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We show that the ground state of a system of magnetic dipoles, with no electric charge, is a ferromagnetic
quantum Fermi liquid at high densities, driven by the dipolar exchange energy. As in the system of classical
point dipoles, the direct dipole energy is zero in this case. With decreasing density, there is a transition to an
antiferromagnetic lattice state. An addition of short range hard core repulsive potential will arrest the infinite
density collapse of the ferromagnetic state, and possible melting of the low density antiferromagnetic lattice
state.
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The problem of the nature of the ground state of Fermi
particles of mass m, magnetic moment �m and density n
=N /V0=3 / �4�r0

3�, with no electric charge, is of intrinsic in-
terest in many body physics. Sauer �1� and Luttinger and
Tisza �2� were among the first who studied the nature of
lowest energy configurations of classical point magnetic di-
poles localized on simple three dimensional lattices, at zero
temperature. Although, their work was in the context of pos-
sible dipolar magnetism in solids, without any reference to
forces responsible for the localization, their numerical results
are of relevance to the present problem also. They found that
the classical dipolar energy Ecl is given by Ecl /V0=n2�m

2 Dc,
i.e., Ecl /N= �3 /4����m

2 /r0
3�Dc, where the energy constant Dc

depends on the configurations �directions� of magnetic di-
poles and the type of the lattice. The energy is lowest for the
antiparallel antiferromagnetic alignment on a simple cu-
bic�sc� lattice with dipoles directed along the cube axis
�chains of dipoles oriented parallel and antiparallel to 001�,
having Dc=−2.676. No ferromagnetic state having energy
lower than this is possible for point dipoles or spherical par-
ticles �2,3�. Parallel ferromagnetic alignments are possible
for face centered cubic �fcc� and body centered cubic �bcc�
lattices in thin elongated granules, with the maximum pos-
sible value of Dc being −2.094.

In our earlier work �4,5�, we have investigated the nature
of the ground state of N charge less spin-1/2 particles of
mass m and magnetic moment �� m=�s�, in volume V0. For
any comparison with the classical case discussed above,
note that � /2=�m in our case. Within the framework of a
single determinant variational Hartree-Fock �HF� calcula-
tion, we used plane waves for the spatial part of the single
particle states, labeled by the wave vector k� and spin �=↑
or ↓, to show that a fully polarized ferromagnetic state with
prolate spheroidal occupation function n↑�k��=��kF↑

2 −k2�1
−�2�3 cos �

k̂

2
−1� /2�� , 0	�2	1, gives a good upper bound

for the total energy E at high densities. Here, ��x� is the

usual step function, �2 is a variational deformation param-
eter, and kF↑ is determined from the relation �k�n↑�k��=N. For
the trial occupation functions, n��k��=n���k��� or n↑�k��=n↓�k��,
the desired negative contribution from the dipolar exchange
energy vanishes identically. As in the classical case, the di-
rect contribution from the dipole interaction always vanishes.
For the above spheroidal ferromagnetic state, called the JM
ferromagnetic state for the purpose of identification, we ob-
tained exact analytical results for the variational ground state
energy for the system as a function of the deformation pa-
rameter �2, and then minimized the energy to calculate the
optimum value �2

��r0� of the variational parameter as a func-
tion of the density. We found �2

� to be close to 1 at high
densities, going over smoothly toward zero at low densities.
At high densities, as r0→0, we showed that in the JM fer-
romagnetic state the positive kinetic energy Ekin /N varies as
1 / �r0�2+4/7, and the negative contribution from the exchange
term diverges as Eexch /N→�m

2 /r0
3, implying an infinite den-

sity collapse of the dipolar system. At high enough densities,
the negative dipolar exchange energy is the dominant term in
the total energy. We, however, showed that the addition of a
suitable short finite-range repulsive hard core interaction be-
tween the particles, in addition to the magnetic dipole inter-
action, would always lead to a stable equilibrium density
curve for the total energy E /N as a function of density.

As already emphasized by us �4,5�, the JM ferromagnetic
state cannot be the ground state of the dipolar system at low
densities, as r0 becomes large. Even the unpolarized para-
magnetic state with n↑�k��=n↓�k��=��kF−k�, gives the HF en-
ergy E0 /N= �
2 /2m��2.21 /r0

2� for the dipolar system, which
is lower than the energy for the ferromagnetic state, at low
densities. More recently, Fregoso and Fradkin �6� have used
the same approach, of choosing the spheroidal form for the
occupation function n��k�� in the variational HF calculation,
for the interesting case of the cold Fermi gas of magnetic
dipolar atoms in the presence of an isotropic �-function �con-
tact� interaction. They allowed the possibility of occupation
of both up and down spins. As expected, the result of finding
the fully polarized ferromagnetic state in the high density
limit, obtained earlier by us �5,4�, is consistent with their*mahanti@pa.msu.edu
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phase diagram in the limit of vanishing isotropic contact in-
teraction. In such a limit, they obtain the paramagnetic phase
in the low density region. As shown by us explicitly �4,5�,
they would have also obtained a stable ferromagnetic phase
in the high density limit, if they would have used a finite-
range repulsive hard core interaction instead of the contact
interaction. The question which we would like to ask here is
whether the magnetic dipoles get localized at low densities to
form a crystal lattice to lower the total energy because of
vanishing positive kinetic energy contribution and the nega-
tive direct dipole interaction energy contribution arising, e.g.,
from the antiferromagnetic spin arrangement, and if so, at
what density? In such a case, the total energy could be nega-
tive, much lower than the positive energy of the paramag-
netic state. Fortunately, calculations of direct classical dipo-
lar energy Ecl /N for various simple lattice configurations are
already available �1,2�. We should, however, add the quan-
tum correction to this classical energy, arising from spin fluc-
tuations �7�, and also possibly from lattice vibrations, before
comparing the total energy EL /N for the “localized” lattice
case with the total energy EJM /N in the itinerant JM ferro-
magnetic state, as a function of density. For this purpose, it is
more convenient to define a dimensionless density parameter
r0 /Rm in terms of a magnetic dipolar length Rm	2m�m

2 /
2.
This parameter is independent of the spin S of quantum di-
poles. It should be noted that Rm differs by a factor of 1/4
from rm defined in our earlier work �4�, with r0 /Rm=4r0 /rm.
We find that at sufficiently high densities, the JM ferromag-
netic state continues to have lower energy compared to the
energy of the localized antiferromagnetic simple cubic lat-
tice, even after the latter is corrected for the quantum spin
fluctuations �7�. As r0 /Rm increases, there is a crossover at a
certain value of r0 /Rm when the lattice state energy begins to
be lower than EJM. Any possible positive contribution from
the zero-point lattice vibrations will only shift the transition
point to higher values of the density parameter r0 /Rm.

The magnetic dipole Hamiltonian for the system of N spin
−1 /2 particles with magnetic moment �� m=2�ms� is given by
�4,5�

H = �
i

pi
2

2m
+ �

i	

N

�
j

N

V�r�i − r� j;s�i,s� j� , �1�

V�r�i − r� j = R� ij;s�i,s� j� = �4�m
2 /Rij

3 ��s�i · s� j − 3s�i · R̂ijs� j · R̂ij�

= �1/V0��
q�

�
M=−2

+2

V�−M��q��Ni,j
�M��s�i,s� j�eiq� .R� ij�1 − �q� ,0� ,

�2�

where

V�M��q�� = 4�m
2 hMY2,M�q̂�; h0 = �4�/3��16�/5�1/2, �3�

Ni,j
�0� = si

�0�sj
�0� − 1

4 �si
�+1�sj

�−1� + si
�−1�sj

�+1��;

Ni,j
��1� = si

��1�sj
�0� + si

�0�sj
��1�, �4�

Ni,j
��2� = si

��1�sj
��1�; si

�0� = siz, si
��1� = six � isiy , �5�

and where Rij = �r�i−r� j� , R̂ij =R� ij /Rij.
The HF variational wave function 
N for the JM ferro-

magnetic state is constructed by choosing N occupied single
particle wave functions 
r�s� �k���= �1 /V0�1/2�exp�ik� ·r������s��,
with the occupation function

n��k�� = ��,↑n↑�k��; n↑�k�� = ��kF↑
2 − k2�1 − �2P2�cos �k����

�6�

and

kF↑
3 = 6�2��1 + �2/2��1 − �2�1/2�N/V0; 0 	 �2 	 1. �7�

For any deformation parameter, 0	�2	1, the total energy
for the JM ferromagnetic state is

EJM = Ekin + Eexch, �8�

Ekin = E0�22/3Fkin��2�� ,

Fkin��2� = �1 − �2/2��1 + �2/2�−1/3�1 − �2�−2/3, �9�

Eexch = − E0��1/2.21��Rm/r0��Fexch��2� , �10�

Fexch��2� =
1

�2
�1 − �1 + �2/2��1 − �2�1/2

��2/�3�2��1/2�sin−1��3�2/�2 + �2��1/2��� ,

�11�

where E0=N�
2 /2m��2.21 /r0
2� is the HF energy for the para-

magnetic state. The optimum value �2
� of the deformation

parameter at each density is obtained by minimizing the total
energy EJM with respect to �2. The resulting plot for �2

� as a
function of r0 /rm=4r0 /Rm is given in our earlier paper �4�,
which also gives the limiting analytical forms for �2

� and the
total energy for low as well as high densities. Essentially, at
very low densities, as r0 /Rm→�, �2

�→0 and E /E0→22/3. At
high densities, as r0 /Rm→0, �2

�→1−3.4552�r0 /4Rm�6/7,
and

Ekin/E0 → �3�−1/3�3.4552�−2/3�Rm/4r0�4/7,

Eexch/E0 → − �1/2.21��Rm/r0� �12�

so that the high density limiting value for the total energy is

EJM/E0 → − � 1

2.21

Rm

r0
= − 0.4525

Rm

r0
. �13�

A plot for the total energy in the JM ferromagnetic state as
a function of r0 /Rm is shown in Fig. 1. If one rewrites the
high density limiting expression for EJM /V0 in the form,
n2�m

2 DJM, i.e., EJM /N= �3 /4����m
2 /r0

3�DJM, then the energy
constant DJM =−�4� /3�=−4.1888.

To answer the question whether at low densities the
magnetic dipoles will get localized to form a lattice, let
us examine the value of the possible ground state energy
EL for such a system. From the work of Luttinger and Tisza
�2�, it is clear that the classical dipolar energy is lowest for a
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simple cubic lattice with antiferromagnetic configuration,
with

Ecl/N = − �2.676�n�m
2 = − �3/4���2.676��m

2 /r0
3. �14�

The quantum correction arising from spin fluctuations has
been calculated for this configuration by Corruccini and
White �7� in the spin-wave approximation, for magnetic di-
poles of spin S. They found a large correction to the classical
energy, with ELQS=Ecl�1+ �0.236 /S��. This is almost 47%
correction for S=1 /2 system. Although, the spin-wave ap-
proximation is good only for large S, and it may overestimate
the correction for a spin-1/2 system, we will use this result as
an upper limit for the correction. In other words, for the
lowest energy configuration, we take

ELSQ/N = �Ecl/N��1.47� = − �3/4����m
2 /r0

3��3.9337� ,

�15�

which implies?

ELSQ/E0 = − �3/4���3.9337�� 1

2.21

Rm

r0
= − 0.4249

Rm

r0
.

�16�

This is plotted in Fig. 1, where a plot of Ecl /E0 is also given
along with the plot of EJM /E0, for comparison. Note that at
high densities, as r0 /Rm→0, the JM ferromagnetic state has
lower energy �see Eq. �13�� than the case of the antiferro-
magnetic simple cubic lattice. However, as r0 /Rm increases,
there is a transition at r0 /Rm�10−4, after which the lattice
state has lower energy. Without the correction for the spin
density fluctuations, the transition occurs at a higher value of

r0 /Rm�10−2. For thin elongated ferromagnetic cubic lat-
tices, the energy constant DLSQ=−3.9337 in Eq. �16� �for the
antiferromagnetic sc lattice� changes to, −3.2664 for the fcc
case and to, −3.2960 for the bcc case �7�, in the correspond-
ing spin-wave calculations of Cohen and Keffer �8�. Note
that these energies are higher than that of the antiferromag-
netic sc case.

At this point, we may ask whether one should add a posi-
tive quantum zero-point energy arising from lattice vibra-
tions of the lattice, as one does in the case of Wigner solid
for the case of the electron gas problem? For the case of the
Wigner lattice �9�, the classical lattice energy varies as,
−1 /r0, and the zero-point energy of lattice vibrations varies
as, +1 /r0

3/2, which implies stability of the lattice for low den-
sities. In the magnetic dipolar problem, the localization of
the dipoles at the lattice points may arise only from addi-
tional forces, e.g., from a suitable repulsive hard core poten-
tial. Even if the lattice positions are equilibrium positions, it
is not necessary that all vibrational modes arising purely
from the dipolar interaction, which is not repulsive every-
where, are stable, i.e., some of the lattice modes may have
imaginary frequency. In that case, one has to stabilize the
lattice by using stronger repulsive forces such that all lattice
vibration modes have real frequencies. To get some idea of
the magnitude of zero-point energy for stable modes, one
may consider the case of parallel spin-1/2 dipoles along the
crystal axis �001� and long wavelength longitudinal vibra-
tions along the �001� direction. Following the usual proce-
dure �10�, assuming that the dipoles are in equilibrium lattice
positions, one can show that the long wavelength longitudi-
nal phonon frequencies �ql are determined by

m�ql
2 = �n/4��V�0��qẑ��q2, �17�

where the required Fourier component of the dipolar interac-
tion can be obtained from Eq. �3�. This leads to

1
2
�ql = 1

2
sq, with

s = �8�n�m
2 /3m�1/2 = �
/m��Rm/r0�1/2�1/r0� . �18�

A Debye-like model then gives the corresponding zero-point
energy of the form,

ELV/N � �Rm/r0�1/2�
2/2m��1/r0
2�; ELV/E0 � �Rm/r0�1/2.

�19�

This crude estimate has been made here only to show that the
lattice zero-point energy will vary as, +1 /r0

5/2, whereas the
static part of the lattice energy ELSQ varies as, −�1 /r0

3�. Thus,
in this case there is no binding of the system at low densities
as r0→�, in the absence of any other interaction. Even for
the case of the homogeneous dipolar quantum Fermi liquid,
there is no binding at low densities, and the ground state will
then be the paramagnetic state with energy E0.

In conclusion, we find that the ground state of the mag-
netic dipolar system is the fully polarized homogeneous JM
ferromagnetic state at high enough densities. At low densi-
ties, the dipoles will get localized into an antiferromagnetic
lattice state, with the transition at �r0�tr somewhere between
10−4Rm and 10−2Rm, where Rm	�2m /
2��m

2 , depending on

FIG. 1. Plots for the total energy E in the units of the paramag-
netic free fermion energy E0=N�
2 /2m��2.21 /r0

2�, as a function of
the density parameter r0 /Rm, for the homogeneous JM ferromag-
netic state �solid line�, for the classical antiferromagnetic sc lattice
�dotted line�, and for the antiferromagnetic sc lattice with correc-
tions for the zero-point energy of quantum spin fluctuations �dashed
line�. Note that the Y axis has been multiplied by r0 /Rm, for ease in
plotting of values in the high density region, where Rm

	�2m�m
2 /
2�, r0= �3 / �4�n��1/3.
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the actual quantum correction due to quantum spin fluctua-
tions to the classical dipolar energy constant Dc �see Fig. 1�.
To get an idea about the magnitude of Rm, it is to be noted
that for heavy magnetic atoms, it is about 10−8 cm. In the
presence of a suitable short finite-range repulsive hard core
potential �4�, the high density JM ferromagnetic phase is
stable against any possible high density collapse, and the low
density magnetic solid phase will be stable against vibra-
tional melting of the lattice. In the absence of such a hard
core interaction, which leads to stable vibrational modes, the
system will, of course, go over to the paramagnetic gas phase
at low densities. If the range of the suitable hard core repul-
sive potential is less than �r0�tr, the ground state of the sys-
tem is the JM ferromagnetic state, whereas if the range of the
repulsive hard core potential is greater than �r0�tr, the ground

state will be the low density antiferromagnetic sc lattice
state. To obtain a more accurate value of the crossover point,
we will need more precise calculations of the spin density
fluctuation contribution and the vibrational zero-point en-
ergy. We hope to address this problem in the future, in which
we have to add a suitable repulsive hard core potential from
the very beginning. At very high densities the system will
always be in the homogeneous fully polarized ferromagnetic
JM state with elongated needle like Fermi occupation func-
tion in the k�-space.
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