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We have used Brownian dynamics simulations to study the dynamics of a bead-and-spring polymer subject
to a flashing ratchet potential. To elucidate the role of hydrodynamic �HD� interactions, simulations were
carried out for the cases where HD interactions are present and when they are absent. The average speed of the
polymer and its conformational properties were examined upon variation in the polymer length, N, and the
ratchet spatial period, L. Two distinct dynamical regimes were evident. In the low-N/high-L regime, the
velocity decreases with increasing N, and center-of-mass diffusion is a key part of the motional mechanism. By
contrast, in the high-N/low-L regime, the velocity is insensitive to variation in N, and motion is achieved via
the coupling of internal modes to the cycling of the ratchet potential. The location of the regimes is correlated
with the average conformational state of the polymer. Incorporating HD interactions increases the average
polymer velocity for all polymer lengths and ratchet spatial periods considered. The dynamical behavior of
polymers in the low-N/high-L regime can be understood using simple a theoretical model that yields quanti-
tatively reasonable predictions of the polymer velocity.
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I. INTRODUCTION

Molecular separation methods based on transport are of-
ten used for the size-based separation of DNA fragments of
varying lengths. Many of these procedures employ disor-
dered nanoporous materials such as polymeric gels and fi-
brous membranes or artificial nanostructures as molecular
sieves or filters. Separation arises from the sensitivity of the
molecular mobility to the relative size of the molecule to the
mean pore size of the matrix �1–3�. The natural limitations of
such approaches have motivated the development of other
methods for molecular transport and separation. One such
method uses the concept of a Brownian ratchet and was in-
vestigated experimentally by Bader et al. �4–6� a decade
ago. These authors constructed a device composed of a sys-
tem of parallel microelectrodes of alternating charge that
were asymmetrically positioned on a silicon substrate. By
cyclically charging and discharging the electrodes, the
Brownian motion of charged molecules can be rectified, and
transport can be achieved. This device was used to transport
strands of ssDNA of length 20–100 nt, and the resultant data
were found to be in partial agreement with theoretical pre-
dictions using a simple model. For the electrode dimensions
and ssDNA lengths employed, the transport rate was deter-
mined primarily by the rate of diffusion, which in turn is
dependent on molecular size. Consequently, this type of de-
vice, in principle, can be used for the transport and size-
based separation of DNA and other biopolymers such as
charged proteins.

The purpose of the present study is to use computer simu-
lation methods to investigate fully the transport and thermo-
dynamic properties of devices of the type studied in Refs.
�4–6� for polymers. We employ a simple bead-spring de-
scription of the polymer and model the polymer-electrode
interaction using a one-dimensional �1D� spatially asymmet-
ric external potential. This work builds on other recent simu-
lation studies that used comparable models �7–9�. We focus

primarily on the effects of hydrodynamic �HD� interactions
on the transport properties, as well as coupling of the mode
of transport to the average conformational state of the poly-
mer.

In order to understand the results of simulation studies of
polymer/ratchet systems, it is helpful to first review the con-
cept of a Brownian ratchet using the ratchet model employed
in this study and in Refs. �7–9� as an illustration. In this
model, each monomer experiences an external potential of
the form illustrated in Fig. 1. In the context of the device
described in Refs. �4–6�, the minima and maxima positions
can be viewed as the locations of positively and negatively
charged electrodes with which the negatively charged DNA
fragments interact. The sawtooth form of the potential is cho-
sen for simplicity. The potential is characterized by an am-
plitude, V0, a spatial period L, and an asymmetry parameter
�. In addition, the potential is toggled on and off cyclically
with a period �= ton+ toff, where ton and toff are the times
during which the potential is turned on and off, respectively.
If V0�kBT, a particle subjected to this potential will be
trapped in a region near a potential minimum. When the
potential is off, the particles freely diffuse within the solvent
with no preferred direction. At the end of the off-time, the
potential is reapplied to the system, causing some of the
particles to be forced toward the potential minimum to the
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FIG. 1. Ratchet potential of Eq. �6�, illustrating the potential
amplitude, V0, ratchet spatial period, L, and ratchet potential asym-
metry, �.
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right and a smaller number to move to the minimum to the
left, while the rest return to the initial minimum. Thus, dur-
ing one on/off cycle, the average particle position advances
in the +z direction, and repeatedly flashing the asymmetric
potential on and off will result in a nonzero average or
“drift” velocity of the particles. The magnitude and direction
of the drift velocity can be changed by adjusting the values
of the parameters of the potential. Note that the diffusion rate
determines the characteristic distance traveled by the particle
during the off-time and, consequently, will also affect the
drift speed.

The transport mechanism described above is known as a
“flashing ratchet” and is one of many types of Brownian
ratchets. More generally, Brownian ratchets are systems in
which the Brownian motion of diffusive particles is rectified
by breaking the symmetry of the system and forcing it from
equilibrium. Other examples of symmetry breaking include
rocking ratchets �10� and the use of thermal oscillations
�11,12�. Brownian ratchet systems of this type have been
studied in detail both experimentally �4–6,13–21� and theo-
retically �7–10,22–37� in recent years and have served as
theoretical models for biological and synthetic molecular
motors �7,26–28,38–41�.

Downton et al. used Langevin dynamics simulations to
study the transport of a flexible bead-and-spring polymer
subject to a flashing ratchet using the potential illustrated in
Fig. 1 �7,8�. For simplicity, HD interactions were omitted.
The drift velocity was characterized as a function of L, toff
and the number of monomers per polymer, N, and the ratchet
performance was characterized using several measures,
including the Peclet number to quantify the coherency, the
rectification efficiency and stall force. One notable result was
the fact that the drift velocity remained relatively constant
with respect to variations in N for the range of polymer
lengths investigated �25�N�500�. Since the diffusion
coefficient, D, of the polymer is strongly dependent on N
�D�1 /N in the absence of HD�, it was concluded that
center-of-mass diffusion is not an important part of the mo-
tional mechanism. An analysis of the Rouse coordinates re-
vealed the mechanism instead relies more on the coupling of
the internal modes of motion to the ratchet cycling. This
picture also accounted for the observation that the polymer
was able to transport a load without suffering a significant
drop in drift velocity.

Kenward and Slater studied the behavior of a polymer/
ratchet system using molecular dynamics simulations �9�.
While they used the same polymer model and ratchet poten-
tial as that used in Ref. �8�, their model also included an
explicitly modeled solvent, thereby enabling the observation
of HD effects. They found that a shape deformation induced
by the ratchet potential during the on-time of the ratchet
cycle influences the transport rate of the polymer. During the
off-time the polymer relaxes from a deformed oblate shape
to its equilibrium spherical shape, and this shape anisotropy
relaxation leads to a time-dependent diffusion coefficient,
which can have an appreciable effect on the drift velocity.
This effect is a result of HD interactions and is not present
for the model employed in Ref. �8�. The authors also ana-
lyzed their results using a modified version of the theory
employed to analyze the experimental data in Refs. �4–6�.

In this study we seek to better characterize and understand
the transport behavior of polymers in flashing ratchets. The
insensitivity of the drift velocity to polymer length observed
in Refs. �7,8� apparently suggests that a device employing
the flashing ratchet mechanism might not be effective as a
transport-based separation procedure for polymers, as envis-
aged by Bader et al. However, it should be noted that the
simulations were carried out in cases where the polymer di-
mensions were comparable L. In the case where the polymer
size is small relative to L, center-of-mass diffusion is ex-
pected to be more a significant part of the transport mecha-
nism; consequently, the drift speed should exhibit greater
sensitivity to variations in N. One of the goals of this study is
to expand the parameter range to explore and quantify the
crossover between the two dynamical regimes. Another goal
is motivated by the results of Ref. �9�, which highlight the
importance of HD effects, which were absent in Refs. �7,8�.
HD interactions affect both the diffusion rate and the internal
relaxation rate and are therefore expected to affect the poly-
mer drift velocity in the ratchet. Consequently, in this study
we also investigate the effects of HD interactions on the
transport. To achieve this goal, we extend the Brownian
ratchet model of Downton et al. �7,8� by including HD in-
teractions using the diffusion tensor derived by Rotne,
Prager, and Yamakawa �RPY� �42,43�. This is more compu-
tationally efficient than the explicit solvent MD method used
in Ref. �9�, thus facilitating an exploration of polymer trans-
port over a wide range of values of system parameters. In
addition, this approach enables us to compare the properties
of the system both in the presence and absence of HD inter-
actions. Simulation generated comparisons of HD effects
versus their absence have recently been examined for
Brownian ratchet models by Houtman et al. �44� and Fornés
�45� for active mass transport and dimers moving against an
external load, respectively.

The paper is organized as follows. The model for the
polymer and flashing ratchet potential and the simulation
procedure are presented in detail in Sec. II. The results of the
simulations are presented and discussed in Sec. III. We show
that the trends in the variation in the drift velocity and the
conformational behavior with N, L, and toff are consistent
with the presence of two identifiable dynamical regimes,
each with a distinct motional mechanism. HD interactions
are shown to increase the drift speed in both regimes but for
different reasons. The ratchet-induced deformation effect ob-
served in Ref. �9� is observed in simulations with HD. We
develop a simple theoretical model that yields quantitatively
accurate predictions for the drift velocity in the diffusion-
dominated regime. The paper is concluded in Sec. IV with a
summary and some suggestions for future work.

II. MODEL AND METHOD

The model polymer is a bound chain of N spherical
monomers. The ith monomer is subject to a conservative
force given by F� i=−�� iUtot�r�1 ,r�2 , . . . ,r�N�, where the total po-
tential energy, Utot, is given by
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Utot = �
i�j

N

Unb�rij� + �
i=1

N−1

Ub�ri,i+1� + �
i=1

N

Vext�r�i,t� . �1�

Here, Unb�rij� is the interaction between nonbonded mono-
mers i and j separated by a distance rij, Ub�ri,i+1� is the
bonding interaction between adjacent monomers i and i+1,
and Vext�r�i , t� is the time-dependent external potential of the
ratchet motor acting on monomer i. Nonbonded interactions
are given by the repulsive Lennard-Jones potential

Unb�r� = �ULJ�r� − ULJ�rc� , r � rc

0, r � rc,
� �2�

where

ULJ�r� = 4	�	


r

12

− 	


r

6� �3�

and where rc�21/6
. The bonding interaction between adja-
cent pairs of monomers given by

Ub�r� =
1

2
k�r − 
�2, �4�

where we choose k
2 /	=500. The time-dependent external
potential, Vext�r� , t� has the form

Vext�r�,t� = g�t�Vrat�z� . �5�

The function g�t� is a periodic function that toggles between
a value of g=1 for a time ton and g=0 for a time toff. The
ratchet period, �, is simply �= ton+ toff. Furthermore, Vrat�z�,
is a piecewise linear, sawtooth potential characterized by a
periodic length, L, an amplitude, V0, and an asymmetry, �,
and is defined

Vrat�z� = � − V0z/��1 − ��L� + V0, 0 � z � �1 − ��L
V0z/��L� − V0�1 − ��/� , �1 − ��L � z � L

�
�6�

and by the fact that Vrat�z+L�=Vrat�z�. This function is illus-
trated in Fig. 1. Unless otherwise indicated, V0=4kBT and
�=0.1 for all of the calculations presented in this paper.

The polymer motion is governed by the generalized
Langevin equation:

dr�i

dt
= �

j=1

N

��� ij · �F� j + f� j� , �7�

where r�i�t� is the position of the ith monomer. HD interac-
tions are incorporated via the Rotne-Prager-Yamakawa diffu-
sion tensor, ��� ij, which is given by �42,43�

��� ij =
1��

6�R
, i = j

1

8�rij
�	2R2

rij
2 +

1

3

1�� + 	1 −

2R2

rij
2 
r̂ij � r̂ij� , i � j and rij � 2R

1

6�R
�	1 −

9rij

32R

1�� +

3rij

32R
r̂ij � r̂ij� , i � j and rij � 2R ,� �8�

where  is the viscosity of the solvent, R �=
 /2� is the
Stokes radius of the monomer, and rij and r̂ij are the dis-
tances and relative displacement directions, respectively, be-
tween monomers i and j. Furthermore, F� j =F� j�r�1 , . . . ,r�N� is
the conservative force associated with the potential of Eq.
�1�, and f�i�t� is a stochastic variable that satisfies

�f�i�t� · f� j�t��� = 6�0kT�ij��t − t�� , �9�

where the monomer friction coefficient, �0, is given by the
Stokes relation, �0=6�R.

The first-order Ermak and McCammon algorithm �46� is
used to integrate Eq. �7�:

r�i�t + �t� = r�i�t� + �
j=1

N

��� ij · F� j�t + �� i, �10�

where �� i is a random displacement with zero mean and sat-
isfies

��� i � �� j� = 2��� ijkBT�t . �11�

In the absence of HD interactions, the diffusion tensor re-

duces to the simplified form ��� ij =1���ij / �6�R�, and the equa-
tion of motion reduces to that of the overdamped case of the
Langevin equation:

�0
dr�i

dt
= F� i��r� j�t�� j� + f�i�t� . �12�

All calculations were carried out at a temperature of
kBT /	=1. All quantities in Sec. III are presented using the
following reduced units: distances are in units of 
, energy is
in units of 	=kBT, and time is in units of �0
2 /kBT
=�0
2 /	. The reduced units for other quantities follow from
these choices.

In order to maximize computational efficiency, many
separate simulations for a system with a given set of physical
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parameter values were run on separate processors, each using
a distinct sequence of random numbers. Consequently, the
simulations were statistically uncorrelated, and the results
obtained from the parallel runs were gathered together and
analyzed as a single set. The chosen number of parallel simu-
lations and the time range for each system varied, depending
on the polymer length and on whether HD interactions were
present. �Simulations of systems with HD interactions tend
were more time consuming that those without HD systems,
especially for longer chain lengths.� For example, for N
=50 polymers with HD interactions there were 160 separate
simulations each of duration �tmax=20 000. Finally, all
simulations employed a time step of �t=0.0001

III. RESULTS AND DISCUSSION

A. Drift velocity

Figure 2 shows the measured values of the average veloc-
ity of the polymer, �vz�, as a function of the ratchet spatial
period, L, for polymer lengths in the range N=5–100. Re-
sults for a polymer in the absence of HD interactions are
shown in Fig. 2�a�, and results for a polymer where HD
interactions are present are shown in Fig. 2�b�. One consis-
tent qualitative trend stands out: for each polymer length, N,
�vz� consistently exhibits a single maximum at some optimal
ratchet period, regardless of whether HD interactions are
present or absent. This behavior is qualitatively consistent
with the expectation that the �vz�→0 in the limits of small

and large L. In addition, there are several other trends in the
data whose significance we discuss below.

Consider first the non-HD results of Fig. 2�a�. These data
are quantitatively consistent with the drift velocities reported
in Ref. �8� for the range of chain lengths �N�25� considered
in that study, with the exception of a minor quantitative dif-
ference that arises from employing a slightly different model
and numerical integration method in the present study �47�.
The key point noted in Ref. �8� was the extremely weak
dependence of �vz� on N. Since the polymer diffusion coef-
ficient is strongly dependent on N �D�N−1, in the absence of
HD interactions�, Downton et al. concluded that the mode of
transport for the polymer is not the same as that of a tradi-
tional flashing ratchet, which relies on center-of-mass diffu-
sion. It was suggested, rather, that the dominant driving
mechanism involves the coupling of the internal dynamics of
the polymer to the flashing ratchet, though a detailed theo-
retical analysis was not presented. However, it is evident
from Fig. 2�a� that this conclusion is not valid for all values
of N and L. For polymer lengths in the range N�25 �espe-
cially N=5 and 10�, �vz� increases with decreasing N, a trend
that is qualitatively consistent with a driving mechanism de-
pendent on center-of-mass diffusion. Inspection of a close-up
of the data shown in the insert of the figure provides a clearer
picture the trends in the data. It appears that each �vz� vs L
curve converges with the others at sufficiently low L. This is
clearly evident in the cases of N=5, 10, and 17. The L value
of the convergence point increases with increasing N. For
example, L�4 for N=5, L�5 for N=10, and L�7 for N
=17. It is likely that the trend continues for the data for
higher N but is masked by statistical uncertainties.

The results for the HD system in Fig. 2�b� display a num-
ber of similarities and differences relative to those for the
non-HD system in Fig. 2�a�. One notable quantitative differ-
ence is the fact that �vz� is greater when HD interactions are
incorporated into the model. This is a consistent pattern, in-
dependent of N or L for the range of values considered. In
addition, the location of the maximum velocity for a specific
N shifts to higher values when HD interactions are present.
In spite of these differences, other trends are similar. Most
notably, as in Fig. 2�a�, there exists a regime corresponding
to high N and low L in which �vz� is invariant to changes in
N, and another regime of low N and high L in which �vz�
increases monotonically with decreasing N. As in the
non-HD case, the regime boundary is determined from the
values of L at which the velocity curve for a given N first
diverges from the others corresponding to higher N. For ex-
ample, �vz� is insensitive to variations in N at N�5 for L
�4, N�10 for L�7, N�17 for L�10, and N�25 for L
�15.

These results suggest that there are at least two different
parameters regimes: �1� a high-N/low-L regime where �vz� is
invariant to changes in N and L and where center-of-mass
diffusion is not the important for polymer transport and �2� a
low-N/high-L regime where �vz� is sensitive to changes in N
and L and where center-of-mass diffusion plays is a signifi-
cant part of the transport mechanism. The values of N and L
at which the system crosses from one regime to the other are
clearly affected by the presence of HD interactions. In either
regime, HD interactions increase the drift velocity of the
polymer.
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FIG. 2. �a� Polymer center-of-mass average velocity, �vz�, vs
ratchet spatial period, L, for several different polymer chain lengths.
The data correspond to a model system where HD interactions are
absent. The inset shows a close-up of the same data on a semiloga-
rithmic scale. �b� As in �a�, except for a system in which HD inter-
actions are present. In all cases, toff= ton=20, V=4, and �=0.1.
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B. Ratchet-induced shape deformation of the polymer

To better quantify and understand the two regimes intro-
duced above, let us examine the variation of the polymer
conformational behavior with L and N. As noted previously,
�9� the average size and shape of a free polymer will be
distorted when subjected to an external potential such as the
ratchet potential of Eq. �6�. The deformation will undergo
cyclic variations as the potential is toggled on and off. To
quantify the shape deformation, we introduce the deforma-
tion factor �z, which is defined

�z � �Rz
2�/�Rz

2�eq, �13�

where

Rz
2 =

1

N
�
n=1

N

�zn − zcm�2 �14�

and where zn and zcm are the z coordinates of the nth mono-
mer and the polymer center of mass, respectively. The brack-
ets � . . . � denote an average over the conformations sampled
at all times in the cycle of the flashing ratchet. The quantity
�Rz

2�eq is defined similarly to �Rz
2�, except for a free polymer

in equilibrium, i.e., in the absence of the flashing ratchet.
Note that �Rz

2�eq=Rg
2 /3, where the equilibrium radius of gy-

ration of the polymer, Rg, is given by

Rg
2 = �

n=1

N

��r�n − r�cm�2�eq, �15�

where r�n is the position of monomer n and r�cm is the polymer
center of mass.

Figure 3�a� shows the measured �z vs L for several poly-
mer lengths for the HD system. These data were generated
from the same simulations corresponding to the data in Fig.
2�b�. Note that in most cases �z�1, indicating that the flash-
ing ratchet induces a compression of the polymer along the
ratchet axis. The degree of compression depends on the poly-
mer length and the ratchet spatial period. The variation in �z
with L is qualitatively similar for each N. Specifically, �z has
a single minimum located at a ratchet length that we label
L�

� . For L�L�
� , �z increases slowly with L, while for L

�L�
� , �z rises rapidly with decreasing L. Comparison of

Figs. 2�b� and 3�a� reveals that the value of L�
� for each N

corresponds closely to the location of the convergence points
for vz that were described in the previous section. The exact
same pattern holds for the non-HD results �data not shown�.
Assuming that the earlier interpretation of Fig. 2 is correct,
L�L�

� corresponds to the regime where center-of-mass dif-
fusion is a significant part of the mechanism for polymer
transport, and L�L�

� corresponds to the regime where it is
not. Thus, there is appears to be a quantitative correlation
between the mode of transport of the polymer and its average
conformational state, independent of whether HD interac-
tions are present or not.

The trends in Fig. 3�a� can be better understood by in-
spection of Fig. 3�b�, which shows �z vs �L /Rg for the same
data. Recall that the distance �L is the distance from poten-
tial minimum to the nearest maximum �see Fig. 1� and is the
key ratchet length scale that determines when a diffusive

particle in the flashing ratchet will undergo a stepping event
when the potential is turned back on. If �L /Rg is sufficiently
large, the polymer will likely span a single ratchet spatial
period between two adjacent maxima. In this regime, �z
should increase as L increases, as this corresponds to an ef-
fective widening of the potential well; this trend is evident in
both Figs. 3�a� and 3�b�. Intuitively, one also expects that if
the ratio �L /Rg is sufficiently small, the polymer will be
increasingly likely to span multiple periods of the ratchet,
even when the potential is in the on-state. The consequence
will be a reduction in the average compression �or even an
expansion� of the polymer and, thus, an increase in �z with
decreasing L for sufficiently low L. Figure 3�b� shows that
the minima for �z, which mark the onset of the regime where
the polymer spans multiple potential wells, occur for compa-
rable values of this ratio of length scales, i.e., �L /Rg
�0.3–0.5. It is possible that the shift in the location of the
minima for N=5 and 10 is a finite-size effect and that the
�L�

� /Rg converges to a fixed value as N increases. However,
the present data are insufficient to determine the precise re-
lationship between �L�

� and Rg for long chains. Results for
the non-HD system are quantitatively consistent with these
trends. In that case, �L�

� are slightly lower for each N �data
not shown�.

The deformation factor �z defined in Eq. �13� involves
averaging over conformations at all times during the ratchet
cycle. Note, however, that the degree of deformation under-
goes a cyclic compression and relaxation behavior as the
ratchet is toggled on and off, respectively. The rates of these
processes are expected to be affected by the polymer length
and HD interactions. In addition, the degree of compression
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FIG. 3. �a� Polymer deformation factor, �z, vs ratchet spatial
period, L, for several N. For these data, HD interactions are present
in the simulation model. Note that toff= ton=20, V=4, and �=0.1.
�b� The same data as in �a�, except plotted vs �L /Rg.
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and relaxation achieved over each cycle clearly depends on
the times ton and toff. Consequently, the values of these cycle
times should affect both �z and the transport behavior of the
polymer in the Brownian ratchet.

Let us consider the effect of toff on the behavior of the
system. Figure 4 shows �z vs �L /Rg for N=25 for toff=5, 20,
and 40. In each case, results for both the HD and non-HD
systems are shown. Variation of this ratchet cycle time con-
stant has two notable effects on the conformational behavior
of the polymer. First, �z decreases when toff decreases. This
arises because the ratchet is on a larger fraction of the cycle
time when toff is decreased while ton is held fixed. A more
significant trend is the fact that L�

� increases as toff increases.
The origin of this behavior relates to the conformational re-
laxation that occurs during the off-phase of the cycle. We
propose the following explanation. Consider a polymer of
length N in a ratchet of length L. If the polymer is confined
to the vicinity of a single ratchet potential minimum during
the on-phase, it will relax from a highly flattened shape to-
ward its equilibrium spherical shape during the off-phase.
This process will be characterized by a relaxation time, �r. If
toff��r, then the polymer will remain flattened and will
likely be captured by a single ratchet minimum during the
next on-phase of the cycle. Thus, it is likely to be in the L
�L�

� regime. As toff /�r increases, an initially flattened poly-
mer will have sufficient time to broaden along the z direc-
tion, increasing the likelihood that it will span multiple
minima when the ratchet is turned back on, and, thus, that
the polymer will be in the L�L�

� regime. As toff /�r further
increases, it will cross into a regime where the polymer is
fully relaxed, and thus a further increase in toff will lead to no
further effect. The predicted trend then is that L�

� increases
with toff for toff��r and that L�

� is independent of toff for
toff��r. In addition, L�

� should increase as �r decreases.
To test the applicability of this explanation, we obtained

the relaxation time, �r, from an analysis of the time correla-
tion function of Rz

2 for a free polymer. In the large-t regime,
the correlation function crosses over into an exponential de-
cay corresponding to the relaxation of the slowest internal
mode, and �r was taken to be the corresponding time con-
stant. For N=25, we measure �r=10.5 with HD and �r
=27.9 without HD. In the HD case, �off=5, 20, and 40 cor-

responds to �off /�r=0.48, 1.9, and 3.8. We note that there is a
significant shift in L�

� between the cases of �off=5 and 20,
which span a range of times over which the polymer shape is
still relaxing. On the other hand, there is little change in L�

�

in changing toff from 20 to 40, which span a range of times
over which the polymer shape will not have relaxed appre-
ciably further. For the non-HD polymer, toff=5, 20, and 40
corresponds to toff /�r=0.18, 0.72, and 1.43. The degree of
relaxation differs appreciably for each of these toff times,
which correlates well with the consistent increase in L�

� with
toff evident in the figure.

The impact of HD interactions on �z for any given value
of toff is also consistent with this interpretation. The fact that
�r is appreciably lower in the HD case than in the non-HD
case is consistent with the fact that L�

� is generally higher in
the latter case. Moreover, this difference in L�

� for the two
cases is expected to diminish where toff is sufficiently large
that both HD and non-HD polymers have relaxed. As ob-
served in the figure, the minima of �z for toff=40 occur at
approximately the same L�

� , consistent with the fact that
toff /�r in each case is sufficiently large that the polymer will
be mostly relaxed.

Let us now investigate the details of the conformational
relaxation during the off-phase of the ratchet cycle. To do
this, we introduce a time-dependent deformation factor,
�z�t�, which is defined the same as in Eqs. �13� and �14�,
except that conformational averaging of �Rz

2� is performed at
specific times in the ratchet cycle. Here, t=0 is defined to be
the time when the ratchet potential is turned off. Figure 5
shows �z�t� vs time for polymers of length N=10, 25, and 50
calculated for a ratchet of length L=14 during the off-phase
of the cycle, with toff=20. In each case, results HD and
non-HD systems are shown. There are two key trends: �1�
the relaxation rate decreases with increasing chain size, and
�2� the relaxation is faster when HD interactions are in-
cluded.

These trends can be understood by a comparison with the
dynamical behavior of a free polymer in equilibrium. Recall

�
�

��
��

��
��

��
��������

��
��
��

��
��

��
��

�
�

�
�

��
��

��
��

��
��

��
��

��
��
�
�
��
��

����
��
��
��

��
��

��
�����

��

��
��

��
��

�
�

��

��
��

�
�
��
��

��
�����

���

0 0.2 0.4 0.6 0.8 1 1.2
αL/R

g

0.2

0.4

0.6

0.8

1
β z

t
off

=40, HD��
��

��
��

t
off

=40, No HD

t
off

=20, HD
��
��

��
��

t
off

=20, No HD

t
off

=5, HD����

t
off

=5, No HD

FIG. 4. Polymer deformation factor, �z, vs �L /Rg, for polymer
length N=25. Results are shown for three different values of toff, in
each case with and without HD interactions. Note that ton=20, V
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the off-phase of the ratchet cycle for toff=20. Results are shown for
three different chain lengths, each for HD and non-HD systems. For
each case, L=14, ton=20, V0=4, and �=0.1.
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that the Rouse and Zimm times, �R and �Z, respectively, are
defined

�R = Rg
2/DR, �16�

�Z = Rg
2/DZ, �17�

where DR and DZ are the diffusion coefficients for the Rouse
�non-HD� and Zimm �HD� cases, respectively. These are the
times over which a polymer will diffuse a distance equal to
its equilibrium radius of gyration, Rg. Note that the each of
these times obeys the same scaling relation as that of the
slowest internal mode of motion of the polymer; that is, �R
�N1+2��N2.2 �non-HD� and �Z�N3��N1.8 �HD� �48�. Fig-
ure 6 shows plots of the time-dependence 1−�z using the
data from Fig. 5, with the time variable scaled by �R for the
Rouse case and �Z for the Zimm case, each of which was
obtained from simulations of a free polymer for the model
employed. Over the time period considered, 1−�z�t� relaxes
approximately exponentially; that is,

1 − �z � �exp�− t/�aR�R�� , �Rouse�
exp�− t/�aZ�Z�� , �Zimm�� �18�

where the two constants are approximately aR�0.1 and aZ
�0.2. In each case, the values of decay constants, aR�R and
aZ�Z are consistent with the equilibrium relaxation times ob-
tained from an analysis of the time correlation function of
Rz

2, which was described earlier.
Let us review the main conclusions in this section and

discuss their significance. The key point is that the mode of
transport of the polymer in the Brownian ratchet is correlated
with the polymer’s conformational behavior. In the
low-N/high-L regime, the compression factor �z increases
slightly with increasing L. We propose that this regime cor-
responds to a mode of transport for which polymer center-
of-mass diffusion is significant; this is reflected by the fact

that �vz� is sensitive to changes in N in this regime. By con-
trast in the high-N/low-L regime, the average polymer com-
pression increases with decreasing L. This appears to corre-
spond to a regime in which center-of-mass diffusion is not an
integral part of the transport mode; this is reflected by the
fact that �vz� is independent of polymer length. The regime
crossover point occurs in the vicinity of L�

� , the location of
the minimum in the �z vs L curves. The results in this section
facilitate identification of the regime using equilibrium poly-
mer properties such as Rg and �Z �or �R for systems where
HD interactions are screened� and the Brownian ratchet pa-
rameters such as L and toff.

C. Effects of deformation on diffusion during the off-phase

During the off-phase of the ratchet cycle, the polymer
undergoes free diffusion with equal probability of moving
forward or backward along the ratchet axis. The rate of dif-
fusion during this phase strongly affects the velocity of a
particle driven by flashing ratchet. For the polymer/ratchet
system here, we expect this to be true for the low-N/high-L
regime described above. As noted in a recent study, �9� how-
ever, the shape deformations described in Sec. III B can af-
fect the rate of diffusion and, consequently, �vz�.

To investigate this effect for the present model system we
have calculated ���z�2�, the mean-square displacement of the
polymer center of mass along the z direction during the off-
phase. Results are shown in Fig. 7 for N=10, 25, and 50 for
the HD model system for L=18. For a free polymer �i.e., no
ratchet potential� this quantity satisfies

���z�2� = 2Dt , �19�

where D is the diffusion coefficient of the free polymer. Dis-
placement curves calculated using Eq. �19� for the same
three polymer lengths are also shown in the figure. For N
=10, the results for the polymer/ratchet system and those
calculated using Eq. �19� are quantitatively consistent. How-
ever, for N=25 the polymer diffuses more slowly during the
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FIG. 6. �a� Time dependence of the deformation factor for the
non-HD, shown as 1−�z�t� vs t /�R, where �R=Rg

2 /D is the Rouse
time of the polymer. Results are shown for three different polymer
lengths. �b� As in �a�, except for the HD system, and where the time
is scaled by �Z=Rg

2 /D, the Zimm time of the polymer.
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off-phase of the ratchet cycle relative to the free polymer.
This difference is even larger for N=50.

This effect was first observed in the recent study by Ken-
ward and Slater, �9� whose explanation can be summarized
as follows. When HD interactions are present, and the diffu-
sional behavior of the polymer is essentially that of as a solid
object with dimensions comparable to the average dimen-
sions of the polymer. Thus, a free polymer diffuses like a
sphere with a radius comparable to Rg. The flashing ratchet
compresses the polymer into a highly oblate shape that is
flattened along z, which then slowly relaxes back to equilib-
rium during the off-phase of the cycle. This shape anisotropy
affects the rate of diffusion. A polymer flattened along z dif-
fuses more slowly in this direction than one in a spherical
shaped conformation. The relaxation of the shape anisotropy
leads to a time-dependent diffusion coefficient, which is ini-
tially slower for the oblate shape and which gradually in-
creases as the polymer becomes more spherical. For short
polymers, the conformational relaxation is sufficiently rapid
that the effect of an initially slower rate of diffusion is neg-
ligible. For longer polymers, the shape anisotropy is appre-
ciable during the entire off-phase and the rate of diffusion is
slower. In the absence of hydrodynamics, the rate of diffu-
sion is unaffected by the conformation behavior of the poly-
mer. Consequently, the time-dependence of ���z�2� during
the off-phase of the ratchet cycle is the same as that for a free
polymer. This was confirmed by our simulation results �data
not shown�.

D. Localization during the on-phase

The flashing ratchet mechanism requires that the probabil-
ity distribution of the transported particle be asymmetric
with respect to the midpoint between successive maxima at
the end of the on-phase of the cycle. Effective and coherent
transport is best achieved when V0 /kBT is sufficiently large
that the transported particle become localized near a poten-
tial well during this phase. The nature and degree of local-
ization for highly flexible polymer chains depends strongly
on properties such as polymer length, as well as the values of
ratchet parameters such as ton, toff, V0, and �. In the present
study, we have not carried out an extensive investigation of
localization over this parameter space but instead have fo-
cused on a narrower parameter regime for the purpose of
elucidating the transport behavior described in Sec. III A.

Figure 8 shows Pon�zcm /L�, the center-of-mass position
probability distributions �scaled by the ratchet spatial period�
calculated at the end of the on-phase of the ratchet cycle, for
the N=10 polymer for a range of L corresponding to the
low-N/high-L regime described earlier. Several trends are ap-
parent. First, the center of mass is localized over a small
range of positions shifted to the left of the ratchet minimum
at zcm /L=0.9. The degree of the shift away from the mini-
mum monotonically increases as L decreases. In addition, the
unscaled distributions shown in the inset reveal that degree
of localization �quantified by the height or reciprocal of the
width of the probability peak� increases as L decreases.
Comparison with the N=10 curve of Fig. 3�a� shows that the
degree of polymer localization is positively correlated with

the degree of polymer compression induced by the ratchet.
These results are comparable with those reported in Ref. �9�
for a similar model system. Note that the polymer will be-
come more effectively localized at the ratchet minimum as
V0 /kBT increases.

Figure 9 shows the distribution of the center of mass of a
N=50 polymer for L=6, 10, and 14. Inspection of the N
=50 curve of Fig. 3 shows that this corresponds to the
high-N/low-L regime, where center-of-mass diffusion does
not appear to be the dominant transport mechanism. As in the
case shown in Fig. 8, the distribution peaks at a position that
is shifted to the left of the potential minimum �zcm /L=0.9�
by an amount that increases with decreasing L. For the same
values of L, the peak widths are narrower than those for N
=10, though the peak positions are approximately the same.
This trend is consistent for other chain lengths as well �data
not shown�. The most notable feature in the data, however, is
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the appreciable probability that the polymer center of mass
lies outside the range covered by the dominant peak. The
relative importance of this second component of the distri-
bution is evident by the inset of the figure, which shows the
running integral of the distribution, S�zcm /L�
=�0

zcm/Ld�zcm� /L�P�zcm� /L�, for each data set. Clearly, as L de-
creases, the probability that zcm lies outside the narrow range
defined by the peak increases. The origin of this trend is
straightforward. As L decreases, there is an increasing like-
lihood that the polymer will span at least two successive
potential minima at the end of the on-phase. In such cases,
the polymer center-of-mass position is increasingly likely to
be located further from any single minimum. Thus, the in-
tensity of the main peak decreases and the intensity of the
broad component of the distribution increases as L is de-
creased. This result supports our interpretation of the data in
Figs. 2 and 3 with regard to the physical meaning of the
high-N/low-L regime.

Finally, the probability distributions in the low-N/high-L
regime were not measurably different in the HD and non-HD
cases for the parameter values relevant for the data in Figs. 2
and 3. As the dynamical response of the HD polymer to the
application of the external potential is expected to be more
rapid than that of the non-HD polymer, we infer that Pon�zcm�
has reached its equilibrium value by the end of the on-period
�ton=20� in those simulations. This was confirmed, in part,
by the results of additional simulations carried out for ton
�20. For some range of ton below ton=20, Pon�zcm� is ex-
pected to differ between the HD and non-HD cases. Further
simulation work is required for a more complete understand-
ing of localization, but is outside the scope of the present
study.

E. Theoretical description of polymer transport in the low-N
or high-L regime

In their experimental studies of the transport behavior of
DNA fragments in a micromachined Brownian ratchet de-
vice, Bader et al. employed a simple theoretical model to
interpret the data. �4–6� The model treats the fragments as
structureless particles acting in the same one-dimensional
flashing ratchet potential employed here �49�. In the experi-
mental system, Rg��L, which corresponds to the
low-N/high-L regime described above. To gain deeper in-
sight into the mechanism driving the polymer motion and to
better understand the role of HD interactions in this experi-
mentally relevant regime, we review the theory and apply it
to our simulation results.

The theoretical model first assumes that ton and the ratchet
barrier height V0 are both sufficiently large that the particle
will be localized at a potential minimum, zmin, at the end of
the on-phase of the ratchet cycle. During the off-phase of the
cycle, the particle freely diffuses, and at the end of this phase
the particle position probability distribution, Poff�z�, is given
by

Poff�z� =
exp�− ��z�2/4Dtoff�

�4�Dtoff

, �20�

where �z=z−zmin and z is the coordinate of the particle.
Transport is achieved in the case when toff is sufficiently long

for the particles to diffuse easily to the right �with reference
to Fig. 1� over the short distance ��L� from the minimum to
a maximum, but sufficiently short to avoid appreciable back-
diffusion over a distance �1−��L. All particles which have
advanced to the right by �L will be driven by the ratchet to
the next minimum by the end of the next on-phase of the
ratchet cycle. In this approximation, it is easy to show that
the probability, s, of the particles advancing one period, L, to
the right over one temporal period is

s =
1

2
erfc��L/�4Dtoff� �21�

and the average velocity is given by

�vz� = sL/� , �22�

where �� ton+ toff is the temporal period of the ratchet.
The application of this simple theory to a polymer is

clearly problematic. The distribution of many interaction
sites �i.e., monomers� along the transport axis means that the
magnitude and direction of the net force on the polymer at
any one time does not have the same trivial dependence on
position as in the case of a single particle. Consequently, the
dynamical behavior is expected to be different. A striking
example of such behavior was noted in a recent study of 1D
systems of rigid rodlike dimers and trimers in a flashing
ratchet motor �24�, wherein it was observed that the velocity
can reverse direction multiple times in response to changing
the length of the chain or system temperature. In addition,
the flexibility of the polymer introduces the further compli-
cation that the polymer conformation will respond to the
ratchet potential, with corresponding effects on the rate of
transport �8,9�. Nevertheless, the theory should at least be-
come valid in the limit where the size of the polymer is
sufficiently small relative to �L.

To apply this simple theory to a diffusive polymer, we
first define the polymer position as the location of the center
of mass, zcm. Next, we note that the diffusion coefficient for
an undeformed polymer chain scales with N as

D =
kBT

�
=

kT

C�0N� , �23�

where � and �0 is the friction coefficient for the polymer and
for a single monomer, respectively. In the absence of HD
interactions, C=1 and �=1. In the presence of HD interac-
tions �= 3

5 and the constant C depends on the details of the
molecular model. Measurement of the time dependence of
the polymer center-of-mass mean-square displacement was
used to calculate the diffusion coefficient for several differ-
ent chain lengths. This yielded a value of C�0.70 for the
longer polymer chains, with small deviations for shorter
chains attributable to finite-size effects. The value of L that
maximizes the velocity is calculated using Eqs. �21� and
�22�, and the condition that d�vz� /dL=0. Numerical solution
of the resulting nonlinear equation yields �L /�4Dtoff
=0.5316. Using this result together with Eq. �23�, the theory
predicts a maximum velocity at a spatial period L� given by
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L� �
1.063

�
�kBTtoff

�0

N−�/2

�C
. �24�

From Eqs. �21� and �22�, the maximum value of the velocity,
vmax is given by vmax=L�erfc�0.5316� / �2��, which reduces to

vmax =
0.2404

��
�kBTtoff

�0

N−�/2

�C
. �25�

Thus, the theory predicts that vmax and L� both decrease with
increasing chain length N independent of whether HD inter-
actions are present or absent. As noted earlier, this trend is
observed in both sets of simulation results of Fig. 2 in the
regime of small N, i.e., in the regime where the theory is
expected to be valid. In addition, the theory predicts that L�

and vmax should both be greater when HD interactions are
present, which is at least consistent with the observed trends
in the low-N/high-L regime. However, while the theory is
qualitatively correct in this regime, the quantitative predic-
tions are consistently poor. Figure 10 shows the prediction
�labeled “Theory �1�”� for a N=10 polymer with HD inter-
actions using Eqs. �21�–�23� overlaid on the simulation data.
The theoretical model predicts �vz� to be much larger than
the true value. In addition, the location of the maximum, L�,
is too large by roughly a factor of two. These quantitative
discrepancies are present for all other polymer lengths stud-
ied, independent of whether HD interactions are included.

The inconsistency between the theoretical predictions and
the simulation data for the short chains imply that at least
one of the approximations employed in the theory is not
valid. The key approximations are the following: �1� the
polymer center of mass is located at a ratchet potential mini-
mum at the end of the on-phase of the ratchet cycle; �2� the
polymer center-of-mass probability distribution function at
the end of the off-phase is given by Eq. �20�, where D is the
diffusion coefficient of a free polymer; �3� the polymer is
advanced to the next potential minimum after the potential is

turned back on if its center of mass has diffused past the
position of the nearest potential maximum during the off-
phase �this condition is implicit in Eqs. �21� and �22��.

As discussed in Sec. III D, the polymer system in the
present study clearly does not satisfy condition �1�, at least
for the parameter range used here. Rather the polymer aver-
age position is consistently displaced to the shallow side of
the asymmetric potential well �see Fig. 8�. This is expected
to be a better approximation for any given N and L, however,
as V0 increases. As discussed in Sec. III C, condition �2� is
true for the HD system for sufficiently short polymer length.
However, as for greater N, the ratchet-induced shape defor-
mation effectively reduces the rate of diffusion relative to
that predicted using the value of D for an undeformed poly-
mer.

In order to test the validity of condition �3�, we modify
Eq. �21� by removing the first two approximations from the
calculation. To bypass condition �1�, we can integrate over
the Pon�zcm� distributions measured from the simulations
�such as those shown in Fig. 8�. Next, we note that the char-
acteristic distance, lD traversed by a diffusive particle over a
time toff is

lD � �2Dtoff. �26�

To circumvent condition �2�, we use instead

lD = ���z2�toff�� , �27�

where the right-hand side of the equation is the root-mean-
square distance traveled by the particle along the ratchet axis
during the off-phase in the simulation. Consequently, we
have

s = �
0

L

dzPon�zcm�erfc��L − zcm�/�2lD� , �28�

where lD is evaluated using Eq. �27�. Figure 10 shows a
comparison of the predicted values of �vz� using the different
theoretical models and the values obtained from simulation
�labeled “Theory �2�”�. As expected, using Eq. �28� signifi-
cantly improves the accuracy of the theoretical predictions in
the non-HD and HD cases. However, the values of the pre-
dicted �vz� from the revised theory are still rather poor. The
velocities are approximately two times greater than the simu-
lation values, and the situation is even worse for the non-HD
case. Consequently, we conclude that approximation �3� is
not valid. The overestimate of �vz� suggest that there is a
significant probability that polymers whose centers of mass
have diffused past the location of a ratchet potential maxi-
mum are not advanced to the next minimum when the po-
tential is turned back on. The origin of this effect is rooted in
the asymmetry of the potential around the local maxima.
Consider a short polymer whose center of mass has diffused
just past the position of the nearest maximum when the po-
tential is turned back on. If the distribution of monomers is
symmetrically distributed close to the center of mass, then
approximately half the monomers will be located to the left
of the maximum and each will experience a force Fz
=−V0 / ��L�, while the other half of the monomers will be
located to the right of the maximum and will feel a consid-
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Theory (1)

Theory (2)

Theory (3)

FIG. 10. Polymer center-of-mass velocity �vz� vs L for a poly-
mer of length N=10 in the presence of HD interactions. In addition
to the simulation results, the figure shows three sets of theoretical
predictions: �1� using Eqs. �21�–�23�; �2� using Eqs. �22� and �23�
together with Eq. �28� and probability distributions Pon�zcm� mea-
sured from the simulation; and �3� using Eqs. �29�–�33�, as well as

the probability distribution Pon�zcm� and the quantity R̄z, each of
which was taken from the simulation results.
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erably weaker force, Fz=−V0 / ��1−��L�. Thus, when the po-
tential is turned on, the instantaneous force will act to drive
the polymer back to its original potential minimum. This
effect is illustrated in Fig. 11 for a short polymer. Only when
the polymer center of mass has diffused sufficiently far past
the potential maximum will the net instantaneous force be-
come positive and thus drive the polymer to the next mini-
mum. Of course, this simple picture neglects complicating
effects such as the distortion of the polymer shape by the
ratchet potential and the subsequent effects on the dynamics.
However, it is expected to be relevant for sufficiently short
polymers and large L.

Let us consider a simple alternative criterion for determin-
ing when a polymer advances to the next potential minimum
when the ratchet potential is turned on. Such a condition
clearly must involve the distribution of monomer positions
along the z axis. A measure of the width of this distribution is

the quantity R̄z, which is defined

R̄z
2 � �Rz

2�off, �29�

where the instantaneous value of Rz was defined in Eq. �14�,
and the angular brackets � . . . �off in Eq. �29� denote an aver-
age over conformations sampled at the end of the off-phase
of the ratchet cycle. In the limit where toff is large compared
to the longest conformational relaxation time of the polymer,

R̄z=Rg /�3, where Rg is the equilibrium root mean square
radius of gyration of the polymer in the absence of any ex-
ternal potential. Let us assume the monomer position distri-
bution function is a Gaussian distribution:

Pmon�z;zcm,R̄z� =
1

�2�R̄z
2
exp�−

�z − zcm�2

2R̄z
2 � . �30�

If the ratchet force on a single monomer is fz= fz�z�, then the
average net force on the polymer generated by the ratchet is
given by

F̄z�zcm,R̄z� = N�
−�

�

dzfz�z�Pmon�z;zcm,R̄z� . �31�

To a first approximation, we expect that the polymer will
advance to the next potential minimum if its center of mass
has advanced to the right of the nearest maximum and Fz
�0. The probability, s, of the polymer advancing to the next
potential minimum is obtained by the following integration:

s = �
−�

�

dzcmPoff�zcm�S�Rg,z
2 ,zcm� , �32�

where

S�R̄z,zcm� =�1, Fz�R̄z,zcm� � 0

0, Fz�R̄z,zcm� � 0
�

and where Poff�zcm� is the polymer center-of-mass probabil-
ity distribution at the end of the off-phase of the cycle and is
given by

Poff�zcm� =
1

�2�lD
�

0

L

dzcm� Pon�zcm� �exp�−
�zcm − zcm� �2

2lD
2 � ,

�33�

where Pon�zcm� is the center-of-mass distribution function at
the end of the on-phase of the cycle, as defined earlier. The
distance lD can be taken from simulations using Eq. �26�. In
practice, though, the approximation of Eq. �27� was suffi-
cient for most cases here. Equation �32� can then be used
with Eq. �22� to predict �vz�. This requires knowledge of the
distribution Pon�zcm� and the quantity �Rz

2�, each of which is
obtained from the simulations. Examples of Pon�zcm� for dif-
ferent L were shown in Fig. 8. The theoretical predictions of
�vz� using Eqs. �29�–�33� are shown in Fig. 10 �labeled
“Theory �3�”�. Clearly, this refined version of the theory that
corrects the problems of the approximations of the original
theory leads to significantly better prediction of �vz�, whether
or not HD interactions are present.

Figures 12�a� and 12�b� show the theoretical predictions
using Eqs. �29�–�33� of �vz� for N=5 and N=10, respec-
tively, overlaid on the simulation data. Results for both HD
and non-HD systems are shown, and for toff=10 and 20. The
data are shown for the scaled velocity, �vz�� /L, vs the scaled
ratchet spatial period, �L /�2Dtoff, where D is the diffusion
coefficient for the free polymer in equilibrium �i.e., no
ratchet�. The inset of each figure shows the same data in
unscaled form, i.e., �vz� vs L. Note that the scaled indepen-
dent variable, �L /�2Dtoff, is a ratio of two length scales: �L
is the key length scale of the ratchet potential that determines
the velocity of a particle in the flashing ratchet, and
�2Dtoff= lD is characteristic distance traveled by the particle
during the off-phase of the cycle �ignoring the effects of
polymer deformation on D�. In the context of the original
theory �49� used by Bader et al. to interpret their experimen-
tal data �4–6� �i.e., Eqs. �21� and �22�� the data should all fall
on a universal curve, regardless of the value of toff or
whether HD interactions are present or absent. For N=5, the
simulation data collapse is reasonably good, in spite of the
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Vrat
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V

FIG. 11. Illustration showing why a polymer could fail to be
driven to the next ratchet minimum even when its center of mass
has diffused past the location of the nearest ratchet maximum. The
two monomers to the left of the maximum are each pushed to the
left with a force of magnitude F=V0 / ��L�, while the two mono-
mers to the right of the maximum are pushed to the right with a
smaller force of magnitude F=V0 / ��1−��L�. Thus, the polymer
will tend to be driven back to the left.
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wide spread between the unscaled data curves shown in the
inset. The graphs also show the theoretical predictions using
Eqs. �22� and �29�–�33� for the toff=20 data. The predictions
are reasonably good although the theory does consistently
overestimate �vz� slightly for both the HD and non-HD cases.
The predictions only begin to diverge significantly from the
data at very low L. This feature is consistent with the inter-
pretation of the results in Figs. 2 and 3 described in Secs.
III A and III B, i.e., the data correspond to the low-N/high-L
regime for L�5 for N=5 with toff=20. The theoretical pre-
dictions for �vz� for N=10 shown in Fig. 12�b� are also in
reasonable agreement with the simulation data; again, how-
ever, the theory does slightly overestimate the values. At
values of �L /�2Dtoff corresponding approximately to the
high-N/low-L regime, the trend changes and the theoretical
prediction significantly underestimates the measured �vz�.
Thus, unsurprisingly, the theory fails outside of the appli-
cable regime.

Figures 13�a� and 13�b� show simulation results for �vz�
for N=17 and N=25, respectively, with theoretical predic-
tions overlaid on the simulation data. Only results for toff
=20 are shown. In each case, the theory gives reasonable
predictions for �vz� in the low-N/high-L regime and diverges
considerably from the simulation results at lower L where the
system falls outside this regime.

The simple theoretical model described in this section
builds on that employed in the experimental studies of Refs.
�4–6�. Our theoretical description was shown to give a rea-

sonable prediction of the velocity in the regime where
center-of-mass diffusion is expected to be significant. This
regime is identifiable from the nature of the dependence of
�vz� and �z with N and L, as discussed in Secs. III A and
III B, respectively. Thus, the results in this section strongly
support the interpretation of the data in those sections.

F. High-N/low-L regime

From the results presented in Secs. III A and III B above,
we argued that there are two distinct dynamical regimes.
When the polymer size is sufficiently small relative to L,
center-of-mass diffusion is an important component of the
motional mechanism of the polymer in the ratchet. The
simple theoretical model developed in Sec. III E was helpful
in providing some understanding of the dynamical behavior
in this regime. For example, it explains the N dependence of
�vz�, and why HD interactions increase the rate of transport.
As noted earlier, the dynamical behavior in the high-N/low-L
regime is somewhat different. While HD interactions do also
increase �vz�, as in the low-N/high-L case, this regime is
distinguished by the fact that �vz� is insensitive to changes in
N, as well the fact that �z increases with decreasing L. Ob-
viously, a complete picture of the dynamics of the polymer/
ratchet system needs to address these observations. In Sec.
III B, it was argued that the dominant motional mechanism
in this regime involves the coupling of the internal degrees
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FIG. 12. �a� Scaled polymer center-of-mass velocity �vz�� /L vs
scaled ratchet length �L /�2Dtoff for a N=5 polymer. Results for
two different toff values are shown for both HD and non-HD sys-
tems. The solid and dashed lines show the theoretical predictions
using Eqs. �22� and �29�–�33� for toff=20. The inset shows the same
data plotted as �vz� vs L. �b� As in �a�, except for N=10.
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FIG. 13. �a� Scaled Polymer center-of-mass velocity �vz�� /L vs
scaled ratchet length �L /�2Dtoff for a N=17 polymer. Results
shown for both HD and non-HD systems for toff=20. The solid and
dashed lines show the theoretical predictions using Eqs. �22� and
�29�–�33� for toff=20. The inset shows the same data plotted as �vz�
vs L. �b� As in �a�, except for N=25. Only the theoretical prediction
for the HD system is shown.
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of freedom to the cycling of the ratchet potential. While we
do not provide a quantitative theoretical analysis of the mo-
tion in this regime in this study, we present a few results that
illustrate the nature of this coupling and that could be helpful
in developing a theoretical model to account for the observed
trends.

Figure 14 shows the time dependence of zcm and �z over a
single simulation for a polymer of length N=25 in a ratchet
with L=10 and for ton= toff=20. HD interactions are present.
Inspection of Figs. 2�b� and 3�a� shows that this corresponds
to the high-N/low-L regime. Over the 10 ratchet cycles
shown in the figure, the polymer moves roughly three ratchet
periods. A stepping event is evident when the ratchet is
toggled on at t /�=3. Immediate before and after the event,
the polymer remains highly flattened with some conforma-
tional relaxation in the off-phase immediately prior to the
event. Thus, the whole polymer jumps from one ratchet
minimum to the next in one ratchet cycle. This is by far the
dominant type of stepping event in the low-N/high-L regime.
However, in the high-N/low-L regime, this type of stepping
event is the exception and becomes increasingly rare as N
increases and/or L decreases. Over two ratchet cycles during
t /�=4–6, the polymer undergoes a more prolonged stepping
event accompanied by a conformational expansion along the
z axis. Clearly, the monomers remain distributed over at least
two ratchet periods during this phase, as different portions of
the polymer are attracted to different potential minima. Con-
formational fluctuations during the off-phase will enable a
greater portion of the polymer to become captured by the
next minimum the next time the ratchet is turned on. In this
way, the coupling of the internal dynamics of the chain to the
ratchet becomes a significant part of the motional mecha-
nism. Another similar stepping event, characterized by a
stretched chain during at the on-phase over at least one com-
plete cycle, is evident in the interval t /�=8–9. As N in-
creases and/or L decreases, the frequency of these multicycle
stepping events increases. In addition, the time between the

events decreases, eventually to the point where individual
stepping events can no longer be defined. Figure 15 illus-
trates such a case for a N=50 polymer and a ratchet length of
L=6. Unlike the case shown in Fig. 14, the polymer is rarely
in the highly flattened state, as characterized by a very low
�z, which divides discrete stepping events. Rather, the be-
havior of �z indicates that the polymer remains extended
along the ratchet axis, and thus remains stretched over mul-
tiple potential wells over its trajectory. This trend corre-
sponds to the increase in the average �z with decreasing L
and increasing N shown in Fig. 3.

These results clearly demonstrate the connection between
conformational fluctuations and polymer transport in the
high-N/low-L regime. The efficiency of this mechanism for
driving polymer transport is expected to be correlated with
the fluctuation rate. Since incorporation of HD interactions
increases the rate of these fluctuations, the polymer velocity
increases correspondingly. This is analogous to the effect that
HD interactions enhance the rate of diffusion and, thus, in-
crease the velocity in the low-N/high-L regime.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have used Brownian dynamics simula-
tions to examine the dynamical behavior of a model polymer
subject to the action of a flashing ratchet potential. The av-
erage speed of the polymer and its conformational behavior
have been examined upon variation in the polymer length
and ratchet spatial period. This work builds on an earlier
simulation study by Downton et al., �8� which investigated a
similar model system. An important addition to the model in
the present paper is the incorporation of HD effects. These
HD interactions were incorporated using the RPY diffusion
tensor �42,43� and the Ermak and McCammon simulation
method �46�, in contrast to another recent study which inves-
tigated HD effects on a polymer Brownian motor by employ-
ing an explicit solvent. �9� The approach used in this study
has the advantage of computational efficiency and provides a
straightforward means to compare the HD and non-HD
cases. In addition to adding HD, we have extended the range
of polymer lengths considered in Ref. �8�.

As observed in Ref. �8�, we find that the velocity of the
polymer in the Brownian ratchet exhibits a single maximum
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FIG. 14. Time dependence of scaled polymer center-of-mass
position, zcm �top�, and deformation factor, �z �bottom�, over ten
cycles of the flashing ratchet. Data are shown for a polymer of
length N=25 in a ratchet of length L=10. HD interactions are
present. Solid vertical grid lines indicate times when the ratchet
potential is turned on and dotted grid lines indicate times when the
potential is turned off.
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upon variation with respect to L for each chain length, N. For
otherwise identical systems, HD interactions always have the
effect of increasing the polymer velocity. The simulation re-
sults indicate that there are two distinct dynamical regimes:
�1� a low-N/high-L regime in which the velocity decreases
appreciably with increasing N and �2� a high-N/low-L regime
in which the velocity is insensitive to variations in N. The
regimes exist for both HD and non-HD systems. The trans-
port behavior is correlated with the conformational behavior
of the polymer, which is quantified by the deformation fac-
tor, �z, a measure of the ratchet-induced compression or ex-
pansion of the polymer. In the low-N/high-L regime, �z in-
creases slightly with increasing L, while in the high-N/low-L
regime, �z increases sharply with decreasing L. The value of
the ratchet length L at the minimum of �z corresponds
closely the transition between the regimes in the velocity.
Incorporation of HD interactions and variation in toff each
shift the location of the transition in predictable ways. The
origin of these trends relates to the degree of conformational
relaxation of the polymer during the off-phase, which de-
pends on the ratio toff /�r, where �r is the longest relaxation
time of the internal modes for a polymer in equilibrium.

The dominant mode of transport in the low-N/high-L re-
gime involves center-of-mass diffusion of the polymer. In
this regime, the polymer position is advanced in discrete
steps over a single ratchet cycle, and the polymer typically
assumes an oblate shape with the monomers completely lo-
calized over a distance L between two adjacent potential
maxima when the ratchet potential is on. For this case, we
developed a theoretical description by building on an even
simpler theoretical model �49� that had been applied in the
analysis of experimental data. Our model removed three sim-
plifying approximations of the original version and yielded
significantly better quantitative predictions of the polymer
velocity in the low-N/high-L regime defined by the behavior
of the velocity and �z. This description clearly accounts for
the increase in the velocity with decreasing N and with the
incorporation of HD interactions in terms of increasing the
diffusion rate of the polymer. Since the theoretical model
uses simulation data as input, it is of limited use for quanti-
tative predictions in experimental systems. However, it does
provide a very helpful means of confirming the nature of the
motional mechanism for this regime.

In the regime of high-N/low-L, the dominant motional
mechanism involves a coupling of the internal dynamical
modes of the polymer to the cycling of the ratchet potential.
Where they can be distinguished, stepping events typically
occur over multiple time cycles of the ratchet during which
the polymer is stretched over two or more spatial ratchet
periods. We did not present a theoretical model to account
for the observed trends. Nevertheless, our observations do at
least suggest that the larger velocity observed for the HD
system arises from the corresponding increase in the rate of
shape fluctuations.

The main motivation for the present simulation study lies
in its relevance to the development of technological applica-

tions employing Brownian ratchets. One important applica-
tion is the transport and size-based separation of biopoly-
mers, such as that described in Refs. �4–6�, in which
transport and separation of charged DNA fragments were
achieved using a micromachined device employing interdigi-
tated electrodes to produce a ratchet potential. Insights
gained from simulation studies of simple polymer/ratchet
model systems could be helpful in guiding the development
of such applications. The present paper builds on the simu-
lation work of Downton et al. �8� by incorporating HD ef-
fects into the molecular model; these effects are expected to
significant for transport of DNA fragments in aqueous solu-
tion. In addition, our study complements the recent work of
Kenward and Slater �9� by demonstrating that the impact of
ratchet-induced polymer shape deformations on the drift ve-
locity observed for the explicit-solvent model used in Ref.
�9� can also be probed using a more computationally efficient
implicit-solvent model.

An important contribution of the present work is the elu-
cidation of the different regimes corresponding to different
motional mechanisms. The very weak dependence of the
polymer velocity on chain length observed in Ref. �8� for the
non-HD system corresponded to one of these dynamical re-
gimes. In the other regime, where center-of-mass diffusion is
a key component of the transport mode, the dependence of
the velocity on chain length is pronounced. Our analysis of
the results should be helpful in predicting the location of the
latter regime, where size-based separation is feasible, using
known properties of a polymer in equilibrium.

While this work provides useful insights into the behavior
of polymers in Brownian ratchets, the nature of the model
employed imposes limitations on its relevance to experimen-
tal systems. For example, with regard to device studied in
Refs. �4–6�, the ratchet potential arises from electrostatic in-
teraction between the DNA fragment and electrodes of finite
width mounted on a surface. Using the one-dimensional
ratchet potential of Eq. �6� is a highly simplified representa-
tion of the system. A realistic three-dimensional model
would necessarily incorporate polymer-surface interactions,
including surface effects on HD interactions. The coupling
between the conformational and dynamical behavior for such
a model is expected to more complex. A more straightfor-
ward extension to the model would be use of a semiflexible
chain model with a tunable persistence length; such a model
could be highly relevant to understand the behavior of very
short DNA fragments, as noted in Ref. �6�.
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