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Comparison of Brownian-dynamics-based estimates of polymer tension
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With the aid of Brownian dynamics models, it is possible to estimate polymer tension by monitoring
polymers’ transverse thermal fluctuations. To assess the precision of the approach, Brownian dynamics-based
tension estimates were compared with the force applied to rhodamine-phalloidin labeled actin filaments bound
to polymer beads and suspended between two optical traps. The transverse thermal fluctuations of each
filament were monitored with a CCD camera, and the images were analyzed to obtain the filament’s transverse
displacement variance as a function of position along the filament, the filament’s tension, and the camera’s
exposure time. A linear Brownian dynamics model was used to estimate the filament’s tension. The estimated
force was compared and agreed within 30% (when the tension <0.1 pN) and 70% (when the tension <1 pN)
with the applied trap force. In addition, the paper presents concise asymptotic expressions for the mechanical
compliance of a system consisting of a filament attached tangentially to bead handles (dumbbell system). The

techniques described here can be used for noncontact estimates of polymers’ and fibers’ tension.
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I. INTRODUCTION

When using electrostatic forces to position actin filaments
across gaps between electrode pairs, Arsenault et al. [1,2]
observed that the amplitude of the filaments’ lateral vibra-
tions decreased as the electric field’s intensity increased. To
estimate filament tension, Arsenault et al. [1] measured the
variance of the filament’s transverse thermal fluctuations, as-
sumed that the filament behaves like a slender elastic beam,
and used a simple Brownian-dynamics model and the prin-
ciple of equipartition of energy to match the predicted and
measured variances.

The use of Brownian dynamics models and the principle
of equipartition of energy to estimate the mechanical proper-
ties of polymers is not new. Yanagida et al. [3] and Gittes er
al. [4] deduced the flexural rigidities of freely diffusing actin
filaments’ and microtubules’ from their modes of vibrations.
Since the apparent tension of doubly anchored polymers has
not been estimated before, we felt it prudent to verify the
method by comparing the Brownian dynamics-based force
estimates with direct force measurements.

Optical traps (laser tweezers) provide a convenient means
to simultaneously apply forces in the range of piconewtons
and measure subnanometer displacements. The optical trap
was pioneered in the 1970s [5,6] and is commonly employed
to study molecular motors [7-9] and cytoskeletal filaments
and nucleic acids [10-14] at the single-molecule level. In
these assays, micron-sized particles, trapped by tightly fo-
cused laser beams, act as handles to manipulate attached
molecules of interest. The angular intensity distribution of
the laser light as it enters and leaves the trap allows one to
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estimate the force acting on the bead [15]. When displace-
ments are small, the trap acts like a linear spring.

Wang er al. [16] used optical tweezers to obtain similar
results for the bending rigidity of DNA as those obtained
with the application of hydrodynamic and magnetic forces to
DNA filaments [17]. Optical tweezer studies of the shear
moduli of filamentous networks [18] yielded similar results
to earlier rheological techniques [19]. Here, we measure the
variance of the transverse fluctuations of an actin filament
anchored at each end to a bead held in an optical trap and
subjected to tension. The measured variance is used to esti-
mate the filament’s tension, which is then compared with the
applied force values.

II. MATERIALS AND METHODS

A 150-um-high flow cell, confined between two glass
coverslips was filled with a solution of 50 nM rhodamine-
phalloidin-stabilized actin, polymerized in 2 mM MgCl,, 150
mM KCI, and 2 mM Hepes (pH=7.4). The solution also
included 1 mg/mL BSA to prevent nonspecific adhesion of
the actin filaments to the glass surfaces and 50 mM DTT, 7.2
mg/mL glucose, 9 units/mL catalase, and 4 mg/mL glucose
oxidase to slow rhodamine’s photobleaching. Buffers were
prepared with either 0% or 60% (by mass) glycerin to study
the effect of the suspending medium’s viscosity on the fila-
ments’ vibrations. The 0% and 60% glycerin buffers had,
respectively, viscosities of 1 and 10.8 mPas [20]. Subse-
quently, 1-um-diameter, N-ethylmaleimide (NEM)-myosin-
coated beads were infused into a flowcell. These beads were
prepared as previously described [21]. The flowcell was
sealed with grease to prevent solvent evaporation and was
placed on the stage of an inverted microscope (Olympus
IX70).
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FIG. 1. (Color online) A schematic depiction of the experimen-
tal setup and the coordinate system. The beads are ~1 um in di-
ameter. The z coordinate is aligned with the microscope’s optical
axis and is normal to the page.

A 1064 nm optical trap [22] was used to capture a
1-um-diameter bead at each end of an actin filament (Fig. 1).
Since macroscopically the filament appeared to be firmly at-
tached to the beads, it is likely that it was linked to the beads
by multiple myosin molecules. The forward-scattered infra-
red light at the back focal plane of the collecting objective
was projected onto a quadrant photodiode (Current Designs,
Inc.) to measure force [15].

To calibrate the trap, we employed two methods
[7,23,13]. In one method, we measured the power spectrum
of the bead’s thermal fluctuations and compared the mea-
surements with theoretical predictions to obtain the trap’s
spring constant [24]. In our second calibration method, we
oscillated the microscope stage back and forth with a con-
stant velocity and determined the detector’s response as a
function of the bead’s hydrodynamic drag force [24]. The
trap stiffness calibration was carried out with every trapped
bead immediately prior to each experiment. The trap’s spring
constant varied from bead to bead, depended on the laser’s
intensity, and ranged from 0.01 to 0.02 pN/nm.

An electron multiplying charge coupled device (CCD)
camera (Andor Technologies) collected images every 2 s,
with exposure times of 10, 20, 30, 50, 75, 100, 200, and 300
ms. The camera images were analyzed with a custom MAT-
LAB™ algorithm to determine the filament’s instantaneous
position [1]. The background signal of each frame was de-
termined by calculating the moving average from square
I umX1 wum regions. The background intensity was sub-
tracted from the image. A straight line, referred to as E-E,
was drawn between the filament’s end points. Subsequently,
transverse lines, referred to as 7-T, perpendicular to E-E
were erected at ~400 nm intervals. The intensity data along
each T-T line were fitted with a Gaussian curve, and the
position of the filament was identified as the centroid of the
fitted Gaussian curve. We estimate this technique to have a
precision of £50 nm. The uncertainty in the position mea-
surement was obtained by calculating the standard deviations
of the positions of various points along a filament immobi-
lized to a surface.

The bending stiffness of our filaments was determined by
measuring the variances of the transverse fluctuations of
freely oscillating filaments and analyzing the data with a
technique described later in this paper [29]. Since our esti-
mate of the bending rigidity is consistent with the literature
value [4], in the interest of space, we omit details.

III. MATHEMATICAL MODEL

We assume the actin filament behaves like a slender elas-
tic beam with uniform elastic modulus E, cross-sectional uni-
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form moment of inertia /, and average tension 7. The product
EI is the bending rigidity. We first determine the filament’s
equilibrium shape and then consider thermal fluctuations
about this equilibrium.

A. Filament’s static equilibrium shape

Consider an inextensible filament of contour length 2L
that is connected to two beads subjected to opposing forces
of magnitude 7 in the x direction (Fig. 1). We use the arc
length § to specify position along the filament. §=0 at the
filament’s midlength (-L=3§=<L). The overscript “hat” de-
notes dimensional quantities that will be later rendered di-
mensionless. The moment acting on the filament at any po-
sition § is M=EId6/ds, where 0 is the angle between the
tangent to the filament and the x axis. Force equilibrium
requires [25]

d2
F—mzsinﬂzO (-1=s=1). (1)
S

In the above, m*>=7L?/El, s=§/L, and L is the length scale.
We scaled the force 7 with 7.=EI/L?. 7 represents the sus-
ceptibility of the beam to bending. It is obtained from order
of magnitude estimate based on the constitutive relation
M=EId#/ds by approximating M ~ar, and d0/d§~alL>. T,
is also proportional to the critical force [ 7°EI/(4L?)] needed
to buckle a hinged, Euler beam.
At s= * 1, balance of moments yields

do(s= = 1)

" =m2(af)cos[0(s= + 1], (2)

where a is the radius of the bead. The subscripts “+” and “—
denote, respectively, the bead on the right and the bead on
the left. For use below, it is convenient to also introduce a
Cartesian coordinate system x, y, and z (Fig. 1). The x coor-
dinate is aligned along the line that connects the beads’ cen-
ters and has its origin at the filament’s midpoint. The z co-
ordinate is aligned with the microscope’s optical axis and
perpendicular to the page.

For conciseness, we focus only on the case when both
beads have the same radius a,=a_=a. The derivation, how-
ever, can be extended straightforwardly to the more general
case of a_#a,. In the experiment, the filament and the two
beads’ centers did not always reside in the same plane. For
the purpose of this section, we will consider, however, only
the planar case. In the planar arrangement, one can distin-
guish between the symmetric case 6(—s)=—6(-s) and
0(0)=0 and the antisymmetric case 6(-s)=60(s) and
d6(0)/ds=0. In the interest of space, we derive results only
for the former. We will be mostly interested in asymptotic
results applicable for moderate and large applied forces
(these are the cases that we encounter in the experiments).
These asymptotic results are valid for both the symmetric
and asymmetric cases.

The first integral of Eq. (1) is
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FIG. 2. The equilibrium shapes of filaments (0<<s<1) when
m=0.2 (dashed line), 2 (solid line), and 20 (dotted line). a/L=0.1.
The three circles depict the position of the bead when m=0.2
(dashed line), 2 (solid line), and 20 (dotted line). Symmetric bound-
ary conditions are applied to the filament.

1{de\?
—(—) +m? cos =C, (3)
2\ds

where C is a constant of integration. It is instructive to con-
sider the order of magnitude of m. The bending rigidity of
actin is estimated as E/~7 X 1072 Nm? [4]; the bead radius
a~0.5 um; and the actin length 2L~ 10 wm. When the
trap force 7 is on the order of 1 pN, m?>=400. Thus, in most
circumstances encountered in our optical trap experiments,
m>1 (i.e.,, m>10).

The exact solution of Egs. (1) and (2) is in terms of an
elliptic integral (Appendix). Figure 2 depicts the static equi-
librium shape of the filament in the range 0<s<<1 when
m=0.2, 2, and 20 and a/L=0.1 using the Cartesian
coordinates x and y. The coordinates x and y were
computed together with the solution of Eq. (1) by
solving the equations dx/ds=cos[0(s)] and dy/ds
=sin[6(s)] with the boundary conditions x(0)=0 and y(1)
=(a/L)cos[ 6(1)]. The right bead’s center is located at {x,y}
={[jcos[0(§)]dé+al Lsin[0(1)],0}. When m>10, along a
significant fraction of the filament’s length, excluding small
regions next to the beads, 6(s)~y(s)~0. We will take ad-
vantage of this fact in the next section.

When m is sufficiently large (i.e., m=5 when a/L=0.1)
allowing one to assume 6(0)=d6(0)/ds~0,

0(s) ~ 4 tan”{tan[?]em(‘s—])} @

provides an excellent approximation of the exact solution
over the entire domain —1 =s=1. See Appendix, Sec. 3 for
the derivation of Eq. (4) and for an expression for 6(1)
[Eq. (A13)].

Equation (4) allows us to readily obtain an asymptotic
approximation for the center to center distance between the
beads as a function of the dimensionless load m when
m>1 (see the Appendix):

X, -2 [4EI la®r —
g = S~ E[(u E+1>V1—u -11]. (5

In the above, X, is the beads’ center to center distance and
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\/ ( 1 EI )

u= —+— |-
2 da°r

To obtain Eq. (5), we eliminated the last term of Eq. (A15),
which contributes insignificantly for moderate and large val-
ues of m. When a/L=0.1 and m> 1, the last term in Eq. (5)
can be safely neglected. When m=3, Eq. (5) is accurate
within 0.5%. For additional details as well as other

asymptotic approximations for small and large m, see the
Appendix.

EI

447

(6)

B. Filament’s thermal fluctuations

Next, we consider small fluctuations of the filament about
its equilibrium state. Based on the analysis of Sec. IIT A, at
equilibrium and subject to the typical forces applied in the
experiments, y(s)=0 along most of the filament’s length. In
our analysis of the thermal fluctuations, we will neglect tor-
sional modes. The filament’s motion is projected onto two
orthogonal planes. Within the framework of linear elasticity,
the motions in each plane can be considered independently.
We focus our attention on the plane that is perpendicular to
the microscope’s optical axis. The transverse dimensionless
displacement {(s,7) (normalized with L) of a beam with uni-
form flexural rigidity EI(Nm?) linear density p(kg/m) and
tension 7 (N) vibrating in a viscous medium with viscous
resistance per unit length £, (Ns/m?), is given by the dimen-
sionless beam equation [25]:

pEI \PL aC 7L\ d L
(fi[fl)?-'-;:mz(@)_E-FE_[F(SJ)
(-1=s=1). (7)

In the above, the time f is scaled with A=fL*/EI, f,
=47y/[In(2L/a)+0.5] [26], 7 is the suspending fluid’s vis-
cosity, and F(s,7) (N/m) is a white, stochastic force per unit
length of the filament with an ensemble average

(F(s,1))=0 (8)

and correlation

(F(sit)F(sjs1) = Ppls; = sjt; = 1)), )

where ¢ is approximated with the Dirac-Delta function. In
the above, () denotes an ensemble average.

The boundary conditions require some elaboration. Since
we are focusing on the straight segment of the filament, we
approximate the filament’s ends as if they were free to rotate
and specify zero moment conditions at both ends:

PLUE1,1) o

Js* (10)

When analyzing the experimental data, we measured the dis-
placements relative to a line that connects the filament’s
ends. Hence,

{*=1,0)=0. (11)
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Boundary conditions (10) and (11) correspond to a beam
hinged at both ends. Since the boundary conditions are not
precisely known, it is constructive to consider also the other
extreme case of a clamped beam,

aL(*1,1) _

0, 12
Py (12)

which will provide a lower bound for the estimated tension.

C. Solution of the beam equation

We seek a solution of the form [27]

{s.0)= 2 A, (07, (s), (13)
n=1

where the amplitudes A, (7) and A,,(f) are temporary uncor-
related for any n#m, ie., (A,(0)A,(t))=0. Y,(s) are the
eigenfunctions of the appropriate Sturm-Liouville boundary
value problem (see below) and form a complete orthonormal
set. The thermal force is expanded in a similar fashion, i.e.,
F(s,0)=2_F,(1Y,(s). Substituting Eq. (13) into Eq. (7) and
separating variables, we obtain the self-adjoint eigenvalue
problem

&Y, PY
Zon_ 2% In iy _
P -m 02 -Am'Y,=0

(-1=s=1), (14)

with the boundary conditions

FYH(+1
Yf(il):%zo (15)

in the hinged case and

IYg(x1)

Yé(+1)= g
A

0 (16)

in the clamped case. The superscripts H and C denote, re-
spectively, the hinged and clamped cases and will be used
only when it is necessary to distinguish between these two
cases. The factor m* was introduced in \,m* for notational
convenience.

For the specified boundary conditions, the eigenmodes
Y,(s) are orthogonal and can be normalized so that

1
f Y (8)Y,(5) = S (17)
-1

Equation (14) admits a general solution of the form
Yn(s) = Cn,l COSh(Zl,nS) + Cn,2 Sinh(zl,ns) + Cn,3 COS(ZZ,ns)
+ Cn,4 Sin(ZZ,ns)’ (18)

where

E

(V4N +1 =112,

[ m
U= (VAN + 1 + 1)1/2 and z,,= —E
\J

)

/

=

(19)

In the case of the hinged beam,
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Y¥(s) = sin(%T(s+ 1)), (20)

)\nﬂz(nﬂ'/2m)2(1+(mr/2m)2), and n is an
(n=1,2,...).

In the case of the clamped beam, the eigenvalues are de-
termined by the solution of the characteristic equation:

integer

4N Teosh(z; ,)cos(22,,,) — cos2(z5,)]
—sinh(2z; ,)sin(2z,,) = 0. (21)

For moderate values of \,, Eq. (21) can be approximated
with the equation

tan(2z,,) - 4VAE = 0. (22)

When \,, is even larger,

2n+ D) |2 | @n+ D7 |?
xfz{( - )W] [( - )W} lp. (23)
dm 4m
For example, when m=1.25, the first few exact eigenvalues
[Eq. (21)] are {14.78, 104.73, 390.03,...}. The first implicit
approximation [Eq. (22)] gives {15.41, 106.02, 391.79,...}

and the second explicit approximation Eq. (23)] yields
{16.18, 107.23, 393.55,...}. The eigenfunctions are

cosh[z; (s + 1)] - cos[z, ,(s + 1)]
cosh(2z;,) — cos(2z,,,)

Yi(s) = C*{

2., sinh[zy (s + 1)] = 2y, sinfz; ,(s + 1)]
Z2,n Sinh(zzl,n) - Zl,n Sin(ZZZ,n) |

(24)

where the constant C* is selected to render the norm
C —
1Y, (s)=1.
According to the principle of equipartition of energy, the
elastic energy associated with each mode

_ @ (! g(a%)z (anﬂ
U= f_,{L i) T o ) |
_2L<An(t)> _l|: (952 +m2 (95 dS (25)

equals kzT/2, where kp is the Boltzmann constant and 7 is
the absolute temperature. Using Eq. (14), the boundary con-
ditions and the orthonormality of the eigenvectors, we have

EI
U,=—(AX))\, m* 26
0 2L( WD)\ ,m (26)

or (A2(1))=kgTL/EIl/\,m*.
The variance of the transverse fluctuations is

V() = ([L(s,8) = (L(s,0) ) = 2 (A, 0DV ()P, (27)
n=1

where the subscript “th” denotes theoretical estimate.
In the hinged case,
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16kzTL 1 Y
EI 2 (nw)2[4m2+(n77)2]sm { 2 s+ l)]
(28)

Vir(s) =

n=1

The rate of convergence of the above series depends on the
magnitude of m. When m=2, two terms in the series approxi-
mate the variance within 1%. When m=20, eleven terms are
needed to obtain the same level of approximation. Fortu-
nately, Eq. (28) can be summed-up in closed form to give

kpTL
2m2El

Vi(s) = cosh(2m) — cosh(2ms) )

m sinh(2m)

((1 -s5%) -
(29)

The first term on the right kzTL/2m*EI(1—s?) is the variance
of a fluctuating string with tension 7. The second term rep-
resents the reduction in the variance due to the flexural rigid-
ity. The second term decays as m increases. When m> 1, Eq.
(29) has the asymptotic approximation

kT

Vii(s) ~ by

{(1 —5?) - iu - e—2m<'—s>]} (m>1).
(30)

The corresponding expressions for the clamped case are con-
siderably lengthier, were computed numerically, and are not
reproduced here. Note that, consistent with the equipartition
theorem, the variance is independent of the suspending lig-
uid’s viscosity.

D. An inverse problem: Estimation of the filament’s tension

We use the experimentally observed transverse variance
to estimate the filament’s tension. To this end, we consider
the theoretical variance to be a function of the filament’s
tension, and we seek the tension 7 that minimizes the dis-
crepancy

N
01 =3 [Vals )~ VeglsomP, (3D
i=1

between theoretical predictions Vy,(7) and experimental ob-
servations V. In the minimization process, we used the
flexural rigidity E=7.3 X 1072® Nm? of actin filaments [4].
In independent measurements (not described here), we ob-
tained a similar value for the flexural rigidity [29].

For example, Fig. 3 depicts O(7) as a function of 7 for
applied trap forces 7,,,ia=0.21 pN (solid line), 0.36 pN
(dashed line), and 0.80 pN (dash-dotted line). The respective,
estimated forces (the minima of the curves) are 0.23, 0.39,
and 1.2 pN. The filament’s length is 15 wm. Witness that the
curves are convex and have deep, global minima allowing
one to estimate the tension force within +20%. At low ap-
plied forces (<0.39 pN), the discrepancy between the esti-
mated force and applied force is ~10%. The discrepancy
increases as the applied force increases.
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O(7) (um?)

Tension (pN)

FIG. 3. The average error ®(7) depicted as a function of the
filament’s tension 7 when 7,,,i,q=0.21 pN (solid line), 0.36 pN
(dashed line), and 0.80 pN (dash-dotted line). The corresponding
estimated forces were, respectively, 0.23, 0.39, and 1.2 pN. The
filament’s length is 15 um.

IV. RESULTS AND DISCUSSION

A. Effect of camera exposure time on variance measurement

In the course of our experiments, the filament vibrated
relative to the camera. As a result, blurring of the image was
unavoidable. The impact of this phenomenon depended on
the relative magnitude of the camera’s exposure time ¢, com-
pared with the characteristic time of the filament’s fluctua-
tions 7. As t,/f increased, the variance estimated from the
experimental data decreased, and the filament tension 7, es-
timated without correcting for the blurring, increased.

1. Theoretical considerations

Recently, Towles et al. [28] demonstrated that the mea-
sured variance of a tethered bead undergoing Brownian mo-
tion decreases as the camera’s exposure time increases. In
other words, the bead’s measured position is biased toward
its mean position. Here, we carry out similar analysis for the
case of a vibrating filament. From Eq. (7), neglecting inertia,
we have the Langevin equation for the amplitudes (A,,)

dA L}
L= \m*A,+ —F, (1), (32)
dt EI

which admits the solution
ot L N (i)
A, () =A,0) e "+ — | F,(weM" "“du. (33)
El ],

We carry out the integration for sufficiently long time to
allow the effect of the initial condition [the first term on the
right-hand side of Eq. (33)] to decay. The amplitude ob-
served by the camera is the average amplitude over the ex-
posure time f,.
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0.8;

0.6;

0.4;

0.2+

FIG. 4. The correction factor S(z,) as a function of the normal-
ized exposure time f,/f when F;(f)=sin(wt) and F,~;=0. \=4, m
=1, and w=1. The solid, dashed, and dotted lines correspond, re-
spectively, to the exact calculation, a fit obtained with Eq. (37), and
a fit obtained with Eq. (38).

L3 t+t, [t
ASAMERA(z)=Ef f F ()™ Vdudy. (34)
e t 0

The time constant associated with mode n is 7,=1/\,m*.
When n is small and m is moderate, the “string modes”
dominate, 7oc 7!, and the vibration’s time constant decreases
as the filament’s tension increases. When n>1, the flexural
(bending) modes dominate and the time constant is indepen-
dent of the filament’s tension.

To compute the variance of any variable X, we calculate
the integral

Vy= limlf X2(2)dz. (35)

11— 0

We define the ratio between the variance constructed using
the camera images and the true variance as

ACAMERA([e)
S(t,) = T TRUE - (36)
VA

Unfortunately, S(7,) depends on the thermal force and does
not lend itself to a simple expression. Figure 4 (solid line)
illustrates the behavior of S(z,) as a function of the normal-
ized exposure time #,/f when the force F,(f)=sin(wt) and
F,~1=0 (solid line). Witness that when ¢,/7>1, S(¢,) de-
creases rapidly as t,/7 increases.

For the fluctuating bead, Towles et al. [28] proposed a
correction factor of the form

A 2
S(t,) = [IL(I —e_’E’f)] . (37)

where the time constant 7 is determined empirically. Al-
though expression (37) provides qualitatively correct behav-
ior, its quantitative predictions (dashed line in Fig. 4) do not
match well the predictions of Eq. (36) (solid line) for the
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FIG. 5. The variance is depicted as a function of position along
a 17-um-long filament when the camera exposure time is 75 ms
(solid circles, dashed line), 200 ms (hollow circles, dashed-dot
line), and 300 ms (squares, solid line). The various lines correspond
to theoretical fits with hinged boundary conditions.
=0.26 pN.

Tapplied

filament fluctuations. We find that, in the range of interest,
the computed data of Fig. 4 correlates better with an expres-
sion of the form (dotted line)

1
1,\7
1+
f

where y~ 1.8 provided the best fit when the forcing function
F,(t)=sin(wr). Expression (38), which resembles the transfer
function of a low pass filter, may need to be modified when
other forcing functions are used.

S(t,) = (38)

2. Experimental observations

To examine the effect of the camera’s exposure time on
the estimate of the thermal vibration’s variance, we carried
out a sequence of measurements of the filament’s vibrations
as we modified the camera’s exposure time. Figure 5 depicts
the variance (symbols) as a function of position along a
17-pum-long filament suspended in water for camera expo-
sure times 7,=75 ms (solid circles), 200 ms (hollow circles),
and 300 ms (squares) The applied trap force 7,y
=0.26 pN. We fitted the experimental data with theoretical
fits based on the hinged model (lines). As the exposure time
t, increased, the variance decreased, and the estimate for the
force increased.

The effect of the camera exposure time on the variance is
summarized in Fig. 6. The figure depicts the normalized vari-
ance integrated along the filament’s length (symbols) as a
function of the camera’s exposure time for three different
filaments. The variance was normalized with the estimated
true variance. The solid squares and solid triangles corre-
spond to filaments suspended in 60% (by mass) glycerin
(7=10.8 mPa s) solution. The glycerin was used to increase
the filaments’ vibration time constant. The solid squares cor-
respond to a 15-um-long filament subjected to a 0.3 pN
force (filament A). The solid triangles correspond to a
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FIG. 6. The normalized, experimental variance is depicted as a
function of the camera exposure time. The solid circles, solid tri-
angles, and solid squares correspond, respectively, to
L, Typpliea» 7=117 pum,0.3 pN,1 mPas}, {12 um, 1.2 pN,
10.8 mPa s} and {15 wm, 0.3 pN, 10.8 mPa s}. In the above, L, 7,
and 7 represent, respectively, the filament’s length, the applied ten-
sion, and the suspension’s viscosity. The measured variance was
normalized with its largest value. The solid, dotted, and dashed
lines correspond to predictions based on Eq. (38).

12-pum-long filament subjected to a 1.2 pN tension force
(filament B). The solid circles correspond to a 17-um-long
filament suspended in water and subjected to 0.3 pN of trap
force (filament C). Unfortunately, due to camera sensitivity
limitations and fluorescent bleaching, respectively, it was not
always possible to obtain short and long exposure time data.

We first discuss the data associated with filaments A and
B suspended in glycerin (solid squares and solid triangles).
When the exposure time is relatively small, the measured
variance is scattered about a horizontal line. The variance
associated with the short time plateau (V) is independent
of the exposure time and represents the true variance of vi-
brations. We used Vi, to normalize the data presented in
Fig. 6. The predicted dimensional time constant associated
with the fundamental modes of vibrations of filaments A and
B are, respectively, 7; = Af;=fEI/\,7=1200 and 160 ms. We
estimate the time constants associated with filament C to be
130 ms. Hence, we speculate that the lowest available expo-
sure time of 10 ms is sufficiently small to provide a reason-
able measure of the true variance Vi, ,. Accordingly, we
normalized filament C’s data with the variance measured at
the shortest available exposure time. Next, we fitted all the
experimental data with a curve based on Eq. (38). In the
fitting process, we used the theoretical estimates of the time
constants. The exponent y=1.1 provided the best fit. The
dashed line, dotted line, and solid line correspond, respec-
tively, to the predictions of Eq. (38) (y=1.1) with the theo-
retical time constants of filaments A, B, and C.

In summary, the measured variance depends sensitively
on the camera exposure time. To obtain a reasonable estimate
of the variance, the camera exposure time 7, must be signifi-
cantly smaller than the filament’s time constant 7. In Fig. 6,
this was the case only for the filaments suspended in glyc-
erin. The figure depicts the experimental estimate of S [Eq.
(38)] as a function of the camera exposure time. It suggests
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FIG. 7. The force estimated for 6 filaments (in glycerin,
7=10.8 mPas), depicted as a function of the applied force. The
hollow circles, solid circles, and triangles correspond, respectively,
to the predictions of the uncorrected hinged model, corrected
hinged model, and uncorrected clamped model. The solid line rep-
resents a 1:1 correlation between actual and estimated force values.

that Eq. (38) (with y=1.1) can be used to correct long expo-
sure time experimental data.

B. Estimates of the filament’s tension based on the variance of
the transverse fluctuations calculated from the filament’s
instantaneous position

Since we were not able to sufficiently reduce the camera
exposure time for the experiments carried out in water to
obtain accurate estimates of the variance, we report in this
section mostly on results of experiments carried out with
filaments suspended in a glycerin-water mixture. Since the
viscosity of the glycerin-water mixture was about ten times
larger than that of water, the time constant of the fluctuations
was increased by an order of magnitude. All the measure-
ments were carried out with a camera exposure time of 30
ms. This exposure time provided a reasonable compromise
between the opposing needs of good sensitivity and minimal
blurring.

The data processing involved measuring the thermal fluc-
tuations’ variance as a function of position along the filament
to obtain curves similar to the ones depicted in Fig. 5. These
experimental data were then fitted with the theoretical curves
of the hinged and clamped models to obtain estimates of
filament tension. Calculations were carried out using both the
uncorrected and corrected [Eq. (38)] variances. Figure 7
summarizes the Brownian dynamics model-based estimates
of filament tension as a function of the applied optical trap
force. The hollow circles, solid circles, and hollow triangles
correspond, respectively, to the predictions of the uncor-
rected hinged model, corrected hinged model, and uncor-
rected clamped model. The correction consisted of dividing
the variance by the factor S from Fig. 6. The time constant
was adjusted to reflect each filament’s experimental condi-
tions. The solid line is a 45° line. At relatively low forces
(<0.7 pN), the uncorrected and corrected estimates of the
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FIG. 8. (Color online) The relative discrepancy between the
estimated force and the applied force as a function of the filament’s
time constant associated with the fundamental mode of vibration
(n=1) for filaments suspended in glycerin (red squares and dia-
monds) and filaments suspended in water (black circles and tri-
angles). The hollow circles (and squares), solid circles (and
squares), and triangles (and diamonds) correspond, respectively, to
the predictions of the uncorrected hinged model, corrected hinged
model, and uncorrected clamped model.

hinged filament tension are in good agreement (<30%) with
the applied trap forces. As the magnitude of the force in-
creased, so did the discrepancy between the uncorrected es-
timated forces and the applied optical trap forces. This in-
crease in the discrepancy is attributed to a reduction in the
filament’s time constant as the force increases. When 1 pN
< 7-applied< 4 pNa Tapplied< Teslimated,uncorrecled< 1.7 7-applied
(hOHOW Cil‘ClCS) and 7-appliecl< Teslimated,correcled< 1.3 Tapplied
(solid circles) (excluding a few outliers). Not surprisingly,
the clamped model-based estimates are lower than those of
the hinged model-based estimates and in some cases under-
estimate the trap force.

Figure 8 depicts the relative discrepancy between the es-
timated force and the applied force as a function of the cam-
era exposure time normalized with the filament’s theoretical
time constant (fundamental mode) 7,/#,. The figure includes
data for both filaments suspended in glycerin (red squares
and diamonds) and filaments suspended in water (black
circles and triangles). The hollow circles (and squares), solid
circles (and squares), and triangles (and diamonds) corre-
spond, respectively, to predictions of the uncorrected hinged
model, the corrected hinged model, and the uncorrected
clamped model. The distribution of filament lengths in our
experiments was quite narrow (12.2+3.0 um). Shorter fila-
ments had a characteristic time scale too short for observa-
tion, and longer filaments were difficult to find.

Not surprisingly, as #,/f, increases, the discrepancy be-
tween the uncorrected estimated force and the actual force
increases. When t,/f; <0.1, the discrepancy between the es-
timated force (hinged model) and applied force was smaller
than 60%. Since our method typically underestimates the
variance, we tend to overestimate the force. For the entire
range of our measurements, 0.5 T,pliecd < Testimated,corrected
<15 Tapplied
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a)

FIG. 9. Blurred images of an 11-um-long filament as recorded
by the camera for a cumulative exposure time of 10 s when (a)
Tapplieca=0.22 pN and (b) 0.93 pN.

C. Estimates of the filament’s tension based on the variance of
the transverse fluctuations obtained from long exposure

As an alternative technique to estimate the filament’s vari-
ance, we took long exposure time images of the filament (or,
alternatively, superposed many images taken with various
exposure times.) In other words, in contrast to the previous
section where our objective was to go to the limit of short
exposure time (#,/7;) — 0, here we explore the limit of long
exposure time (z,/7;) — . Figure 9 provides representative
blurred images of an 11-um-long filament subject to applied
tensions of 0.22 pN (a) and 0.93 pN (b) as recorded by the
camera for a cumulative exposure time of 10 s. Witness that
the width of the “blur” decreased as the filament’s tension
increased.

To determine the variance, we used a procedure similar to
the one described in Sec. II. The fluorescent emission inten-
sity was measured along several uniformly spaced lines per-
pendicular to the line connecting the filament’s end points.
Figure 10 depicts two such normalized emission intensity
profiles, after subtracting background emission intensity, as
functions of the transverse position when the applied tension
is 0.22 pN (solid circles) and 0.93 pN (solid squares). The
emission intensity was normalized with its maximum value.
The experimental data were fitted with Gaussian curves with
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FIG. 10. The normalized light intensity is depicted transverse to
the 11-um-long filament at the filament’s midlength when
Tapplieca=0.22 PN (circles, solid line), 0.93 pN (squares, dashed
line). The symbols and solid lines correspond, respectively, to ex-
perimental data and Gaussian fits.
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FIG. 11. (Color online) The “blur variance” force estimates for
hinged conditions (symbols) depicted as a function of the applied
force. The triangles and the squares correspond, respectively, to
filaments suspended in glycerin and water. The solid line represents
a 1:1 correlation between actual and estimated force values.

the blur variance oy, * as the fitting parameter. The blur
variances of the images of the filament’s left and right ends
were denoted, respectively, oy, 2 and Ublur,Rz' The average
variance ((TbluryL2+0'b]m’R2)/ 2 was subtracted from oy, to
partially correct for the contribution of the beads’ rotations
and the spreading of light due to the point spread function.

We estimated the filament’s tension by minimizing the
discrepancy between the corrected blur-variance and the
theoretically predicted one. Figure 11 depicts the blur-
variance force estimate as a function of the applied force
(symbols). The triangles and the squares correspond, respec-
tively, to filaments suspended in glycerin and in water. In
contrast to the technique described in Sec. IV B, the blur
technique tends to overestimate the filament’s variance and
to underestimate the force that acts on the filament. The
mean errors of the water and glycerin experiments were, re-
spectively, 0.4 and 1.0 pN. That the error in the water experi-
ments was smaller than in the glycerin experiments shows
that the exposure time did not have a significant effect on the
blurred image-based force estimates.

D. Estimates of the filament’s tension based on the variance of
the oscillatory modes’ amplitudes

We also estimate the filament’s tension by analyzing the
amplitudes of individual, oscillatory modes. Using Eq. (20),
we decompose the filament’s shape into the orthogonal
modes

Y(s)= 2 A, sin(%T(s + 1)) (39)

The filament’s length is divided into segments of length As,
and the amplitudes are computed with the formula
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FIG. 12. The tension 7, estimated from individual modes (n)
using Eq. (24) normalized by the applied tension 7,,pjieq for 12
filaments suspended in glycerin depicted as a function of mode
number. The vertical bars correspond to +/— standard deviation.
The hollow and solid circles correspond, respectively, on the esti-
mates based on the uncorrected hinged model and the corrected

hinged model.

A, =2 Y,As, sin(?(skmid+ 1)), (40)
k

where skmid is the position of the midpoint of the kth seg-
ment. With the aid of Eq. (26), we relate the nth mode am-
plitude’s variance to the applied tension. The variances of the
amplitudes of individual modes provide independent esti-
mates of the tension. However, as the mode number in-
creases, the precision of the data deteriorates. Figure 12 de-
picts the tension 7, estimated from individual modes using
Eq. (26), normalized by the applied tension 7,y jeq, for 12
filaments suspended in glycerin as a function of mode num-
ber. The vertical bars correspond to +/— one standard devia-
tion. The hollow circles and solid circles correspond, respec-
tively, to uncorrected hinged model data and corrected
hinged model data. The results of the mode-based analysis
are in reasonable agreement with the applied tension for the
first few modes. As the mode number increases, the time
constant associated with the mode decreases and the mea-
surement error increases. Since the correction is based on the
time constant associated with the fundamental mode, it was
ineffective in correcting higher modes’ data.

V. CONCLUSIONS

Snapshots of actin filaments fluctuating in both water and
glycerin were collected as a function of time, applied (mea-
surable) optical trap force, and camera exposure time. The
data were analyzed to obtain the transverse displacement
variance of the filaments’ fluctuations as a function of the
applied force, the position along the filament, and the camera
exposure time and to obtain the variance of the amplitude of
individual Fourier modes. Due to the relatively small time
constant of the tensed filaments’ fluctuations, the instanta-
neous displacement method provided usable (uncorrected)
data only for filaments suspended in glycerin. The range of
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utility of the technique can be expanded by correcting the
data for blurring. At relatively low forces (<1 pN), both the
uncorrected and corrected estimates of the tension of fila-
ments suspended in glycerin were within 50% of the applied
trap force. When 7>1 pN, the discrepancies between the
uncorrected and corrected data and the direct optical trap
measurements were within a factor of two. The uncorrected
data consistently overestimated the filaments’ tension provid-
ing an upper bound for the force.

To overcome the limitation imposed by the camera’s ex-
posure time, an alternative technique was employed in which
the fluctuation’s variance was estimated from blurred images
obtained with lengthy exposure times. By comparing the ex-
perimentally measured variances with the predictions of a
linear Brownian dynamics model, we estimated the fila-
ments’ tensions. The estimated filament tensions agreed with
the known applied forces to within 20—70 %. When using
the instantaneous displacement method with an applied force
smaller than 0.2 pN, the discrepancy between the estimated
and applied force is smaller than 20%, which is of the same
order of magnitude as the precision of the calibration of the
optical trap. As the applied force increased so did the dis-
crepancy between the estimated and applied force. When the
applied force was smaller than 2 pN, the estimated force was
within a factor of two of the applied force. The increase in
estimation error as the force increases is attributed to the
decrease in the filament’s time constant. Overall, the blur
method proved to be less accurate than the instantaneous
displacement method. The blur method consistently underes-
timated the filament’s tension. Although both methods, the
variance estimate based on the filament’s instantaneous po-
sition and the blur analysis, use the same data, the two meth-
ods process the data differently and use different corrections.
Hence, the estimates for the tension obtained with these two
techniques are different.

The experiments verify that the methods of statistical me-
chanics can be used to estimate tension in filaments anchored
at both ends. Our experiments provide additional evidence
that the methods of statistical mechanics and the principle of
equipartition of energy are applicable to mesoscopic struc-
tures. The principle of equipartition can be used, however,
only in the context of small fluctuations when linear models
are applicable. Some of the discrepancy between the experi-
mental data and theoretical predictions could perhaps be at-
tributed to the filaments’ departure from linear behavior.
However, at low applied forces when the amplitude of the
filament’s vibrations is relatively large, the departure from
linear behavior is most acute and the experimental error is
smallest (due to the relatively large time constant of the sys-
tem), we obtained a good agreement between theoretical es-
timates and experimental observations, it is likely that the
discrepancies between theory and experiment were mostly
caused by experimental errors and not departures from lin-
earity.

Finally, the experiments highlighted the importance of ad-
justing the camera exposure time to reduce blurring effects.
When the exposure time is significantly larger than the time
constant of the filament’s fluctuations, a significant error oc-
curs in estimating the filament’s position, which, in turn,

PHYSICAL REVIEW E 82, 051923 (2010)

results in underestimating the variance of the transverse fluc-
tuations and overestimating the filament’s tension.
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APPENDIX: THE FILAMENT’S EQUILIBRIUM
CONFIGURATION AND THE SYSTEM’S SPRING
CONSTANT

Our objective in this appendix is to derive closed form,
approximate expressions for 6 and the beads’ center-to-
center distance as a function of the tension m. To assess the
range of validity of the approximate expressions, we first
derive the exact solution. In the interest of space, we con-
sider only the symmetric case 6(0)=0.

1. Exact solution

Upon integrating Eq. (3), we have

0
d
f —+=s, (A1)
0 \V2(C—m? cos ¢)

where the constant of integration C=m?(cos (1)
+1/2m*(a/L)*cos® (1)) is determined with the aid of
boundary condition (2). The integral on the right-hand side
of Eq. (A1) can be rewritten as the incomplete elliptic inte-
gral of the first kind: \2/C-m?F(60/2,2m?*/m*~C). 6(1) is
obtained by solving the transcendental equation

(1) d
0o V2(C—-m?cos ¢)
The beads’ center-to-center distance is
1
X, =2 J cos[ B(&)]de + 2%5111[9(1)]. (A3)
0

With the aid of Eq. (3), we rewrite Eq. (A3) in a form more
convenient for numerical calculations.

2 [0 cos @do
Xee=— 5
mJo o[ 4 2
\/2[cos (1) —cos @] +m (Z) cos~ 6(1)

(A4)

+ 2%sin[6(1)].

We solve the integral Eq. (A2) numerically to obtain 6(1).
The solution process runs into difficulties when m is large
since the integral readily diverges. Fortunately, for moderate
and large values of m, one can obtain accurate asymptotic
formulas, as we show shortly.

2. Small m approximation

When m<<1, one anticipates that the angle 6 is small as
well. Accordingly, we expand the trigonometric functions in
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Egs, (Al) and (A2) into their corresponding Taylor series
about #=0 and retain terms up to O(¢*). This allows us to
evaluate the integrals in closed form and obtain

(1) ~ (%)m tanh(m). (A5)

Although Eq. (A5) is strictly valid only for m <1, it turns out
to be surprisingly accurate even for moderate values of m.
When a/L=0.1 and m=1, formula (A5) approximates 6(1)
within 0.3%. When a/L=0.1 and m = 3, the precision is bet-
ter than 4%. The corresponding asymptotic approximation
for the angle 6(s) is

sinh(ms
o(s) ~m<g)#, (A6)
L/ cosh(m)
and for the relative extension, it is
ch -2 L .
gp~ 5= ﬁcosh(m)mn(%m2 sech(m))
+ %sin(%m tanh(m)) -1, (A7)
When a/L=0.1 and m<3, Eq. (A7) is accurate

within 2%. Equation (A7) can be approximated with
g~ (a/L)*m tanh(m) ~ (a/Lm)*=a’7/ EI. When m is small,
most of the contribution to the increase in the distance
between the beads’ centers comes from the beads’ rotation
[the second term in Eq. (A3)].

3. Large m approximation

In the symmetric case, when |s|<1 and ma/L>1,
0(0)=d6(0)/ds~0. Thus, from Eq. (3), we conclude that the
integration constant C~m?, and Eq. (3) can be rewritten as

de (0
— =2msin| — |. (A8)
ds 2
Equation (A8) can be readily integrated to yield
o1
0(s)=4 tan_l{tan[%}em(s_l)}, (A9)
where
0(1)=2sin" u (A10)
and
V2 1 (L] L
u=—q/|1+—(=] |-—. (A11)
2 2m“\a 2ma
When m>1,
= L L\’ L\
o(1) ~ = - \"2<—> + (—) + 0(—) . (A12)
2 ma ma ma
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FIG. 13. The displacement angle 6 is depicted as a function of

the position along the filament (s). Comparison of the approximate,

closed form [solid line—Eq. (A8)] and finite element (circles) so-
lutions when m=35 (squares), m=10 (circles), and m=20 (triangles).

When m§ —o, 6(1)— /2. Although Eq. (A12) is strictly
correct only when m>1, it is, nevertheless, instructive to
obtain an approximation for small m values. When m<<1,
Eq. (A10) reduces to

ma 11{ ma\’ ma \’
o(1) ~ T _ZT +0T .

Equation (A13) provides the correct limit of #(1)=0 when
m=0, but it does not provide an adequate description of (1)
since the exact solution mandates that 6(1)=0(m?) for small
m values.

To appreciate how well the asymptotic approximation
[Eq. (A10)] performs, we compare its predictions with the
exact values for the case of a/L=0.1. When m=2, Eq. (A10)
is accurate within 3.6%. The error decreases rapidly as m
increases. When m>35, the discrepancy between the exact
and approximate values of (1) is smaller than 0.001%.

Figure 13 depicts 6 as a function of s when a/L=0.1 and
m=5 (squares), m=10 (circles), and m=20 (triangles). The
symbols and solid line correspond, respectively, to the “ex-
act” and approximate [Eq. (A9)] expressions. Witness the
excellent agreement between the approximate and exact ex-
pressions.

Upon inserting Eq. (A9) in the integral [Eq. (A3)], we
obtain the asymptotic expression for the center-to-center dis-
tance:

X, = 2{1 + %sin[&(l)]} + %{1 + cosBa(l)”

~ 8
m{l +em tanzua(l)H

Using trigonometric identities, Eq. (A14) is rewritten as

(A13)

(A14)
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FIG. 14. (Color online) The relative extension g;=(X..—2)/2 is
depicted as a function of the dimensionless force m? when
a/L=0.1. The exact solution (0<m<3) is depicted with a solid
line with circles. The dashed line with the triangles corresponds to
the asymptotic solution [Eq. (A14)]. The dotted line (inset only)
corresponds to the small m asymptote Eq. (A6). The dash-dot line
(main figure only) corresponds to the very large m approximation
Eq. (A15).

Xe—2 2| ([ma , 3
o= =—||—u+1|Vl-u"-1
2 m L

4 e (1 =1 -u?

ml+e "+ (1 —e'zm)v/l —u?]

(A15)

When a/L=0.1 and m>1, e " tan*(1/46(1))<8 X 107>;
thus, the term ¢~2" tan’(1/46(1)) in Eq. (A14) and the last
term in Eq. (A15) can be safely neglected. In the limit of
zero force (m=0), expression (Al14) predicts the correct
value of X.=2. When the force is large (m— ),
X..—2(1+a/L). Comparison of the predictions of Eq. (A14)
with the corresponding exact values [Egs. (A1)-(A3)] sug-
gests that Eq. (A14) is accurate within better than 0.5% when
a/L=0.1 and m>3.

kps (PN/nm)

10°

7(pN)

FIG. 15. (Color online) The system’s spring constant kpg (pN/
nm) is depicted as a function of the force 7 (pN). The dashed line,
dotted line, and dash-dot line correspond respectively, to filaments
with half length L=4, 8, and 12 um. The solid (red) line corre-
sponds to the asymptotic expression for large 7 [Eq. (A17)].
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FIG. 16. W as a function of m?=a?7/EI (solid line). The dashed
line depicts the large > asymptote.

When m> 1, Eq. (A15) can be simplified even further to
yield

a_ 1, 5)+;<é)2 L(é)lo( 5)
LT 2\2m3\ a 2m*\a "

(Al6)

Figure 14 depicts the relative extension g;=(X,.—2)/2 as a
function of the dimensionless force m’=7L>/(EI) when
a/L=0.1. The exact solution (0<m<3) is depicted with a
solid line with circles. The dashed line with the upward
pointing triangles corresponds to the asymptotic solution Eq.
(A15). The dotted line (inset only) corresponds to the small
m asymptote Eq. (A7). The dashed-dot line (main figure
only) corresponds to the approximation for very large m Eq.
(A16). Witness that Eq. (A7) provides an excellent approxi-
mation when m<1, and Eq. (Al5) works well when
m>1.5.

4. Spring constant of the dumbbell

We define the dimensional spring constant of the dumb-
bell system as kpp=LdX,./dt=(2Lde/d7)~" (N/m). Figure
15 depicts the spring constant kpz (pN/nm) as a function of
the force 7 (pN) when L=4 um (dashed line), 8 um (dotted
line), and 12 um (dashed-dot line). The solid (red) line cor-
responds to the asymptotic expression for large 7 [see Eq.
(A17) below]. When the force is very small (7—0),
kpg~ EI/2a*L is independent of 7and inversely proportional
to L. As 7 increases, the spring constants of the various sys-
tems approach rapidly the asymptotic value [Eq. (A17) be-
low], which is independent of the filament’s length. The
length independence of the spring constant for relatively
large values of 7 is not surprising. At moderate and large
forces, most of the filament is flat, and only small lengths, on
the order of m~'L close to the beads participate in the defor-
mation process.

To obtain an approximation for kpp which is valid for
moderate and large forces (i.e., m*>>3), we take the inverse
of the derivative of the first term on the right hand side of
Eq. (A15).
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(G
PEN1-w) VaEr
where W= T (2'3;:\)1:;;21?2_1] is independent of the fila-

ment’s length L and m”=a’7/EI=m*(a/L)?. For example,
when @-0.5 um, 7=1 pN, and EI=7X 1072 Nm? (actin

(A17)
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filament), kpp~ 8.4 X 107> pN/nm. Figure 16 depicts ¥ as a
function of m?>=a’7/EI. As m? increases, W approaches its
asymptotic value of 2712 In many circumstances, W ~0.7
and kpp~ 177/ EI(1+1.8/m~2). When 7> 10EI/L,, the ex-
act and asymptotic values of kpp agree nearly perfectly. Wit-
ness that at large 7, kpp~ 7.
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