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The art of making structural, polymeric, and metallic glasses is rapidly developing with many applications.
A limitation is that under increasing external strain all amorphous solids �like their crystalline counterparts�
have a finite yield stress which cannot be exceeded without effecting a plastic response which typically leads
to mechanical failure. Understanding this is crucial for assessing the risk of failure of glassy materials under
mechanical loads. Here we show that the statistics of the energy barriers �E that need to be surmounted
changes from a probability distribution function that goes smoothly to zero as �E=0 to a pdf which is finite at
�E=0. This fundamental change implies a dramatic transition in the mechanical stability properties with
respect to external strain. We derive exact results for the scaling exponents that characterize the magnitudes of
average energy and stress drops in plastic events as a function of system size.
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In this Rapid Communication we focus on the statistical
physics of the yielding transition at very low temperatures
and quasistatic external straining conditions �the so-called
athermal quasistatic or AQS limit�, where very precise simu-
lation results exist for the dependence of energy and stress
drops in plastic events as a function of system size �1�. Con-
sider Fig. 1 which demonstrates the nature of the yielding
transition. We plot here the conditional mean energy drop in
a plastic event as a function of the external strain � for two-
dimensional systems �see below� consisting of N particles,
with N ranging between 484 and 20 164. To read this figure
properly, one should understand that in some realizations
there are no plastic events at all at a given external strain.
What is measured here is the size of the mean energy drop if
such a �single� drop happened at an external strain value
between � and �+d�, averaged over numerous realizations
of the random structure of the system �see below for details�.
We see that in the early stages of the loading, the plastic
events are localized and the amount of energy released in
events is system-size independent. This is followed by a
smooth rise in these curves, showing an increasingly sharper
transition to the plastic flow state in which the plastic events
become nonlocalized avalanches whose total-energy release
increases with the system size. This very interesting system-
size dependence will be quantified below. We note in passing
that the stress itself cannot be a proper order parameter;
states with the same stress level �shown, for example, in
Fig. 1 as two magenta circles� have very different conditional
mean plastic energy drops. Here we explore the statistical
physics that is responsible for the difference between these
isostress states, which also have very similar potential energy
and pressure. We point out that the precise nature of this
strain-induced transition from the solidlike jammed state to
the steady flow state, where the plastic flow events resemble
liquidlike dynamics, is still unclear. Although the increasing
availability of computational power has recently led to many
important observations and conclusions regarding the statis-
tics of the steady flow state �1–3�, a clear-cut identification of
the physics that control the approach toward steady state has
not been presented yet. The aim of this Rapid Communica-
tion is to close this gap and to offer some exact results. We
stress that this desired analysis is best conducted in the AQS

limit since much is known there about the nature of the plas-
tic events themselves, as these are determined by mechanical
instabilities which can be seen as a saddle node bifurcation
in which the lowest eigenvalue of the Hessian matrix going
through zero �4–6�. Denote the potential energy of the
system as U�ri�, where ri are the positions of the particles,
and the Hessian matrix as Hij ��2U /�ri�r j. The Hessian is a
real symmetric matrix; we denote its lowest eigenvalue �ex-
cluding the Goldstone modes� as �P. It was established �4,6�
that when the external strain � reaches a critical value �P,
�P vanishes with a square-root singularity, i.e., such that
�P���P−�. We will show that this simple singularity deter-
mines the numerical values of a number of interesting expo-
nents that appear in the statistical analysis �7�.

Below we employ a model glass-forming system with
point particles of two “sizes” but of equal mass m in two and
three dimensions �2D and 3D, respectively�, interacting via a
pairwise potential which has been fully described in �8�. The
experiments performed are as follows: for undeformed iso-
tropic systems we measured the strain at which the first plas-
tic event takes place and denoted it as ��iso. Each such mea-
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FIG. 1. �Color online� Evolution of the conditional mean energy
drops with the loading, for all system sizes simulated, increasing
from bottom to top. Superimposed �scale on the right ordinate�
is the mean stress vs strain curve for the largest system of
N=20 164. The magenta dots represent equistress states but of
highly different stability properties.
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surement was performed on a freshly produced amorphous
solid, quenched from the high-temperature liquid at the rate
of 5�10−5 �

kB� . Then the AQS scheme �see �8� for details�
was utilized to strain the system up to the first mechanical
instability occurring at some strain value ��iso. Statistics of
��iso were collected for a variety of system sizes, see below.
In the elastoplastic steady state we first strained statistically
independent systems for 100% strain to reach stationarity
and then collected statistics as shown below.

In the steady flow state, the statistics of the energy drops
�U, the stress drops �	, and the strain intervals between
successive flow events �� become stationary. Quite surpris-
ingly, one finds that the averages of these quantities obey
scaling relations with the same exponents in two and three
dimensions:

��U� 	 
̄N�, ��	� 	 s̄N�, ���� 	 N�. �1�

In Fig. 2 the mean energy drop ��U� and mean strain inter-
val ���� for our model system are displayed, together with
the scaling laws �Eq. �1��. We show results in the upper
panels in two dimensions, in the lower panels in three dimen-
sions, and in both �
1 /3 and �
−2 /3. A scaling relation
�−�=1 was already established before �2�. In this Rapid
Communication we propose that the respective values 1/3
and −2 /3 are exact.

The yielding transition is underlined by the fact that for
the first plastic event when strained from a freshly quenched
isotropic state the statistics is entirely different, with
�U	N0 representing a localized event without any system-
size dependence. On the other hand the first plastic event

does not occur for any infinitesimal value of � and careful
measurement of the mean strain interval ���iso� that sepa-
rates the undeformed state from the first plastic event results
in a scaling law

��iso 	 N�iso, �iso 
 − 0.62. �2�

How can we understand the difference between � and �iso
and what determines their numerical values?

Starting from any given mechanically stable state, at the
undeformed state or at the steady state, the system has a set
of O�N� energy barriers �E which are coupled to the external
strain. One of those needs to be surmounted in order to have
a plastic event. In AQS conditions the one chosen will be the
one which has the smallest ��iso �in the isotropic state� or the
smallest �P−� �in the steady state�. As a function of the
external strain this barrier reduces until it vanishes at the
saddle node bifurcation where �P vanishes �4–6�. In Refs.
�8,9� it was shown that the manner in which the energy bar-
rier vanishes is determined by the saddle node singularity. In
other words, it was established that close to �P

�E � �p
3 	 ��P − ��3/2. �3�

We stress that this result is valid, sufficiently close to �P,
equally well when starting from equilibrium, where �P rep-
resents the value of the strain for the first plastic event, or in
the steady state, where �P is any value of the strain where a
plastic event occurs. It turns out that the scaling law �Eq. �3��
is obeyed, at least in the class of models in which the poten-
tial is purely repulsive, for a very long range of �P−�, see
Fig. 3. We will use this in this Rapid Communication, com-
ing back to the question of universality at the end.

In terms of distributions, the possible plastic events can
occur anywhere in the system, and the number of possible
sites increases linearly with N. However, we realize that ev-
ery time that we observe a plastic event in AQS conditions, it
is one of the lowest barriers out of O�N� barriers that is
overcome �10�. We cannot directly measure the distribution
of energy barriers but need to concentrate on the extreme
statistics regarding the minimal value. In the isotropic solid
state we expect a zero probability of finding a zero barrier.
Since we have no typical scale at small strain values, the
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FIG. 2. �Color online� Panel �a�. Mean energy drop ��U� and
mean strain interval ���� in two dimensions as functions of system
size, measured in AQS simulations of steady plastic flow of a model
glass former, see text. Panel�b�. The same for three dimensions. The
continuous lines represent the scaling laws �1�. The scaling expo-
nents are the same in 2D and 3D.
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FIG. 3. �Color online� Scaling of energy barriers for various
system sizes, see �8� for details. The slope of the continuous lines is
3/2.
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distribution starts as a power law, leading to a distribution of
the form

p�x� = xh�x�/Z, Z � �
0

�

xh�x�  � 0, �4�

where h�x� decays rapidly for x�1. It is well known then
that if we now take a set of N�1 independent samples from
such a distribution, then the probability distribution g�y ,N�
of the minimal element of the set �denoted y���iso� is the
Weibull distribution �11�

g�y,N� =
1 + 

y0
� y

y0


exp�− � y

y0
1+� . �5�

In this equation y0	N−1/�1+� is the mean value of y with
respect to the Weibull distribution �12�. A test of this logic is
presented in Fig. 4 for systems in three dimensions where we
show the distribution of ��iso of isotropic states, in excellent
agreement with Eq. �5� with 
0.6. In two dimensions the

scaling with 
0.6 is also recovered. We expect the distri-
bution of the coefficients of the scaling law �Eq. �3�� to be
regular, implying that the probability distribution of the
energy barriers has, for low values of �E, the form

p��E� 	 ��E�̃, ̃ = �2 − 1�/3. �6�

For 
0.6 we find ̃
1 /15�0. This is consistent with the
notion of solidity; one expects that for a solid the probability
of finding a zero barrier is strictly zero. Finally, the mean
value of the minimal values of �E scales as predicted by the
Weibull distribution, i.e., ��E�	N−1/�1+̃�. Substituting this
in the mean of Eq. �3� we recover Eq. �2� with the observed
exponent �iso
−0.62. We thus conclude that the first plastic
event is dominated by extreme statistics of the minimal bar-
riers for plasticity with a probability distribution function
�pdf� of the energy barriers that goes to zero for �E→0 as is
expected from a solid.

The picture changes dramatically in the elastoplastic
steady state. There the distribution of strain intervals be-
tween successive events �� changes qualitatively as seen in
Fig. 4: the power-law initial part of the distribution is very
shallow, maybe even a constant. Below we model the pro-
cesses that are responsible for this; skipping the details for a
while, here we propose that the hallmark of the yielding
transition is that in the elastoplastic steady state the probabil-
ity to find a zero value of the energy barrier is nonzero, cf.
�13�. In other words, the criterion of solidity is no longer
applicable. We also cannot expect that the statistics of ��
follows the Weibull distribution since the values of �P in
subsequent plastic events become highly correlated and his-
tory dependent. Indeed the steady-state distribution shown in
Fig. 4 cannot be fitted to a Weibull distribution. On the other
hand we can still expect that the numerical values of the
minimal energy barriers that need to be surmounted remain
statistically independent due to the avalanches, see next para-
graph. The consequence of this is that with N independent
random samples of �E with a finite probability to find
�E=0, the scaling of the minimal value must scale like 1 /N
�12�. Using this in Eq. �3� leads to the proposed exact values
of �=1 /3 and �=−2 /3.

To understand the pdf of strain intervals as measured in
the steady state �cf. Fig. 4�, we need to explain how the
avalanches that occur after every plastic event refresh the
statistics and renormalize the pdf to the form seen in Fig. 4.
The cumulative energy associated with an avalanche grows
subextensively with the system size �like N1/3�, and therefore
the impact of these avalanches remains pertinent in the ther-
modynamic limit. To model the effect of the avalanches
imagine that we consider a population of N energy barriers
�Ei sampled from a distribution p��E� which satisfies
the two conditions: �i� p��E�	�E0 for �E→0 and �ii�
p��E�→0 at least exponentially fast for �E�1. The series
of plastic drops is then modeled by the following iterative
steps; at each step we repeat the following operations: �1�
find �Emin and record it. �2� For every �Ei��Emin trans-
form,
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FIG. 4. �Color online� The measured pdf in two dimension for
N=4096 in panel �a� and in three dimensions for N=2000 in panel
�b� for the observed value of x���iso for isotropic systems �in red�
and of x��� for the steady state �in blue�. The scaling law for the
mean shown in the inset indicates a value of 
0.6 for both two
and three dimensions. Note the dramatic change in the power-law
tail of the distributions at small values of ��: in equilibrium the tail
guarantees that the probability to see a zero value of �E is zero.
This is not the case in the steady state, and this is the physical
hallmark of the yielding transition. The black line through the red
dots in panel �b� is the Weibull distribution Eq. �5�.
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�Ei ← ��Ei
2/3 − �Emin

2/3 �3/2. �7�

This step takes into account the fact that what is changed in
the simulations is the external strain rather than the energy
barriers, and we have used Eq. �3�. �3� Remove �Emin and
reassign a new number from p��E� instead of it. �4� To
model the decorrelating effect of avalanches, randomly re-
move qN numbers from the set �q� �0,1� is some fraction�
and reassign new numbers instead of them from p��E�. This
iteration scheme is readily performed numerically, leading to
a converged pdf that is shown in Fig. 5 in comparison to the
simulational pdf. We find an excellent agreement which un-
derlines the crucial effect of avalanches in partially destroy-
ing the correlation between subsequent values of �Emin. Im-
portantly, the scaling of the mean value is independent to the
choice of q in the large N limit. It should be noted that when
the same iteration procedure is performed with a pdf that

goes to zero at zero like �E �even for very small �, the
resulting converged pdf is qualitatively different, preserving
the scaling of the mean value ��Emin�	N−1/�1+�. This
stresses the importance of the physics of the yielding transi-
tion which takes the system from a solidlike to liquidlike
state with a qualitative change in lim�E→0 p��E�.

The main point of this Rapid Communication is that the
yielding transition is characterized by a qualitative change in
the nature of the pdfs of the energy barriers for a plastic
event in the AQS limit. For the solid the probability to see a
vanishing energy barrier is zero. For the elastoplastic steady
state this probability is finite. Physically, this transition is the
reason for the avalanches that are observed in the steady
state—there are many localized configurations with close to
zero energy barrier to surmount and any plastic drop any-
where in the system will find it easy to cause all these con-
figurations to cross the instability threshold. The implication
of this qualitative change is the change in scaling exponents
which are shown in Eqs. �1� and �2�. One main result of the
Rapid Communication is the derivation of the exact values of
the exponents � and � in Eq. �1�. We stress that this exact
result rests entirely on the availability of the scaling law �Eq.
�3��. Clearly this law is asymptotically true for �→�P,
equally well in 2D and 3D, implying that � and � are dimen-
sion independent. However the range of strain values over
which this law pertains in the present Rapid Communication
is quite amazing, and there is no guarantee that this will
remain true in other models which have attractive terms in
the potential of molecular degrees of freedom. It is therefore
worthwhile to continue to explore the scaling properties of
different models in the AQS conditions to delineate the ex-
istence of universality classes.
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FIG. 5. �Color online� Pdf of the observed strain intervals be-
tween avalanches compared to the converged pdf of the iterative
model, see text for details. Here q=2 /3. The agreement indicates
the robustness of the model and the crucial role of the avalanches in
renormalizing the pdf. Here we opted to show the pdf of strain
intervals because it is the directly measurable quantity related to the
energy drop by Eq. �3�.
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