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We investigated changes in the shape of tubular ternary vesicles induced by phase separation into liquid-
ordered and liquid-disordered phases. Tubular vesicles transform into two types of periodically modulated
vesicles depending on the area fraction of the liquid-ordered phase. One type is a necklace of oblate subunits
with two circular domains of the liquid-order phase, and the other is a periodically modulated tube with stripes
of the liquid-order phase. The transition between the circular and striped domains is governed by the domain
boundary energy, whereas the periodicity of modulated vesicles is determined geometrically based on the fixed
volume and area constraints. The observed multidomain vesicles are kinetically trapped in metastable states,
and all domains show budding to reduce the boundary energy.
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I. INTRODUCTION

Homogeneous giant unilamellar vesicles �GUVs� show a
large variety of shape deformation based on the external con-
ditions, such as a difference in osmotic pressure between the
inside and outside of the GUVs �1–3�, temperature �4–6�, the
addition of particular molecules or ions �7,8�, and laser irra-
diation �9�. To understand these observed shape deforma-
tions, several theoretical approaches can be applied �10–13�.
One of the most successful models among these theoretical
approaches is the area difference elasticity �ADE� model
�11�. In the ADE model, the total free energy of a vesicle
with surface area S and volume V is given by

F =
1

2
�� �2H�2dS + �G� KdS +

���

2Sdm
2 ��S − �S0�2, �1�

where dS is the area element. The first term in Eq. �1� is the
bending energy of the membrane expressed in terms of the
bending rigidity � and the mean curvature H. The second
term also gives bending energy related to the Gaussian cur-
vature K and its modulus �G and turns out to be constant,
since the membrane has homogeneous composition and the
topology of the vesicle is fixed. The third term is the ADE
energy, which arises from the deviation in the total difference
in area between the inner and outer leaflets of the bilayer �S
from the intrinsic area difference �S0. The intrinsic area dif-
ference is defined as �S0= �Nout−Nin�a0, where a0 is the
cross section of a lipid molecule, and Nout and Nin correspond
to the numbers of lipids in the outer and inner leaflets, re-
spectively. This term is expressed using the distance between
two monolayers dm and a numerical constant �, which deter-
mines the strength of the ADE energy compared to the bend-
ing energy. The shape of a homogeneous vesicle is deter-
mined by the minimization of F for given S and V. Based on
this model, the morphology diagram using two parameters,
a dimensionless excess area of a vesicle �, defined as

���S /4��1/2 / �3V /4��1/3−1, and the intrinsic area differ-
ence �S0, well describes the observed shape deformations of
homogeneous GUVs �10,14�.

To obtain a realistic model of biomembranes, we must
investigate changes in the shape of GUVs containing va-
rious kinds of lipids. In multicomponent GUVs, the interac-
tions between different kinds of lipids lead to the phase
separation of lipids �15–19�. For example, a ternary GUV
composed of dipalmitoylphosphatidylcholine �DPPC�/
dioleoylphosphatidylcholine �DOPC�/cholesterol �Chol�
shows phase separation into a liquid-ordered �Lo� phase that
is rich in DPPC and a liquid-disordered �Ld� phase that is
rich in DOPC. This phase separation produces heterogeneity
of the bending rigidity and line tension between the Lo and
Ld phases. In a spherical phase-separated vesicle, the line
tension causes domain coarsening to minimize the line en-
ergy at domain boundaries. Furthermore, in a nonspherical
vesicle with nonzero excess area, the competition between
the proportion of bending rigidities in the Lo and Ld phases
and the line tension results in unique shape deformations
called budding �18,20�. This issue has been investigated with
both analytical theories �21–27� and computer simulations
�28,29�. However, to the best of our knowledge, most of
these systematic investigations have focused on vesicles with
a nearly spherical shape, and the effects of phase separation
on nonspherical vesicles with a large excess area are still
unclear �30,31�. Baumgart et al. reported a periodically
modulated tubular vesicle with a synchronized striped do-
main pattern, where the membrane was composed of
sphingomyelin /DOPC /Chol=0.63:0.07:0.3 �17�. The for-
mation of a multiple domain pattern is very interesting since
the domain pattern should be governed by the line energy
�typical line tension, ��10−12 N, and typical bending
modulus, ��10−19 J �17�, which give a reduced line tension
of �R0 /��50 for R0=��S /4��=5 �m�. Recently, we found
a similar periodically modulated tubular vesicle composed of
DPPC /DOPC /Chol=4:4 :2 �30,31�. In our case, upon phase
separation, the tubular vesicle transformed to a necklace of
oblate subunits with two circular domains of the Lo phase.
Thus, phase separation on tubular vesicles causes periodic*yanagisawa@chem.scphys.kyoto-u.ac.jp
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multidomain patterns. The purpose of the present study is to
clarify the generality of the periodically modulated tubular
vesicles induced by phase separation and to reveal the under-
lying physics, with particular focus on the circular-to-stripe
domain-pattern transition and determination of the wave-
length selection of modulation. For this purpose, we present
a diagram of the morphology of phase-separated tubular
GUVs in the excess area and the area fraction of the Lo
phase space. Based on this morphology diagram, we discuss
the transition from circular to striped domains and the peri-
odicity of multidomain patterns based on a free-energy
analysis and geometrical constraints.

II. MATERIALS AND METHODS

A. Materials

DPPC ��99% purity� and DOPC ��99% purity� were
obtained in a powder form from Avanti Polar Lipids
�Alabaster, AL�. Chol ��99% purity� was purchased from
Sigma-Aldrich �St. Louis, MO�. All lipids were used without
further purification. Mother chloroform solutions of lipids
were stored at −20 °C until use. Texas-Red dihexanoyl-
phosphatidylethanolamine �TR-DHPE; Molecular Probes,
Eugene, OR� was used as a dye for contrast between the Lo
and Ld phases. Rhodamine dioleoylphosphatidyl-
ethanolamine �Rho-DOPE; Avanti Polar Lipids� and
dihexanoylphosphatidylethanolamine-N-�7-nitro-2,1,3-ben-
zoxa-diazol-4-yl� �NBD-DHPE; Avanti Polar Lipids� were
used for two-color imaging. The former dye partitions into
the Ld phase and gives a red color, whereas the latter pref-
erentially partitions into the Lo phase and gives a green
color. Sorbitol purchased from Sigma-Aldrich �St. Louis,
MO� was used to create a difference in osmotic pressure
between the inside and outside of GUVs, which can control
the excess area of the vesicles.

B. Preparation of GUVs

We prepared ternary GUVs composed of DPPC, DOPC,
and Chol by the gentle hydration method �18,32�. The area
fraction of the Lo phase, 	o, was controlled by varying the
mole fraction of Chol, mchol=0.15, 0.2, 0.25, 0.3, 0.35, and
0.4, while keeping the mole ratio of DPPC /DOPC=1:1.
Roughly speaking, the relationship between 	o and mchol can
be expressed as 	o	mchol+0.15 �0.15
mchol
0.4�.

First, we dissolved lipids with the prescribed composi-
tions of DPPC, DOPC, and Chol in 10 �l of chloroform
�concentration is 10 mM�. To dye the Ld phase, TR-DHPE
was added at 0.2 mol % of lipids. For two-color imaging,
Rho-DOPE and NBD-DHPE were added at 0.4 and
0.2 mol % of lipids, respectively. The solvent was evapo-
rated in a stream of nitrogen gas and the obtained lipid film
was kept under vacuum overnight to completely remove the
remaining solvent. The dried lipid film was prewarmed at
60 °C, and then hydrated with 1 ml of pure water at 60 °C.
During hydration process, the lipid films spontaneously form
giant vesicles with diameters of 5–50 �m.

C. Fluorescence microscopy observation

The vesicle suspension was put on a glass plate with a
0.5-mm-thick silicon rubber spacer. This sample cell was set
on a temperature-controlled stage ��0.2 °C� for microscopic
observation �Carl Zeiss, Germany�. We first kept the tem-
perature of the ternary GUV suspension at 60 °C in the ho-
mogeneous one-phase region and then added sorbitol
�
0.2 mM� to create a difference in the osmotic pressure
between the inside and outside of GUVs. Upon the addition
of sorbitol, spherical homogeneous GUVs started to deform
into various morphologies by using the excess area caused
by the difference in osmotic pressure. When homogeneous
GUVs developed a tubular shape, tubular GUVs of various
lengths were quenched to the coexisting two-phase region
�24 °C for mchol=0.15, 0.2, 0.25, and 0.3 systems and 20 °C
for mchol=0.35 and 0.4� �15� at a quenching rate of approxi-
mately 30 °C /min. At this low sorbitol concentration
�
0.2 mM�, the rate of shape deformation was much slower
than that of phase separation, and thus GUVs maintained a
constant excess area during phase separation. The intrinsic
area difference was also constant due to the slow flip-flop
rate of lipids �33�. The process of shape deformation was
followed using a confocal fluorescence microscope �LSM5,
Carl Zeiss, Germany�. For the observation, TR-DHPE and
Rho-DHPE were excited with a He-Ne laser ��=543 nm�
and fluorescence was detected through a 560–615 nm band-
pass filter �Chroma, Rockingham, VT�. NBD-DOPE was ex-
cited by an Ar laser ��=488 nm� and fluorescence was de-
tected through a 505–530 nm bandpass filter �Chroma�. To
avoid photo-oxidation which can raise the transition tem-
perature and induce phase separation at constant temperature
�15,16�, we minimized light exposure time and the intensity.

III. RESULTS AND DISCUSSION

In this study, we prepared tubular ternary GUVs with
various excess areas in a homogeneous one-phase region,
and then quenched them into a coexisting two-phase region.
With quenching, phase separation into Lo and Ld phases
occurred with a change in the shapes of the tubules. We
found that a long tubular GUV with a minor Lo phase �	o

0.5� transforms to a necklace of oblate subunits with cir-
cular Lo domains on the top and bottom as reported in Ref.
�30�, whereas a GUV with a major Lo phase �	o�0.5� trans-
forms to a periodically modulated tube with stripes of a Lo
domain as reported in Ref. �17�. In Fig. 1, we summarize the
morphologies of phase-separated vesicles schematically us-
ing two key geometrical parameters: 	o �mchol� and �. In the
vesicle image, dark and bright regions correspond to the Lo
and Ld phases, respectively. We estimated � of a periodically
modulated GUV from the shape of a homogeneous tubular
GUV �assuming a spherocylinder shape� just before phase
separation. The total surface area and volume of a tubular
GUV with length l and radius r are given by St=2�rl
+4�r2 and Vt=�r2l+4�r3 /3, respectively, and the value of �
is obtained by �= �St /4��1/2 / �3Vt /4��1/3−1. The observed
morphologies were independent of the quenching rate in the
range of 30–0.5 °C /min. This morphology diagram clearly
shows the generality of the periodically modulated tubular
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vesicles induced by phase separation. From Fig. 1, we found
that �1� with an increase in 	o, the Lo domain pattern
changes from the circular to stripe type, accompanied by a
change in the vesicle shape from a necklace to a modulated
tube, and �2� with an increase in �, the number of subunits
�necklace vesicle� or stripes �modulated tubular vesicle� in-
creases. These two findings are the main points of this paper.

Note that the phase-separated vesicles maintained multi-
domain patterns for several tens of minutes as metastable
states. Then, the domains start to bud and show complete
budding within a few minutes after the start of budding. Fig-
ure 2 shows some examples of such budding transitions of
multidomain vesicles using the two-color imaging technique
�green and red regions correspond to the Lo and Ld phases,
respectively�. For a GUV with 	o=0.35 and �=0.3 �Fig.
2�a�� and a GUV with 	o=0.45 and �=0.1 �Fig. 2�b��, phase-
separated vesicles show an oblate-based shape with a circular
multidomain pattern. Over time, the circular Lo domains
completely budded toward the outside without coarsening,
while phase-separated vesicles maintained a multidomain
pattern for several tens of minutes. Similarly, for modulated
tubular vesicles with a striped multidomain pattern, the do-
main boundaries between the Lo and Ld phases shrink with
time, and the red and green domains are finally connected by
a small neck, as shown in Fig. 2�c� �	o=0.5 and �=0.2� and
Fig. 2�d� �	o=0.55 and �=0.6�. These results clearly indicate
that the multidomain patterns are metastable, and the line
energy governs shape deformation.

In this experiment, phase-separated vesicles were irradi-
ated with possibly low-intensity light at intervals of �5 s
since continuous exposure to bright light induced budding as
an artifact of light. In addition, when we waited for 
1 h
before turning on the light, most of the vesicles already un-

derwent budding while some of them did not. Therefore,
under our experimental conditions, the effects of light on the
metastability of multidomain patterns are not dominant.

A. Domain-pattern transition

First, we consider the transition from circular to striped
domains of the Lo phase in GUVs with small excess area
��
0.1�, as shown in the bottom row of Fig. 1. In the case of
a short tubular vesicle with 	o
0.5, the vesicle transformed
to an oblate with two circular domains of the Lo phase on
both sides. Since the bending modulus of the Lo phase, �o, is
greater than that of the Ld phase, �d, ��o /�d=1.25–4�
�17,34�, the Lo domains prefer less-curved region, whereas
the Ld matrix covers the higher-curvature region. With an
increase in 	o, the circular domain gradually increased in
size while maintaining an oblate shape. When the area frac-
tion of the Lo phase increased beyond a critical value, 	o

�


0.5, the tubular vesicle transformed to a prolate vesicle
with a single stripe of the Lo phase. A further increase in 	o
resulted in an increase in the thickness of the stripe.

For vesicles with a larger excess area ���0.1�, upon
phase separation, long tubular vesicles transformed to peri-
odically modulated tubes with a multidomain patterns. Long
tubular vesicles with a low 	o �	o
0.5� showed a necklace
composed of oblate subunits with circular Lo domains,
whereas for high 	o �0.5
	o
0.65�, vesicles showed
modulated tubular shape with synchronized stripes of the Lo
phase. Thus, the transition between the necklace with circu-
lar domains and the modulated tube with stripes took place at
	o

�
0.5, which is independent of �.

ξ

mchol%%
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FIG. 1. Morphology diagram of phase-separated tubular vesicles
in 	o �mchol� and � space. The vesicles above the thick white line
show typical shapes with large � �
0.8�. The white and black re-
gions in the vesicles are the Ld and Lo phases, respectively. Scale
bar is 5 �m.
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0s 30s 50s
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d
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0s 45s

FIG. 2. �Color� Budding transition of multidomains on modu-
lated tubular vesicles with a mole fraction of DPPC /DOPC=1:1
and Chol mole fractions of �a� 0.2, �b� 0.3, �c� 0.35, and �d� 0.4. The
values of excess area in each vesicle are �a� 0.3, �b� 0.1, �c� 0.2, and
�d� 0.6. The onset time of the budding transition is expressed as 0 s.
Red �white� and green �black� regions indicate the Ld and Lo
phases, respectively. Scale bars are �a�–�c� 5 and �d� 2 �m.
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B. Free-energy analysis of the domain-pattern transition

Here, we consider the circular-to-stripe domain-pattern
transition theoretically. For a short tubular vesicle with
�
0.1 as an initial state, with phase separation, the vesicle
deforms to an oblate vesicle with two circular Lo domains
�OV2CD� or a prolate vesicle with one striped Lo domain
�PV1SD� depending on 	o. Although the observed multido-
mains in vesicles finally showed budding as seen in Fig. 2,
OV2CD and PV1SD maintained their shapes for several tens
of minutes before the start of budding. Hence, we addressed
the domain-pattern transition based on the total free energy.
The elastic energy model for a homogeneous vesicle ex-
pressed by Eq. �1� can be extended to a vesicle with multiple
domains as follows �30�:

F = Fbending + Fline + FADE, �2�

Fbending = �
�p�=o,d

� �1

2
��p��2H�2 + �G

�p�K
dS , �3�

Fline = �
i

�� dl�i�, �4�

FADE =
���̄

2Sl2 ��S − �S0�2, �5�

where the superscript “p” stands for the Lo phase �o� and the
Ld phase �d�, � is the line tension at the boundary between
the Lo and Ld phases, and dl�i� is the length element of the
ith domain boundary. The mean bending modulus of the bi-
layer, �̄, is given by �̄=�o	o+�d�1−	o�. For this calcula-
tion, we approximated OV2CD and PV1SD by an oblate
spheroid and a prolate spheroid, as shown in Fig. 3. The
details of the analytical expressions of the total volume V,
total area S, area fraction of the Lo phase 	o, and energy
terms for the oblate and prolate vesicles are summarized in
Appendix, Secs. 1 and 2, respectively. Although the reported
values for line tension have ranged from 0.01 to 5 pN de-
pending on the lipid composition and temperature
�17,35–37�, under our experimental condition, the total free
energy is governed by the line energy, as shown in Fig. 3.
Therefore, in the energy calculation, we adopted �o=1

�10−19 J, �o /�d=1.25, �G
o =�G

d , and �=1 pN, and thus
�R0 /�d�50 for R0=5 �m. We plotted the normalized total
free energies F /8��d �thick line� and normalized line ener-
gies Fline /8��d �thin line� for OV2CD �solid line� and
PV1SD �dotted line� with �=0.02 against 	o in Fig. 4�a�,
which shows a schematic representation of phase-separated
vesicles for each 	o in the upper �OV2CD� and lower
�PV1SD� panels. Figure 4�a� shows that the domain bound-
ary length determines the stable shape. With an increase in
	o, the boundary length of a domain on an oblate vesicle Lo

increases as Lo
a	o
1/2, whereas that on a prolate vesicle Lp

decreases as Lp
a��1−	o
2. The shape transition from

OV2CD to PV1SD takes place at the crossover point shown
in Fig. 4�a�. The numerically estimated area fraction at the
transition is n	o

�
0.27 for vesicles with �=0.02. This value
is smaller than the experimental value, 	o

�
0.5. Figure 4�b�
shows the normalized free energies of OV2CD and PV1SD
with various �’s against 	o. The transition area fraction n	o

�

increases with a decrease in �. When the vesicle has a spheri-
cal shape with �=0, the theoretical crossover area fraction is
n	o

�=0.5, which agrees well with the experimental value.
Similar domain-pattern transitions between circular and

striped domains have been observed in membranes supported

-c

a

c

-a

R(z)

z

(a)

-a’

-b’ -c’

a’

c’ b’

R(z)

z

(b)

b-b

FIG. 3. Geometrical spheroid models describing �a� an axisym-
metric oblate vesicle with two circular Lo domains on both sides
�OV2CD� and �b� an axisymmetric prolate vesicle with one striped
Lo domain �PV1SD�. The gray and black lines represent cross sec-
tions of the Ld and Lo phases, respectively.

FIG. 4. �a� Normalized total free energy �F /8��d, thick lines�
and normalized line energy �Fline /8��d, thin lines� curves of
OV2CD �solid lines� and PV1SD �dotted lines� with �=0.02 as
functions of the area fraction of the Lo phase, 	o. Schematic rep-
resentations show the geometries of OV2CD �upper side� and
PV1SD �lower side� with different 	o=0.2, 0.4, 0.6, and 0.8 �left to
right�. The gray regions represent Lo phases. �b� Normalized total
free energy �F /8��d� for OV2CD �black lines� and PV1SD �gray
lines� as a function of 	o. Both vesicles have same excess areas
�=0.06 �dashed lines�, 0.03 �dotted lines�, and 0 �solid lines�.
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on substrates �38–41�. Rozycki et al. showed that circular
domains represent the most stable state if the line tension is
sufficiently high, whereas striped domain patterns corre-
spond to the equilibrium state if the line tension is lower than
a threshold value �39�. Domain-pattern transitions between
circular and striped domains controlled by line tension have
also been reported for vesicles using a curvature elasticity
model �21,24,27�. In our experimental condition, however,
the line energy is large enough to dominate the total energy
��R0 /�d�1�. Actually, all domains in circular and striped
patterns showed a budding transition �Fig. 2�. Therefore, the
observed domain patterns are metastable states, and the
domain-pattern transition occurs so as to minimize the line
energy.

C. Periodicity of modulated vesicles

The second feature of shape deformation in phase-
separated tubular vesicles is the periodic modulation shown
in Fig. 1. With phase separation, a homogeneous tubular
vesicle with small � �
0.1� deforms to OV2CD �0.35
	o

0.50� or PV1SD �0.50
	o
0.65�. When the value of �
increases beyond 
0.1, the shape of the phase-separated
vesicle is transformed to a dimer of oblate subunits �0.35

	o
0.50� or a modulated tube with two Lo stripes �0.50

	o
0.65�. The number of subunits in a periodic vesicle,
N, increases with an increase in �. In the case of long tubular
vesicles with �
0.8, N reaches approximately 40.

Figure 5 shows the experimentally obtained relationship
between � and N on a double-logarithmic plot. For 	o
=0.35 and 0.45, the vesicles have a necklace shape, and for
	o=0.55 the vesicles have a modulated tubular shape. All of
the data obtained for necklaces and modulated tubes follow a
master curve of ��+1�
Nv, with �=0.16. This result indi-
cates that one subunit corresponds to one wave of modula-
tion in the tube.

To explain this geometrical relationship, we intro-
duce a dimensionless excess area of a subunit defined by

�0= �s0 /4��1/2 / �3v0 /4��1/3−1, where s0 and vo are the area
and volume of the subunit, respectively. Since the total area
and volume of the periodic vesicle are given by Sp=Ns0 and
Vp=Nv0, we obtain the following expression:

� + 1 =
�Sp/4��1/2

�3Vp/4��1/3 = ��0 + 1�N1/6. �6�

Equation �6� well describes the experimental data in Fig. 5.
From fitting, we obtain �0
0. This value agrees well with
the estimated value � in the analysis using free energy. Thus,
the periodicity of a modulated vesicle, i.e., the number of
subunits N, is determined by the geometrical conservation
constraints of S and V, and each subunit is nearly spherical.

D. Kinetic pathways to periodically modulated vesicles

To reveal the relationship between multidomain-pattern
formation and periodic deformation in the vesicle, the time
evolutions of phase-separated tubular vesicles are shown in
Fig. 6. In the case of a tubular vesicle with �=0.1 and 	o
=0.35 �Fig. 6�a��, the coarsening of numerous small domains
occurred in three regions �10 s�, which developed to three-
domain pairs �in the front and back sides� on the modulated
tubular vesicle �20 s�. While the three-domain-pair state did
not develop to a trimer vesicle, the domains coalesced to
one-domain pair in an oblate vesicle, OV2CD �50 s�. Similar
coarsening of the domain pattern and simultaneous shape
deformation were observed in other tubular vesicles. In the
case of a tubular vesicle with �=0.3 and 	o=0.35 �Fig. 6�b��,
the coarsening of domains took place in four regions �40 s�,
and the vesicle formed a four-domain-pair state on the modu-
lated tubular vesicle �60 s�. However, the domains finally
developed to three-domain pairs on a trimer vesicle �120 s�.
Thus, the periodicity of the initial domain pattern does not
always agree with that of the modulated vesicle. On the other
hand, for a tubular vesicle with �=0.3 and 	o=0.55 �Fig.
6�c��, the number of stripes on a vesicle was independent of

φo = 0.35
φo = 0.45
φo = 0.552

1

0.8

0.6

1 10 100
Ν

ξ
+

1

FIG. 5. Relationship between the number of subunits N and
excess area � for periodically modulated vesicles with various 	o’s.
Necklace vesicles with 	o=0.35 and 	o=0.45 are composed of N
oblate subunits, and tubular vesicles with 	o=0.55 have N striped
Lo domains. The solid line indicates the geometrical relationship
�+1= ��0+1�N1/6, with �0=0.

0s 20s 40s 60s 120s

0s 10s 20s 40s 50s

0s 20s 40s 60s 80s

a

b

c

FIG. 6. Time evolution of domain growth on tubular vesicles
with �a� 	o=0.35, �=0.1; �b� 	o=0.35, �=0.3; and �c� 	o=0.55,
�=0.3. The onset time of visible phase separation is expressed as
0 s. The white and black regions are the Ld and Lo phases, respec-
tively. The scale bar is 5 �m.
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time, which may be due to the high-energy barrier for the
coalescence of stripe domains.

E. Mechanism of periodic modulation induced
by phase separation

The formation of periodically modulated tubular vesicles
with multiple domains is quite interesting. Campelo et al.
addressed modulated vesicles with striped domains by en-
ergy minimization in the Canhan-Helfrich model �42�. How-
ever, the line tension ��R0 /�d
1� adopted in their paper is
much smaller than that in our system ��R0 /�d
50�. There-
fore, it might be worthwhile to discuss other possibilities to
explain the formation of periodically modulated vesicles.
The periodic instability in homogeneous tubular vesicles has
been observed in many systems and is referred to as pearling
instability �9,43–45�. For pearling instability, two types of
theoretical models have been presented: a hydrodynamic
theory for a fluid membrane based on plateau and Rayleigh
instability �46,47� and a membrane elasticity model with
nonzero spontaneous curvature �48�. According to the former
theory, pearling instability originates from an excess surface
tension induced by an external stimulus and has a wave-
length of the fastest growth mode, �, as 2�r /�	0.65, where
r is the radius of the tube �45�. In the latter theory, pearling is
a result of the minimization of the membrane elastic energy
with nonzero spontaneous curvature, which leads to strings
of beads, the so-called unduloid or “Delaunay surfaces” with
2�r /�=1, where � is the wavelength of modulation �48–50�.
To compare these theoretical predictions with our experi-
mental data, we plot the dimensionless wave number k
=2�r /� of the periodically modulated vesicles as a function
of � �Fig. 7�. For large � ��0.4�, k is about 1, which means
that the vesicle shape is close to “unduloid.” On the other
hand, for small � �
0.4�, k is scattered at around 2. When a
tubular vesicle with length l and radius r transforms into a
necklace composed of N spheres with radius R, the total
surface area and total volume are

S = 2�rl + 4�r2 = 4�R2N , �7�

V = �r2l + 4
3�r3 = 4

3�R3N , �8�

respectively. Equations �6�–�8� and �=2R give the following
geometrical relation:

� = − 1 + ��0 + 1��� k

�
�2�3 − 2

�

k
�−1
1/6

. �9�

We plotted Eq. �9� with �0=0 as a solid line in Fig. 7. The
wave number k calculated by Eq. �9� agrees with the experi-
mental results for small �
0.4 region. Thus, Fig. 7 shows
that the shapes of short and long tubular vesicles can be
described by the necklace and unduloid geometries, respec-
tively. To reveal the physical basis of the observed periodi-
cally modulated vesicles, further studies are needed.

IV. CONCLUSION

When we induce phase separation in tubular vesicles, the
tubular vesicles transform into two types of periodically
modulated vesicles depending on the area fraction of the Lo
phase. One type is a necklace of oblate subunits with two
circular Lo domains, and the other is a modulated tubular
vesicle with stripes of the Lo phase. The circular-to-stripe
domain transition is governed by the line energy, whereas the
periodicity of modulated vesicles is determined geometri-
cally by volume and the area conservation constraints. For a
vesicle with small �
0.4, the shape is a necklace of subunits
with the same �
0. However, for large ��0.4, the shape is
close to an unduloid. Since the observed multidomains are
maintained for several minutes and then show a budding
transition with time, they are metastable states. Furthermore,
the shape deformation of vesicles upon phase separation is
governed by a kinetic process, which is completely different
from the shape deformation of homogeneous vesicles and
may be important for understanding the more complex mor-
phologies of biomembranes.
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APPENDIX: ESTIMATION OF FREE ENERGY
OF OV2CD AND PV1SD

In this appendix, we derive the free-energy expression of
the two types of phase-separated vesicles OV2CD and
PV1SD. The shapes of OV2CD and PV1SD are approxi-
mated by an oblate spheroid �Fig. 3�a�� and a prolate spher-
oid �Fig. 3�b�� with axisymmetry with respect to the z axis,

ξ
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k
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0

φo = 0.35
φo = 0.55

FIG. 7. Dimensionless wave number k=2�r /� of modulated
vesicles �	o=0.35: necklace of oblate subunits and 	o=0.55: tubu-
lar vesicles with striped domains� as a function of the excess area �.
The solid line indicates the geometrical relationship �=−1+ ��0

+1���k /��2�3−2� /k�−1�1/6, with �0=0.
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respectively. The radius R�z� of the spheroids in the cylindri-
cal coordinate system is expressed as

R�z� = a�1 − � z

b
�2

. �A1�

The surfaces of the spheroids are divided into the Lo and Ld
phases, as shown in Fig. 3 ��a� oblate and �b� prolate sphe-
roids�.

1. Oblate shape

The OV2CD has radii of major, a, and minor, b, axes,
i.e., a�b and the phase boundaries are located at z= �c
�c
b�. The total volume V and surface area S of the oblate
vesicle are given by

V =
4

3
�a2b , �A2�

S = 2��a2 +
ab2

2�a2 − b2
ln� a + �a2 − b2

a − �a2 − b2�
 . �A3�

The areas of the Lo phase So and Ld phase Sd are expressed
as

So = S − Sd, �A4�

Sd = 2��ac

b2
�b4 + �a2 − b2�c2

+
ab2

2�a2 − b2
ln��b4 + �a2 − b2�c2 + c�a2 − b2

�b4 + �a2 − b2�c2 − c�a2 − b2�� ,

�A5�

and the area fraction of Lo phase, 	o, is given by

	o =
So

S
. �A6�

The bending energy is expressed as

Fbending = 2��a

b
�1

p
��o� 1

2
ln� a + �a2 − b2

a − �a2 − b2

�b2 + p2c2 + pc
�b2 + p2c2 − pc

� + 2�a2

b2���a2 − b2

a
−

pc
�b2 + p2c2� +

1

3
�a2

b2�2� �2a2 + b2��a2 − b2

a3

−
pc�3b2 + 2p2c2�

�b2 + p2c2�3/2 �
 + �d�1

2
ln� a + �a2 − b2

a − �a2 − b2� + 2�a2

b2��a2 − b2

a
+

1

3
�a2

b2�2 �2a2 + b2��a2 − b2

a3 �
+ 2�G

o ��a2 − b2

a
−

pc
�b2 + p2c2� + 2�G

d pc
�b2 + p2c2� , �A7�

where p��a2 /b2−1�1/2. The line and ADE energies are

Fline = 4��
a

b
�b2 − c2�1/2, �A8�

FADE = 8�3��̄
1

S
� a2

�a2 − b2
arctan��a2 − b2

b
� + b

−
1

4�dm
�S0�2

. �A9�

2. Prolate shape

The PV1SD is also expressed as a spheroid with the radii
of minor, a�, and major, b�, axes, i.e., a�
b� and the width
of a stripe domain, 2c� �c�
b�� as shown in Fig. 3�b�. The
total volume V and surface area S of the prolate spheroid are,
respectively, given by

V =
4

3
�a�2b�, �A10�

S = 2��a�2 +
a�b�2

�b�2 − a�2
arccos�a�

b�
�
 . �A11�

The area of the Lo phase, So, is expressed as

So = 2�� a�c�

b�2
�b�4 − �b�2 − a�2�c�2

+
a�b�2

�b�2 − a�2
arccos��b�4 − �b�2 − a�2�c�2

b�2 �
 ,

�A12�

and the area of the Ld phase, Sd, is given by Sd=S−So. The
area fraction of the Lo phase, 	o, is given by 	o=So /S. The
bending energy is expressed as
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Fbending = 2��a�

b�
�1

q
��o�arcsin�q

c�

b�
� + 2�a�2

b�2� ��b�2 − a�2�c�2

�b�4 − �b�2 − a�2�c�2
+

1

3
�a�2

b�2�2 �3b�2 − 2c�2q2�b�4c�q

�b�4 − �b�2 − a�2�c�2�3/2

+ �d�arcsin�q� − arcsin�q

c�

b�
� + 2�a�2

b�2���b�2 − a�2

a�
−

��b�2 − a�2�c�2

�b�4 − �b�2 − a�2�c�2� +
1

3
�a�2

b�2�2��3 − 2q2�b�3q

a�3

−
�3b�2 − 2c�2q2�b�4c�q

�b�4 − �b�2 − a�2�c�2�3/2
� + 2�G
o

��b�2 − a�2�c�2

�b�4 − �b�2 − a�2�c�2
+ 2�G

B��b�2 − a�2

a�
−

��b�2 − a�2�c�2

�b�4 − �b�2 − a�2�c�2�� , �A13�

where q��1−a�2 /b�2�1/2. The line energy is given by

Fline = 4��
a�

b�
�b�2 − c�2�1/2. �A14�

The ADE energy is

FADE = 8�3��̄
1

S
�1

2

a�2

�b�2 − a�2
ln��b�2 − a�2 + b�

�b�2 − a�2 − b�
� + b� −

1

4�l
�S0�2

. �A15�
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