaré exponent � has a universal average value for
2D symplectic generic maps.

While the statistics of Poincaré recurrences in 2D maps
has been studied in great detail �7–13�, the original three-
body problem with a few degrees of freedom N=9 addressed
by Poincaré �1� �effective number of degrees of freedom is
Neff=6 if to exclude the center of mass motion� has not been
studied yet in great detail. The case of four-dimensional �4D�
and six-dimensional �6D� symplectic maps has been consid-
ered in �14� and an algebraic decay of type �1� has been
found with 1.1���1.5 and 1.7���2, respectively. A
more detailed study, with up to N=25 degrees of freedom,
has been performed in �15� with a variation in � found to be
in a range 1.3���5.5 depending on map parameters and
values of N. In this work I study the statistics of Poincaré

recurrences in a model system for 4�N�8 going up to two
orders of magnitude larger times comparing to �14,15�.

To reach a high efficiency of numerical simulations I use
a dynamical map

p̄n = pn + �K/2���sin�2��xn − xn−1�� + sin�2��xn − xn+1��� ,

x̄n = xn + p̄n, �2�

which was studied numerically in �16–18�. Here bars mark
values of dynamical variables after one map iteration. Peri-
odic boundary conditions are used in xn�mod 1� and
pn�mod 1� with −0.5� pn�0.5. The map is symplectic. I use
N particles, 1�n�N, with a periodic boundary conditions in
n�mod N�. For N=1 map �2� is equivalent to the Chirikov
standard map �5� �assuming that all variables for n�1 are
equal to zero�. The properties of P�t� for this case can be find
at �9,11–13� and references therein. For a number of particles
N�2 the total momentum of the whole system is preserved
so that one can say that this situation corresponds effectively
to Neff=N−1 /2 degrees of freedom. In the following I con-
sider 4�N�8.

The recurrences are considered on line pn=0 for each par-
ticle, the integral probability of recurrences, averaged over
all particles, is defined as a total integral probability P�t� of
recurrences with time larger than time t, which is measured
in number of map iterations. In a more formal way, I count
the number of map iterations tr between the consecutive
crossing of line pn=0 for each particle, such an event is
called a recurrence. Then the relative number of recurrences
with time tr larger than t �tr� t� is taken to be equal to the
recurrence probability P�t� with averaging over all particles.

As in �9,11�, to compute P�t� I usually used one trajectory
iterated up to time ttot�1012. Special checks with other tra-
jectories or other ttot unsure that P�t� remains unchanged in
the limit of statistical fluctuations which appear only when
the number of recurrences becomes of the order of a few
events. It should be noticed that map �2� is similar, in certain
aspects, to the one studied in �15� �e.g., both are built on the

PHYSICAL REVIEW E 82, 055202�R� �2010�

RAPID COMMUNICATIONS

1539-3755/2010/82�5�/055202�4� The American Physical Society055202-1

http://dx.doi.org/10.1103/PhysRevE.82.055202


basis of the Chirikov standard map�, but in the present case
the couplings between particles are local, while all particles
are coupled in �15�.

An example of dependence of P�t� on t is shown in Fig. 1
for relatively short times and large N when the dynamics is
mainly fully chaotic. The initial decay drops exponentially
P�t��exp�−t / tD� with a certain time scale tD which depends
on K. The dependence of tD on N is relatively weak since up
to a certain time P�t� curves are practically independent of N
�see Figs. 1 and 2�. At large times the exponential decay is
replaced by a power-law decay which is well visible for N
=4,6 in Fig. 2.

The time scale tD is related to a diffusive spreading in pn
characterized by a diffusion rate D /4�2= �pn

2	 / t. Indeed,
such a relaxation diffusive process on an interval −0.5� pn
�0.5 of size L=1 is described by the Fokker-Plank equation

��/�t = D/�8�2��2�/�2p . �3�

This equation with zero boundary conditions ��p= 	0.5�
=0 gives the exponential relaxation of probability to stay
inside the interval at large times: P�t�
exp�−t / tD� with
1 / tD=�2�D /4�2� / �2L2�=D /8 �see, e.g., Equation �2.2.4� in
�19�, in our case the interval size is L=1�. Thus with this
relation one can extract from the initial exponential drop of
P�t� the relaxation time tD and from it the diffusion rate D. In
such a way I obtain the dependence of D on K and N. As
discussed above the dependence on N is very weak and can
be neglected. On the contrary the dependence of tD and D on
K is very strong as it is shown in Fig. 3.

The dependence D�K� has a few interesting features. For
K=1 I find D�1 /2 that corresponds to a random phase ap-
proximation valid in a regime of strong chaos. With a de-
crease in K the diffusion drops rapidly, at small values of K
one has approximately algebraic decay D�Kb with the ex-
ponent b=5.93	0.22. This value of the exponent is in a
good agreement with the values obtained in �16,18� which
are b=6.6 and b=6.3, respectively. It should be stressed that
the methods of computation of D in �16,18� were rather dif-
ferent compared to those used here.

In fact an enormously powerful numerical method has
been used by Chirikov and Vecheslavov �18� to compute an
extremely small rate of the fast Arnold diffusion �down to
D
10−44 at K�8
10−7 and N=16�. This diffusion appears
in very tiny chaotic layers around multidimensional reso-
nances. By its structure, the method used in �18� determines
the diffusion in a local domain of phase space, while the
method used here gives the global diffusion. The agreement
between two methods shows that these two diffusion coeffi-
cient are approximately the same.

In these studies I want to analyze how this chaotic web
influence the statistics of Poincaré recurrences. Of course
one is not able to go to so small values of K but also in a
certain sense one does not need this. The algebraic decay of
P�t� appears due to sticking of trajectories around stability
islands so that one simply needs to have a significant mea-
sure of stability islands.
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FIG. 1. �Color online� Dependence of statistics of Poincaré re-
currences P�t� on time t for N=8 and parameter K=1,0.6,0.4 �full
curves from left to right at log10 P=−4� and for N=6 and K
=0.6,0.4 �dashed curves from left to right at log10 P=−4�. Here
P�t� is an integrated probability of recurrences with time larger than
t; recurrences are considered on line pn=0, sum is taken over all N
degrees of freedom.
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FIG. 2. �Color online� Same as in Fig. 1 for K=0.6 and N
=4,6 ,8 �left group of blue/black full, dashed and dotted curves
from right to left at log10 P=−8, respectively� and for K=0.4 and
N=4,6 ,8 �right group of violet/gray full, dashed and dotted curves
from right to left at log10 P=−8, respectively�. The data are ob-
tained from one trajectory with the total number of iterations ttot

=1012 �for N=8 I used ttot=1011�.
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FIG. 3. �Color online� Dependence of the diffusion rate D on
chaos parameter K �points�. The dashed curve is drawn to adapt an
eye, the full straight line shows the fit of last points with D=aKb

and log10 a=0.587, b=5.93	0.22.
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The data of Fig. 2 show that for N=8 one has practically
only an exponential decay of P�t� indicating that the measure
of stable component is of the order of �s
 tP�t��10−8 for
K=0.6 and �s�10−5 for K=0.4 �I use the relation between �
and P�t� discussed in �9,11��. For N=6 the algebraic decay
becomes to be visible at large t showing that the measure of
stability islands starts to be reachable only for ttot=1012.

The power-law decay of P�t� is most visible for N=4 case
shown in Fig. 4. Initially there is a slow decay of P�t� which
is compatible with a diffusive spreading on a semi-infinite
line with P�t��1 /�t �see, e.g., discussion at �7��. Since tD
grows significantly with the decrease in K the range of this
diffusive decay of P�t� increases when K→0. However, al-
ready for K�0.07 the measure of chaotic component be-
comes rather small and one needs to use special methods
described in �18� to be able to place initial conditions inside
tiny chaotic layers. Due to these reasons I stop at values of
K�0.1. In any case for small K the time tD becomes very
large and a lot of computational time becomes lost for not
very interesting diffusive decay.

After the time scale tD a trajectory starts to feel a finite
width of the chaotic layer with −1 /2� pn�1 /2 and an alge-
braic decay due to sticking around islands starts to be domi-
nant. In this regime I find the exponent �=1.3. The statistical
error of this value is rather small but certain oscillations in
logarithmic scale of time are visible for K=0.6,0.4,0.3 so
that the real uncertainty of � can be larger. At the same time
the amplitude of these oscillations is significantly smaller
compared to the case of 2D symplectic maps discussed in
�8,9,11,12�. The fit for � is done for times tdr� t� ttot where
tdr marks the end of the drop transition from diffusive spread-
ing to sticking in a vicinity of islands.

The values of �, given in the caption of Fig. 4, have a
certain tendency to increase with a decrease in K. However,
this increase is rather small �about 19% while K is changed
by factor 5�. I attribute this to a decrease in fit interval at
small values of K, where the diffusion time tD becomes
larger and larger, that gives a reduction in the fit interval
between tdr and ttot. It is clear that the fit interval tdr� t
� ttot for asymptotic algebraic decay should be sufficiently
large to determine � reliably. This is clearly not so for N
=6 case shown in Fig. 2, where the transition from exponen-
tial diffusive decay only starts to be replaced by an
asymptotic algebraic decay. In my opinion a fit in such a
small interval would artificially increase the value of �, since
a sharp drop of P�t� visible at t� tdr
 tD and being charac-
teristic of diffusive exponential decay, is not yet terminated
completely. The data of Fig. 4 clearly show that the scale tdr
grows significantly with a decrease in K and D.

This view, obtained on the basis of my results for rather
long ttot, leads me to another interpretation of previous re-
sults �14,15� which claimed the growth of � with growth of
N and chaos parameter �see, e.g., Fig. 2 in �15��. Thus, on a
first glance, in Fig. 2�c� of �15� � increases from ��1.4 to
2.8 for N=4 when the chaos parameter 
 is changed from
0.03 to 0.1. This is in drastic contrast to the results presented
here in Fig. 4 clearly showing that ��1.3�const when the
chaos parameter is changed by a factor 5. I think that such an
increase of � with 
 in �15� should be attributed to shorter
times considered there in comparison with the present stud-
ies.

In view of that I make a conjecture that in a generic case,
when the islands of stability have nonzero measure, the
asymptotic decay of Poincaré recurrences has form �1� with a
universal average Poincaré exponent ��1.3–1.4 being in-
dependent of chaos parameter and number of degrees of free-
dom N �at least for moderate and large but finite values of
N�.

The data of present studies confirm the approximate inde-
pendence of � of chaos parameter K �see Fig. 4�. At the same
time the data of Fig. 2�c� of �15� at moderate values of chaos
parameter 
=0.03 clearly show that � is approximately 1.4–
1.5 for 2�N�10. This confirms the above conjecture. In my
opinion, a further increase in � for 11�N�25, visible in
Fig. 2�c� of �15� for 
=0.03, should be attributed to a sig-
nificant reduction in the available fit interval tdr� t� ttot
which is clearly seen in Figs. 2�a� and 2�b� of �15�. It is also
clear that for the model of �15� the growth of N gives an
effective increase of the chaos parameter due to long-range
interactions present in the model. The data of �14� for 4D
map give approximately the same universal value of �, while
for 6D I expect that the time interval was not so long to see
the asymptotic behavior.

It is now well established that generic 2D symplectic
maps have Poincaré recurrences with a universal average
Poincaré exponent ��1.5 �7–10,12�. This slow decay is
linked to sticking in a vicinity of stability islands. It is natu-
rally to expect that for larger number of degrees of freedom
N the structure of such sticking regions is more complicated
giving more possibilities for sticking with slow Arnold dif-
fusion processes. Hence, intuitively it is natural to expect
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FIG. 4. �Color online� Statistics of Poincaré recurrences for map
�1� shown by curves for parameters N=4, K=1,0.6,0.4,0.3,0.2
�curves from left to right at log10 P=−8, respectively�. The expo-
nents � for the power-law decay P�t��1 / t� are 1.243	0.001,
1.292	0.002, 1.385	0.003, 1.427	0.007, and 1.476	0.005, re-
spectively. The full straight line shows the dependence P�t��1 / t�

with �=1.30	0.003 corresponding to the average of above five
values of �. The dashed straight line shows the diffusive decay
P�t��1 /�t. For each K the data are obtained from one trajectory
with the total number of iterations ttot=1012 that allows to reach the
maximum recurrence time t up to approximately t�2
108.
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that for a few degrees of freedom the average value of � will
be smaller. The universal average value ��1.3–1.4 found
here and in �15� is in agreement with such expectations.

It is interesting to note that recent extensive numerical
simulations of DNA dynamics �20� show an algebraic decay
of survival probability which is proportional to Poincaré re-
currences P�t�. The Poincaré exponent there is approxi-
mately ��2 for times t being in the range 10−6� t
�10−4 s �Fig. 4�d� in �20�� but certain cases, e.g., W122,
show ��1 at the very large times reached numerically. Thus
it is possible that a universal value of ��1.3 can appear on
times t�10−4 s.

In conclusion, the studies of the statistics of Poincaré re-
currences in Hamiltonian systems with a few degrees of free-

dom show that at large times it is characterized by power-law
decay �1� with the universal average exponent ��1.3. This
value is not so far from the average exponent ��1.5 found
for the 2D symplectic maps. It is possible that the physical
mechanisms of this slow decay have similar grounds related
to sticking of trajectories in a vicinity of small islands of
stability for enormously long times. Further extensive studies
are required to understand in a deeper way the detailed
mechanisms of this slow decay. Even more than hundred
twenty years after the work of Poincaré �1� this fundamental
problem of dynamical chaos remains unsolved.

I thank A. S. Pikovsky for stimulating discussions that
initiated this work.
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