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Analysis of stationary droplets in a generic Turing reaction-diffusion system
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Solitonlike structures called “droplets” are found to exist within a paradigm reaction-diffusion model that

can be used to describe patterning in a number of biological systems, for example, on the skin of various fish
species. They have also been found in many other systems that can be modeled with a complex Ginzburg-
Landau system. These droplets can be analyzed in the biological paradigm model because the system has two
nonzero stable steady states that are symmetric; however, the asymmetric case is more challenging. We first
review the properties of the paradigm system and then extend a recently developed perturbation technique [D.
Gomila et al., J. Opt. B: Quantum Semiclassical Opt. 6, S265 (2004)] to investigate the weakly asymmetric
case. We compare the results of our mathematical analysis with numerical simulations and show good agree-

ment in the region where the assumptions hold.
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I. INTRODUCTION

The study and analysis of patterning in reaction-diffusion
equations has recently had a resurgence due to increased ex-
perimental evidence of their existence. Turing patterns in the
chlorite-iodide-malonic acid [1] and chlorite dioxide-iodide-
malonic acid [2] reactions were discovered nearly 40 years
after their existence was postulated by Alan Turing in 1952
[3]. Although the number of actual chemical reactions which
produce these patterns is small, the idea of diffusion-driven
instability, extended by Gierer and Meinhardt [4] to the
paradigm-shifting patterning principle of short-range activa-
tion and long-range inhibition, has stimulated much biologi-
cal research in pattern formation. The mechanism has been
used to describe many different phenomena, such as pigmen-
tation patterning in the angelfish Pomacanthus imperator 5],
the pattern of follicles on the skin of mice [6], the spot pat-
tern of lady bugs [7], and the coloring of the shells of marine
snails [8].

We have proposed a general, yet simple, reaction-
diffusion system [Egs. (3) and (4)] [referred to as the Barrio-
Varea-Argén-Maini (BVAM) model from now on], which
presents a rich bifurcation structure and a variety of patterns
which makes it a very versatile system for modeling biologi-
cal phenomena [9]. It can produce not only Turing patterns
but also Hopf bifurcations, Turing-Hopf bifurcations, limit
cycles, and wave front profiles. As a result of interactions

*woolley @maths.ox.ac.uk

1539-3755/2010/82(5)/051929(9)

051929-1

PACS number(s): 87.18.Hf, 87.17.Pq, 87.17.Aa, 87.10.Tf

between the various different bifurcation structures the
BVAM model can give qualitative agreement with the com-
plicated patterns found on the skin of the freshwater catfish
Pseudoplatystoma fasciatum (Surubim pintado), P. tigrinum
(Surubim atigrado), and P. coruscans (Surubim manchado)
by a simple change of one parameter [10]. Further, by cou-
pling two BVAM systems together with different temporal
and spatial scales it has been shown that patterns similar to
the pigmentation patterns on the skin of the stingray Pota-
motrygon motoro can be produced (see Fig. 1) [10].

The spotted pattern observed on the skin of stingrays is
found within the bistable region of the BVAM model, and it
is this situation which is of interest in this paper. The spots
are actually large stable domain walls separating the two

(b)

FIG. 1. (a) An example of pattern produced when two BVAM
models are coupled together. The domain is square with side length
of 120. Reproduced from [10]. “Copyright 2009 by the American
Physical Society.” (b) The skin pattern of the stingray Potamotry-
gon motoro. Scale bar of 10 cm.
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FIG. 2. (a) Cut away concentration of the stationary stable drop-
let, u, with the central profile emphasized in black. (b) Concentra-
tion of the stationary stable droplet, v, with central profile in black.
u and v were found by solving Egs. (3) and (4) with parameters
C=0.005, D=0.516, 7=0.35, h=-1.32, a=0.05775, and b=
—0.305 25.

stable homogeneous solutions, presenting a fixed radius (see
Fig. 2). Spatially localized structures such as these have been
the source of increased study in the field of nonlinear optics.
Cavity solitons, which can form as one stable solution
shrinks due to its embedding in the other, are common due to
either the polarization symmetry or quadratic nature of the
nonlinearity of many optical systems. Similarly, systems
which show the stable coexistence of homogeneous and spa-
tially modulated solutions can be used in the theory of opti-
cal coding and memory applications [11-13].

In a wide region of parameter space the walls (also known
as fronts) travel with a constant velocity that depends on the
asymmetry of the shape of the profile. From random initial
conditions the number of fronts produced is such that a defi-
nite spatial scale appears. If too many fronts are created, such
that their separation is less than the spatial scale, the excess
are annihilated when the fronts collide, leaving free to move
only those that have separation larger than the distance given
by the scale [14]. The picture in two dimensions is more
revealing: from initial random conditions the two phases im-
mediately separate and the fronts start moving with a veloc-
ity that now depends also on the local curvature. The points
where the curvature changes sign are then stationary and
spiral movement of rotating stripes of constant width is ob-
served (Fig. 3). In a different region of parameter space the
velocity of the fronts becomes zero and a stationary labyrin-
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thine pattern settles in. Finally, when one changes the param-
eters around this region, one of the phases is more abundant
than the other. The fronts start curling and closing the re-
gions occupied by the minority phase, droplets are formed
and some of the small ones disappear, while a number of the
large ones shrink to a given radius that depends on the pa-
rameters of the model (see Fig. 2). In all other situations,
fronts connecting two nonequivalent homogeneous states
move in such a way that the more stable state annihilates the
other [15].

In the Ginzburg-Landau system these droplets “appear
close to the modulational instability of a flat domain wall and
balance the curvature-driven shrinking of a domain with the
growth due to the instability of tightly curved fronts” (p. 238
in [16]). Droplets are related to solitons and other local struc-
tures such as nuclei, although their structure is fundamentally
different. Nuclei are never stable. They occur when the inner
solution of a circular domain is favored. Thus, a structure
starting with a large radius will grow to infinity [17]. The
stability of the dark ring cavity solitons comes from the in-
teracting oscillatory tails [13,18]. Whereas in the symmetric
system the stability of the droplet is dependent on the curva-
ture, we will show that, in the more general asymmetric case,
the existence and stability of the droplets also depend cru-
cially on the size of the asymmetry. Due to its existence
depending on curvature, the state associated with stable
droplets cannot exist in one dimension. Thus, we believe
that, although we must turn to numerical simulation in the
end, the analysis gives us insights into the structure, stability,
and reality of these patterns. To analyze the dynamics we
will extend the methods developed by Gomila er al. [19,20]
while examining the evolution of domain walls in nonlinear
optical systems with a symmetric complex Ginzburg-Landau
model. There it was shown quite generally that if:

(i) a system is invariant under translation and symmetric
in its spatial variable (e.g., x— —x);

(ii) there exists a discrete symmetry that allows the exis-
tence of two and only two nonzero stable homogeneous so-
lutions; and

(iii) in one dimension there exist Ising fronts that connect
these solutions, then one is able to derive a formula for the
radius of the droplets. This analysis can then be extended to

FIG. 3. Patterns obtained when A # -1 in Egs. (3) and (4). (a) and (b) are stationary and found in region 2 of Fig. 5. (c) Traveling wave
fronts, found in region 2. (d) Oscillating spiral patterns found on the border between regions 2 and 5 of Fig. 5. All pattern peaks and troughs
are contained in the region [-2,2] and in each case the domain is square with side length of 254. Reproduced from [10]. “Copyright 2009

by the American Physical Society.”

051929-2



ANALYSIS OF STATIONARY DROPLETS IN A GENERIC...

encompass the case when the steady states are asymmetric
[13].

In Sec. II we introduce the BVAM model and illustrate its
various properties before deriving an approximate equation
for the radius of the asymmetric droplets in Sec. III. At the
end of Sec. III we turn to numerical methods to validate our
analysis and comparisons are made in Sec. IV. Finally, in
Sec. V we present conclusions.

II. MODEL

In this section we introduce the BVAM system and illus-
trate some of the many patterns that it can produce. The
general form of a two-species reaction-diffusion system de-
scribing spatial and temporal variations of the concentrations
u and v, undergoing reactions described by the kinetic func-
tions G and G,, with diffusivities D, and D,, respectively, is

[21]
u

—=D,V’u+G,(u,v), (1)
ot
Jd
r?—lt’ =D,V + G, (u,0). 2)

The BVAM model is obtained by Taylor expanding the reac-
tion kinetics [the nonlinear functions G, and G, in Egs. (1)
and (2)] around a stationary solution [9]. The terms of fourth
and higher orders are neglected, partly for simplicity but also
because analysis suggests that pattern selection between
spots and stripes arises from an interplay between quadratic
and cubic terms [22]. The resulting system can then be ex-
pressed in the following nondimensional form:

du

EzDV2u+ 7+ av — Cuv — uv?), (3)
Jv 2 2
E=V0+77(bv+hu+Cuv+uv), (4)

where C, D, a, b, h, and 7 are nondimensionalized param-
eters. We will consider the effect of parameters C and / on
the stable droplets. The term C adjusts the relative strength
of the quadratic and cubic nonlinearities; this causes the sys-
tem to alter its preference in terms of spotted or striped pat-
terns. C is also the symmetry-breaking parameter, such that
when C=0 the spatially uniform steady states are symmetric
about zero and asymmetric otherwise. The parameter i is
important as it controls the number of existing spatially uni-
form steady states. Specifically, if z=—1 then only the trivial
stable steady state, (ug,v)=(0,0), exists. In order to mini-
mize boundary effects we shall use periodic boundary con-
ditions throughout this paper.

System (3) and (4) can be written in the more compact
form,

J
&—'; = DV2u+ W(w.h) + CS(u), (5)

where
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FIG. 4. Stationary symmetric structure profiles of u (solid line)
and v (dashed line), obtained from Egs. (3) and (4) in one dimen-
sion with parameters C=0, D=0.516, 7=0.35, h=-132, a
=0.057 75, and b=-0.305 25.

u D 0 u+av — uv*
u=( |, D= . Wh)=7 5 s
v 0 1 bv + hu + uv

sw=el
u) =uv L)

If C=0 and h# -1, there are three spatially uniform steady
states, (uy,v0)=(0,0) and (uy,v()+=v-(~g,1), where
a+b

vye=* é—/’l = . (6)
- g § 1+h

We now note that the Laplacian makes the system invariant
under translation and the transformation u(x) —u(—x). Sec-
ond, the forms of the kinetics are such that they cause the
steady states to be equivalent under the discrete symmetry
v, —v_. Finally, as Ising fronts form between the two homo-
geneous solutions we can invoke the results of Gomila et al.
[20]. The Ising walls that result when C=0 are perfectly
symmetric in the sense that the area under any of the curves
is exactly zero (Fig. 4). The interfaces can be shown to have
a shape corresponding to

u=—gv_tanh(a,x) + a, sin(a3x)e‘“4‘x‘, (7)

where {ai}?=1 are constants which can be determined [14,23].
Observe that ay=0 and ay=7 are the real and imaginary
parts, respectively, of the eigenvalues of the linearized sys-
tem about one of the nonzero critical points. «; and a, can
be fitted numerically.

If C#0 and h# -1,

) b
—C*xA\|/C+4|-=-h
g
L= ) 8
U 2 (8)

Thus, the nonzero steady states are no longer equivalent. In
this case the Ising front can move as the asymmetry causes
the system to favor one of the states.

Standard stability analysis [24] shows that the existence
of nonzero fixed points causes the BVAM model to have a
wide range of available patterns (see Fig. 3). For instance, if
one fixes the value of h, the complex eigenvalues (w=0
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FIG. 5. Phase plane, in the absence of diffusion, in Egs. (3) and
(4). Parameters are D=0, C=0, and h=-2.5. The lines separating
the regions are derived from the dispersion relation w?—w Tr(J)
+Det(J)=0, where w=0;+i7;, j=1 and 2. In region 1, 0, <0, o,
>0, and 7=0 (saddle points). In region 2, 7 ;<0 and 7+ 0 (oscil-
lating stable points). In region 3, oy, <0 and 7=0 (stable points).
In region 4, 0y , >0 and 7=0 (both points are unstable). In region 5,
01,>0 and 7# 0 (oscillating unstable points).

+i7) can be examined in the plane (g,f), where f=b/g—h
=v?%. The (g.,f) space can be divided into five regions of
different dynamics shown in Fig. 5. Detailed analyses of the
model in these regions have been published elsewhere
[10,14,25].

Specifically, we note that starting from a moving front
pattern, as C is increased we see a transition through laby-
rinthine stationary patterns to disordered circular domains of
fixed radius. This transition is not sharp and one could have
a combination of stripes and spots (see Fig. 5 in [10]).

One specific application of the model in the stable droplet
region has been the pigmentation patterning in freshwater
stingrays of the family Potamotrygonidae. The patterns of
the potamotrygonid species are mostly established by birth
or shortly thereafter. They have highly intricate dorsal color
patterns, which do not look like simple Turing patterns.
These patterns include variously shaped spots [26]. By
weakly coupling two sets of BVAM equations together not
only we can get a good qualitative comparison between the
stingray Potamotrygon motoro and the simulations (Fig. 1)
but also we can account for the differences between genders
and the change in patterning that occurs as the stingray ma-
tures [10].

III. ANALYSIS OF DROPLETS IN THE BVAM MODEL

To analyze the droplets we must first reduce system (5)
using assumptions that allow us to keep only the crucial
dynamics of the droplets and thus remove the dark ring cav-
ity solitons from the system. We construct a coordinate sys-
tem (w,s), which moves with the front. w is the normal
coordinate to the front and s is the arc length along the front
(see Fig. 6). The change of coordinates is then defined as

x(w,s,t) = X(s,1) + wi(s, 1), 9)

where x is the position vector in the reference frame and X is
the position vector of the line front in the reference frame.
The vector 1 is the unit normal vector to the line front in the
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FIG. 6. Illustration of the new coordinate variables given by Eq.
(9). x is the position vector in the reference frame and X is the
position vector of the line front. The vector 1 is the unit normal
vector to the line front, w is the normal coordinate to the front, and
s is the arc length along the front. The various s; are illustrative
points along the front. Similarly, the #; denotes the evolution of the
system at different time points.

reference frame. Under this coordinate transformation, Eq.
(5) can be written in the form

du D&2u+(A . «kD >6u+ KD ﬁ2u+w( n
—=D— —_— u,
ot ow? Tl +wr/ow  (1+wk)? 96

+ CS(u), (10)

where k=V-1 is the curvature, 7i,=dX/df-1 is the normal
front velocity, and 6= ks is the azimuthal angle. Since we are
looking for a circular droplet structure with radius R, these

can be translated to ﬁv:R and k=1/R.

To enable us to analyze the equation effectively we make
the following assumptions which will be justified later:

(1) in the moving frame of the Ising front, the droplet
structure is stationary;

(2) the stable droplet has no # (azimuthal angle) depen-
dence;

(3) the radius of the stable droplet, R, is large, R>1;

(4) the asymmetry is small (C=0) but different from
zero; and

(5) we are able to perturb around the stationary profile of
the one-dimensional symmetric system, u, using a slightly
curved front of the form u=uy(w)+u,(w,s,?), where |u]
< |l.l0|.

Assumption 1 assures us that we are looking for station-
ary structures, so we can equate the time derivative to zero.
By considering Fig. 7 we see the differences between the
soliton structure and droplet profiles. The stable droplets
have a larger radius and are more cylindrical in structure than
the soliton structures. Assumptions 2 and 3 keep these im-
portant properties in the simplified model and are justified by
considering Fig. 2. Since M is only singular when C=0, C is
allowed to be small but nonzero. This avoids the singularity
during the derivation but causes M to be approximately sin-
gular, thus justifying assumption 4. Finally, assumption 5 is
critical in enabling us to reduce the dimension from two to
one by allowing us to treat the domain walls as essentially
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FIG. 7. (a) Profiles of droplet structures u (solid line) and v
(dashed line). (b) Profiles of soliton structures u (solid line) and v
(dashed line). (c) Phase plane plot. The dashed-dotted trajectory is
the solution to Eq. (18). The solid trajectory is the droplet profile.
The dashed trajectory is the soliton profile. The latter two solutions
were obtained by solving Eq. (21) with different initial conditions.
In (a) and (b) C=0.005, the values of C in (c) are noted in the
figure. Other parameters are D=0.516, %=0.35, h=-1.32, a
=0.057 75, and b=-0.305 25.

one-dimensional with the curvature as a small perturbation
around this.

By considering Eq. (10) and applying assumptions 1-5
we see that the leading-order term, uy(w), will be the solu-
tion to Eq. (18). Further, after the application of the assump-
tions and Taylor’s theorem, the correction term, u;, will sat-
isfy

(?2111 . 1 0-'110
0= DW + | RI+ I_?D E + J(ug,h)u; + CS(uy).
(11)
We let
&
M=D—2+J(u0,h) (12)
ow
. 1 (?llo
=>Mu=-CS—|\RI+—-D|—, (13)
R ow

where J is the standard Jacobian of the kinetic terms (W)
evaluated at (uy,4) and S=S(u) is a constant. We note that
M is singular as Eq. (5) is translationally invariant. Hence,
there exists a null vector, ey=du,/dw, such that Me,=0. We
can now use the Fredholm alternative [27] to produce a solv-
ability criterion. We define the inner product to be (a,b)
=J7 a.bdw and a, to be the null mode of the adjoint opera-
tor M7, e.g., MTay,=0. Thus, Eq. (13) has a solution if and
only if
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. 1
O:<ao,—CS—(RI+ ED)%> (14)
. (ag,S) 1<(ap,Dey)
=R=- (ap.e)) R (ag.ep) (15
Next define
vo(h) = — (ay,S) Ak = <30,De0>. (16)
(ag.ep) (ag,eq)

Depending on the signs of the various terms the equilibrium
radius, R, is given by

f ao . DeodW

y(h) 1 {ap,Deg) 17

") C S T C (7 -7
f 30 . SdW

—00

We will be interested in the parameter y(h) later, as y=0 is
the criterion for the modulational instability of a flat front.
We define h, to be such that y(h.)=0. Note also that
(ag,ep)=0 at an Ising-Bloch transition [28] so we consider
only parameter regions far away from this bifurcation point.
As can be seen from Fig. 7 the profile changes from the
positive solution to the negative solution over a short interval
so we define the radius to be the point where the profile of v
Crosses Zero.

Now that we have derived a formula for the theoretical
radius we must turn to computation in order to evaluate a,
and e,. We must first compute uy; the solution of the one-
dimensional, stationary, symmetric equation

du

D= 2
P dx N <u+av—uv )
a @ 7]bv+hu+uv2

dx*

0. (18)

In order to compute the solution, we apply a Newton-
Raphson method [29] in Eq. (18) using its Jacobian,

e
dx? (1—02 a—2uv)
d* nh+v2 b+2uv)’
dx®

M= (19)

This is achieved by discretizing F and M using a second-
order finite difference spatial operator to approximate the
derivatives. This creates banded matrices that can be solved
for efficiently [30]. If the system is initialized with a solution
that is close enough to the droplet wall form the iterates will
tend to converge on a solution of Eq. (18) which is u
=(uy, V). Due to the walls having the explicit form shown in
Eq. (7), a tanh function was used as the initial seed. Finally,
e is calculated using the definition
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FIG. 8. Comparison of the computed steady-state radius of the
perturbed system with the analytically derived radius attained from
one-dimensional Egs. (18) and (21). The dashed line indicates in-
stability to either radial or azimuthal perturbations. The solid line
indicates a radius stable to radial and azimuthal perturbations. The
dotted line is the theoretical prediction from Eq. (17) with C
=0.005 and all other parameters as in Fig. 7. The stability of Eqgs.
(3) and (4) with a two-dimensional Laplacian was found by using a
finite element method on a mesh of 9440 elements. Through a bi-
section parameter search the stability disappears at h;=-1.326, cor-
rect to three decimal places.

duy
d dx
eg= =0 = (20)
dw | dv
dx

and a, is calculated by finding the null vector of M7 (which
can be done using any number of numerical techniques
[31,32]).

To compare the approximation with the actual computed
radius of the droplets we use the Newton-Raphson method
on the radial, angular independent, stationary, asymmetric
equation,

& 1d
D S+ |u 9 B
P dr rdr <u+av uv ) C ( 1)
= + +
(d_2+li> nbv+hu+uvz Kt 1
dr*  rdr v
=0, (21)

with Jacobian

(d2 1d>
D|l—+—|u

dr*  rdr h+v? )
M =

( 1-v?
K a—2uv b+2uv

(1)
dr*  rdr v

-v -u
+ nC o u ) (22)

By solving the stationary equation [Eq. (21)], we are able to

PHYSICAL REVIEW E 82, 051929 (2010)
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FIG. 9. Time series for the evolution of a square initial condi-
tion. The left column has £=-1.32 and so is in the stable region;
thus, the system reaches a final droplet steady pattern. The times
shown are t=0, 100, 10%, and 10°. The right column has h=-1.33
and so is in the unstable region; thus, it produces a labyrinthine
steady state. The times shown are =0, 10°, 2 X 10°, and 10°. Other
parameters are D=0.516, 7=0.35, C=0.005, a=0.057 75, and b=
—0.305 25. The gray scale is from —1.2 (darkest) to 1.2 (lightest)
and the domain is [-50,50] X [-50,50].

find both stable and unstable structures. The radial stability
of the structure is found naturally by considering the eigen-

values of the operator M, which is the Jacobian of the system
and is available quite readily due to its involvement in the
Newton-Raphson method [29].

051929-6
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FIG. 10. Time series for the evolution of pseudorandom initial conditions to stable droplets. The times shown are r=0, 100, 103, and 10*.
Parameters D=0.516, 7=0.35, C=0.005, h=—1.3, a=0.057 75, and b=-0.305 25. The gray scale is from —1.4 (darkest) to 1.4 (lightest) and

the domain is [-50,50] X [-50,50].

IV. RESULTS

Observe in Fig. 8 that when the radius is large there is a
good agreement between the computed one-dimensional ra-
dius from Eq. (21) and the analytically derived radius gained
from the perturbation analysis in Eq. (17). However, the ap-
proximation breaks down for 7#>—1.32. The reason for this
breakdown is due to assumption 3, the assumption of shal-
low curvature, or large radius, becoming invalid for A=
—1.32. For h,. defined as the point of modulational instability,
as in Sec. ITI [ y(h,)=0], then to three decimal places this can
be calculated by a bisection search as h.=—1.310. This im-
plies that when C=0 stable droplets cannot exist for 4 <<h,. as
the states are completely symmetric. In this situation the
most abundant phase will tend to wipe the other out leaving
a homogeneous steady state. Although the symmetric system
cannot have stable droplets for h<<h., when C>0 we see
from Eq. (15) that the asymmetry is able to stabilize the
droplets for a larger parameter region so, as Fig. 8 clearly
shows, stable droplets exist for h<<h. For h<<h, (y<0),
both droplet and local structure (dark ring cavity soliton)
profiles exist in the radial stationary equation [Eq. (21)]. Fur-
ther, the one-dimensional analysis predicts that all droplet
profiles should be stable to radial perturbations as v,<0
throughout this parameter region. This is corroborated by the

negative eigenvalues of the Jacobian M.

It should be noted that although all the droplet profiles are
stable to radial perturbations, modulational instabilities of
their circular wall in the azimuthal direction can occur. In
two-dimensional simulations (Fig. 9) the stability of the
droplets disappears somewhere between h=-1.33 and —1.32.
To simulate the two-dimensional equations we used a finite-
element method on a mesh of 9440 elements and through a
bisection parameter search we found the boundary of stabil-
ity to be h=-1.326=h, correct to three decimal places. For
h>h, the droplets were able to stabilize [Fig. 9(g)]; for A
<h, the droplets succumbed to azimuthal instabilities and
broke down [Fig. 9(d)]. The local structures were never seen
to be stable, corroborating the stability information gained
from the asymmetric radial equation.

Within the region i;<h<<-1.26 the droplets are not only
stable but also appear to be very robust. Figure 10 shows
that, from pseudorandom initial conditions [u(x,y,0)
=sin(90 000x+9000y) +cos(239 845xy), wv(x,y,0)=sin(45

678x+4659y)—cos(379 586xy)—sin(20 000x+88 000y)], the
system exhibits stable droplets. The only other pattern ob-
served to be viable in this region from pseudorandom initial
conditions is stripes (results not shown). These stripes are not
the labyrinthine patterns we would normally consider. The
stripes are able to form due to the periodic boundary condi-
tions as they form a continuous band through the domain
producing a structure with no end. If the stripes are cut they
shrink to droplets as they are unable to support unjoined
ends, unlike the curved heads seen in Figs. 9(f) and 9(h)
which labyrinthine patterns can produce. Zero flux boundary
conditions have the potential to stop such stripes forming,
leaving stable droplets as the only pattern available.

V. CONCLUSION

The BVAM model examined here presents the Turing,
Hopf, and Turing-Hopf bifurcations when & # —1. This rich-
ness of behavior allows us to gain insight into the mecha-
nisms of pattern formation and selection in a wide variety of
problems. In particular, in the bistable regime it is possible to
obtain stable cylindrical structures with large radius. An im-
portant fact underlying this phenomenon is that ;<0
throughout the chosen parameter region. If, instead v,>0,
the structures would not have been stable droplets, they
would have been unstable nuclei.

Observe in Figs. 9 and 10 that the stable structures evolve
into their stationary forms much quicker than the unstable
structures. The stable structures form on a time scale of order
10* (nondimensional units), whereas the unstable structures
form on a longer time scale of order 10°. It was observed
that, starting from nonrandom initial conditions, such as a
square or circle, the unstable structures first form a circle
which would be stable for quite some time, then quickly
rearrange into another metastable structure, such as a space-
filling square. Finally, after another length of time, the pat-
tern reorganizes very quickly to a labyrinthine pattern.

As the patterns take such a long time to form in the non-
dimensional system, we must determine if these time scales
are consistent with the notion of the BVAM mechanism as a
potential candidate for biological patterning. To answer this
we must first consider the original dimensional form of the
BVAM model [25],

u;=DVu + au(l - riv?) +v(r-ru), (23)
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v, = V2 +v(B+ aru) + u(y—ryu). (24)

To nondimensionalize we let u=Uii, v=V9, t=T%, and x
=Lx, where the capital letters are the dimensional scales and
the hatted variables are nondimensional variables. After re-
arrangement we obtain

T r L’a L?
CZ:_, b:ﬁ, h:z, C: ’%_, 7]:_, =
o o o a\’rl o o

(25)

At birth, stingrays range from 10 to 100 mm in length [33].
Since £=100, we use L=10"2 cm. For the diffusivity o6
=10"°-10"7 cm?/s are biologically consistent values
[34,35], giving T=10>-10% s, which implies r=10°-107 s
=~ 12-115 days. Since the gestation period of the stingrays
varies between three and nine months [36], stable droplet
formation through a bistable system is therefore a viable
mechanism of pattern formation.

We have studied the effect of a symmetry-breaking pa-
rameter on the existence and stability of stable droplets and
local structures. The strength of this technique lies in the fact
that although the droplets can only exist in two dimensions,
we can still use a one-dimensional analysis to derive an
asymptotic approximation for the radius. From Eq. (17) we
can see that the form of the asymmetry, S, the size of asym-
metry, C, and the nondimensionalized diffusion coefficient,
D, are all critical factors when it comes to determining the
size and stability of the droplets.

We have shown that droplet and local structure profiles
are both solutions to the stationary radial equations given by
Eq. (21). Further, the droplet profiles are always stable to
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radial perturbations whereas the local structures are always
unstable to radial perturbations. In two dimensions the pa-
rameter range of existence is much smaller due to the desta-
bilizing effects of curvature on the droplet structure. How-
ever, in the region of existence, not only are the droplets
stable but they also appear to be quite robust.

The first-order perturbation analysis gives a good approxi-
mation for —1.4<h<-1.32 when C=0.005. As h——1.32,
the assumption of the droplets having large radius begins to
break down; thus, the reduction of the model based on gently
curved fronts is no longer valid. Due to the reduction of the
model from two dimensions to one, the theory is currently
unable to predict when curvature effects become important
and this extension is currently in progress.
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