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Biodiversity on island chains: Neutral model simulations
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A neutral ecology model is simulated on an island chain, in which neighboring islands can exchange
individuals but only the first island is able to receive immigrants from a metacommunity. It is found by several
measures that a-diversity decreases along the chain. Subtle changes in taxon abundance distributions can be
detected when islands in the chain are compared to diversity-matched single islands. The island chain is found
to have unexpectedly rich dynamics. Significant SB-diversity correlations are found between islands in the
chain, which are absent between diversity-matched single islands. The results potentially apply to human
microbial biodiversity and biogeography and suggest that measurements of interindividual and intraindividual
B-diversity may give insights into microbial community assembly mechanisms.
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I. INTRODUCTION

It has recently been observed that human microbial biodi-
versity varies systematically between body sites [1,2], for
example, phylogenetic diversity is higher for the palm of the
hand and the sole of the foot than for the armpit and forehead
(Fig. S14 in Ref. [2]). A high degree of interindividual vari-
ability is also observed to the point where the characteriza-
tion of skin bacteria residues has even been proposed as a
forensic tool [3]. The latter observation in particular supports
the notion that stochastic community assembly may play a
significant role in determining human microbial biodiversity
and biogeography. Stochastic assembly is a key element of
Hubbell’s unified neutral model of biodiversity and biogeog-
raphy [4], therefore the question arises as to whether neutral
models can be applied to the human microbiome [5,6]. This
is a hard problem and I do not claim to have solved it here,
but it motivates the present study of community assembly
mechanisms in the context of neutral theory.

The merits of neutral models have been debated exten-
sively [7], and it is far from obvious that they should apply to
microbial systems. However Hubbell’s neutral model has re-
cently been successfully applied to predict microbial diver-
sity in tree holes [8,9]. Relevant to the present problem I also
note that the dominant factor determining taxon abundancies
has been argued to be the community assembly mechanism
[10,11]. Other neutral model ideas such as the zero-sum con-
straint (single trophic level, community saturation) or specia-
tion by point mutation seem to play a lesser role. If taxon
abundancies are largely determined by community assembly
therefore, a couple of limiting models (Fig. 1) present them-
selves to explain the observed variations in human microbial
diversity. The first is a variable immigration rate model in
which different body sites are envisaged as being microbial
“islands” in contact with a microbial metacommunity but
effectively isolated from each other. Here the variation in
diversity corresponds to a variable immigration rate from the
metacommunity. The second is an island chain model in
which it is envisaged that migration can take place between
islands but, in extremis, it is only the first island (e.g., the
hand) that receives immigrants from the metacommunity. In
this case one expects that diversity should decrease as one
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moves along the chain away from the island in contact with
the metacommunity. This is confirmed in the present study.

Of course these models represent limiting cases and real-
ity probably lies somewhere in between. A second question
therefore is how one might distinguish between stochastic
community assembly mechanisms. It is in this context that
the present study may perhaps be most valuable. I find that
both models lead to rather similar abundance distributions
(a-diversity). This extends to both static and dynamic diver-
sity characterizations. When this is conflated with other fac-
tors, such as deviations from the neutral model assumptions,
it is probably going to be difficult to distinguish between
assembly mechanisms on the basis of single-site measure-
ments of microbial diversity. However I find that the diver-
sity correlations between sites (S3-diversity) are much more
significant for the island chain model than for the variable
immigration rate model. This raises the possibility that char-
acterization of -diversity might give insights into commu-
nity assembly mechanisms.

Let me turn now to the details of the present study. The
neutral model has been extensively analyzed for isolated is-
lands in contact with a metacommunity [4,10,12-20]. Only
for certain cases though has the neutral model been solved
for multiple islands or “patches,” which are able to exchange
individuals [21-23]. In particular, the island chain problem
has not been solved (i.e., where individuals can migrate be-
tween neighboring islands but immigration is restricted to
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FIG. 1. Candidate explanations for a variation in human micro-
bial diversity based on stochastic community assembly and the
theory of island biogeography: (a) variable immigration rate model
and (b) island chain model.
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the first island in the chain). This problem can be described
as an inhomogeneous linear “stepping stone” model. Homo-
geneous linear stepping stone models have been surveyed
recently by Korolev er al. [24], and inhomogeneous models
have been touched on by Powell and McKane [25]. The pri-
mary goal of the present study is to analyze this model, using
the existing body of work on isolated islands as context.
Although in principle one can approach this analytically, the
experience of Vallade and Houchmandzadeh [18] for two is-
lands suggests this may rapidly become effectively unman-
ageable. I therefore approach the problem by means of simu-
lations.

II. DIVERSITY MEASURES

Let me begin with an overview of the mathematical char-
acterization of diversity. The starting point is the partitioning
of individuals in one or more populations into taxonomic
groups (e.g., species). Suppose there are K taxa and N; indi-
viduals in the ith taxon (i=1,...,K), in a population of J
=K N, individuals. The relative abundance of the ith taxon
is defined to be w,;=N;/J. The taxon abundance distribution
is given by ¢, the number of taxa containing k individuals.
Given the set of N; one can easily calculate ¢, and one has
K=3_ ¢, and J=3_ k. Since no taxon can contain more
individuals than there are in the community as a whole, ¢,
=0 for k>J. Similarly ¢,=1 if and only if all the individuals
belong to the same taxon (the “monodominated” state), oth-
erwise ¢;=0.

In standard neutral model dynamics, population sizes re-
main fixed while the number of taxa and the number of in-
dividuals per taxon fluctuates. I adopt the notation of Vallade
and Houchmandzadeh [12,18] and write {---) to indicate a
quantity averaged over an ensemble of populations undergo-
ing neutral model dynamics.

The information contained in (¢) can also be represented
by giving the ensemble-average probability (p(w)) that an
individual belongs to a taxon of relative abundance w
[12,18,26]. For a community of a finite size, (p(w)) is a
discrete array or “comb” of & functions, even after ensemble-
averaging, since o can only take on discrete multiples of
1/J. However as J— o, {p(w)) becomes a continuous func-
tion. One can show that the continuum limit is (p(w))
=lim,_,, k{(¢p;), where k=wJ [12].

The principal order parameter I shall use to measure
a-diversity is the Simpson index [27], defined for a given set
of taxon abundancies to be

D=1-2 . (1)

It is related to the second moment of the taxon abundance
distribution by

D=1-J722 kK¢,. (2)
k=1

From this it can easily be shown that in the continuum limit
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1
(D)=1 —J o{p(w))dw. 3)

0

From the point of view of statistical physics the inclusion of
“1-""1in these definitions is “window dressing,” designed to
make D an increasing function of diversity. However we
shall see below that there is also a technical advantage. The
index satisfies 0=(D)=1-1/K. It takes the lower limit in
the monodominated low diversity state, and the upper limit
in the high diversity state where all individuals are uniformly
distributed between taxa (w;=1/K). There is a mild disad-
vantage in using (D) in that it loses sensitivity to the under-
lying abundance distribution as it approaches the limiting
values.

In addition to the Simpson index, I shall occasionally use
the ensemble-average number of taxa (K)==7_,(¢,), and the
ensemble-average monodominance probability (¢,) (as ex-
plained above ¢; is 1 or 0 according to whether or not all the
individuals belong to the same taxon). As an order parameter,
the Simpson index (D) has an important advantage over (K)
and {(¢,) in that it remains well defined in the continuum
limit J— cc. Moreover there are some particularly simple the-
oretical expressions for (D) under neutral model dynamics.

The Simpson index generalizes naturally to spatial and
temporal correlations. For the first of these, given two or
more populations, I introduce the [B-diversity or codomi-
nance index [22,23]

D =1-3 ofw)’, (4)

i=

—_

where wf-’) is the relative abundance of the ith taxon in the

rth population. If two populations have no species in com-
mon, then D"=1. The codominance index reduces to the
Simpson index if r=s.

For time series data, the natural generalization of the Sim-
pson index is the autocorrelation function [28]

K
D(1,1) = 1 = 2, w{tg) wy{tg+1), (5)

i=1

where () is the relative abundance at time 7. In a steady-
state situation the dependence on the initial time disappears
and D(ty,1)=D(1); and D(f)— D as t—0.

III. NEUTRAL THEORY

In this Sec. I describe neutral model dynamics in more
detail. The overarching picture is that shown in Fig. 1. One
considers one or more island populations, which are able to
exchange individuals with each other and with a “metacom-
munity” which acts as a reservoir of biodiversity. The taxon
distribution in the metacommunity slowly turns over due to
speciation events.

In Hubbell’s unified neutral model [4], the dynamics of
the metacommunity and of the islands are closely related. In
the metacommunity the dynamics is as follows. An indi-
vidual is selected at random, and with probability 1-v is
replaced with a copy of another individual drawn at random
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from the metacommunity or with probability v is replaced by
an individual belonging to a new taxon. Thus v is a (point)
speciation rate. For v=0 the metacommunity eventually falls
into a monodominated state, in an ecological analog of the
Matthew principle [29]. For »>0 the taxon abundance dis-
tribution is a balance between speciation and extinction.

An explicit expression for the taxon abundance distribu-
tion in a metacommunity of size J), has been obtained by a
number of workers [4,10,12,14,15,17]. Results are quoted as
metacommunity (subscript “M”) steady-state ensemble-
averages:

O (Jy,+ DI'(Jy + 0—k)
KUy +1=-kTJ,,+6)°

(iom = (6)
where 6=(J,,—1)v/(1-w) is known as Hubbell’s fundamen-
tal biodiversity parameter. In the usual limit Jy,>1 and v
<1 one has 6=Jyv. The continuum limit (J;;— ) of Eq.
(6) is (p(w))y;=0(1-w)? . Inserting Eq. (6) into Eq. (2)
gives (D)M=(1—IMI)0/(0+1). It follows that in the con-
tinuum limit

(D)= 61(6+1). (7)

This can also be obtained by inserting (p(w)),, into Eq. (3).
It was first noted by He and Hu by analogy to a similar
problem in population genetics [30].

Neutral model dynamics on an island connected to the
metacommunity is as follows. An individual is selected at
random, and with probability 1 —m is replaced with a copy of
another individual drawn at random from the island, or with
probability m is replaced by an individual drawn at random
from the metacommunity. Thus m is the immigration rate
(since the metacommunity is much larger than the island,
emigration has essentially no effect and need not be consid-
ered). Similar to the metacommunity, the island community
eventually falls into a monodominated state if m=0, whereas
for m>0 a steady-state taxon abundance distribution arises
as a balance between immigration and extinction.

Exact results for the island taxon abundance distribution
were obtained only recently [10,17] although partial results
were obtained by previous authors [12—14]. The result is

1
() = <J>f @0(1 —u)?! (pa) L (1 ~ u)]l—k’ ®)
k/Jo u (1)

where (x),=I'(x+n)/I'(x) is the Pochhammer symbol, (z)
=I'(J+1)/[T'(k+1)['(J=k+1)] is the binomial coefficient, J
is the island size, and u=m(J—1)/(1-m) plays a role similar
to 6 for the metacommunity (note that in the ecology litera-
ture the parameter “w” is often referred to as “I’’). For J
>1 and m<<1 one has u=~Jm. Note that J;, does not feature
in this expression, in other words the island abundance dis-
tribution is insensitive to the metacommunity size. This point
is discussed more thoroughly by Vallade and Houchmandza-

deh [18]. The continuum limit of Eq. (8) is [10,12,17,31]

1
(p(w)) = ,LL@J du< H )(1 — )P 1=, 0, 9)
0 Mru

Inserting Eq. (8) into Eq. (2) gives
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_ (1 =7Nue

D)= o+ 1)

(10)

For J— < this reduces to a simple result previously reported
by Etienne [16], which can also be found by inserting Eq. (9)
into Eq. (3), namely,

no

{ >"(M+1)(¢9+1)' (1)
We see the technical advantage of the “1-" in Egs. (1)—(3) is
that the diversity index factorizes into the product of the
metacommunity diversity index (D),=6/(6+1) and a
similar-looking island factor wu/(u+1).

Let me briefly mention that the ensemble-average number
of taxa (K)=27_,{¢) can obviously be obtained from Eq. (8)
but has to be evaluated numerically. For the monodominance
probability, Eq. (8) simplifies to

1
(b= f iy — o1 P (12)
0o U (M)J

This also has to be evaluated numerically, although one can
show that it depends strongly on all the relevant parameters
and vanishes asymptotically for J—oo at fixed p as (¢,
~0r(0)(uInJ)=?,

In the present work I assume that the (fast) island dynam-
ics are decoupled from the (slow) metacommunity dynamics;
in other words the metacommunity can be taken to have a
“frozen” abundance distribution. This is because the meta-
community population turns over on a time scale of order
1/ v, whereas the island populations turn over on a time scale
of order 1/m, and typically one expects v<<m (i.e., the spe-
ciation rate is very much smaller than the immigration rate).

With this assumption, some results can be obtained for the
generalized order parameters in Egs. (4) and (5). First con-
sider either two independent islands or one island at two
well-separated points in time (¢>1/m). For a given meta-
community abundance distribution, one expects (wl(l)wl@)
=<wl(-l))(wi2)> where the ensemble averages are taken with
respect to a frozen metacommunity abundance distribution.
From the theory in, e.g., Ref. [14], it is known that the
steady-state expectation value (w;) is equal to the relative
abundance of the ith taxon in the metacommunity. Hence
<w§l))(w§2)>=[co§M)]2. Averaging over metacommunity abun-
dance distributions yields finally that (DU*))=(D),, for r # s,
independent of the island sizes or immigration rates; and
(D(1)) — (D), as t— o (more precisely, for 1/m<t<1/v).

The first result implies that the codominance index for the
variable immigration rate model in Fig. 1(a) is the same for
all pairs of islands and is equal to the metacommunity Sim-
pson index. This is the first hint that B-diversity might be a
useful discriminant between community assembly mecha-
nisms.

The second result, together with the additional insight that
m is the sole relaxation time governing single island dynam-
ics [14], means that a complete solution for the single-island
autocorrelation function can be written down. It is

051922-3



PATRICK B. WARREN

—mt_i _ o
(D(1)) =(D)y + (D) = (D)yp)e _0+1(1 M+1>'

(13)

Note that this function contains enough information to be
able to deduce in principle all of 6, u, and m (and hence J
=~ u/m), without having to make any measurements on the
metacommunity.

Let me turn now to a brief discussion of the simulation
methodology. For the simulations I generate a large number
(10*~10%) of frozen steady-state metacommunity abundance
distribution samples for given J,, and 6. I use these samples
in the subsequent island and island chain simulations. I take
0=10 as a reference point motivated by Woodcock et al. [9]
and J,,=10° motivated by the requirement that J,,>J> 1
[18].

In reality, microbial population sizes are expected to be
much bigger than the present values of J and J,,, hence the
focus of attention is on quantities such as (D) and (p(w))
which are well defined in the continuum limit. Comparing
Eq. (10) with Eq. (11) suggests that finite size corrections are
of the order 1/J. This is borne out by numerical investigation
of (p(w)) and k(cp;). I find that the sampling errors are typi-
cally =1% so it does not make much sense to increase J and
Jy beyond the above values without additionally increasing
the number of samples although clearly it does make sense to
check for finite size effects from time to time.

Simulation of neutral model dynamics in the forward time
direction is very straightforward, however a neat trick to ob-
tain steady-state samples is contained in the “coalescence”
algorithms which propagate backward in time. These algo-
rithms are described by Mckane er al. [14], Etienne [16], and
Rosindell et al. [32]. For the island chain simulations a hy-
brid of the Etienne and Rosindell er al. algorithms was de-
veloped. Typically, I use a coalescence algorithm to generate
steady-state samples and forward-time simulations for dy-
namics such as the autocorrelation functions discussed be-
low. I undertook a number of single island simulations to
build confidence in the simulation and analysis methodolo-
gies. I find excellent agreement between these simulations
and the theoretical predictions.

IV. ISLAND CHAINS

I now turn to the key question in the present study,
namely, the behavior of the island chain model in Fig. 1(b).
The island chain simulations are performed similarly to the
single island simulations. I introduce an immigration rate m,
for the first island, and an interisland migration rate m,. Spe-
cifically, the dynamics are as follows. An individual is se-
lected at random. If the chosen individual lies on the first
island, it is replaced with a copy of another individual on the
island with probability 1—m;—m,, an immigrant from the
metacommunity with probability m;, or a migrant from the
neighboring island with probability m,. If the chosen indi-
vidual lies on an island interior to the chain, it is replaced
with a copy of another individual on the island with prob-
ability 1-2m, or with a migrant from one of the neighboring
islands (selected at random) with probability 2m,. If the cho-
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FIG. 2. (Color online) Aspects of diversity on island chains of
length n: (a) diversity index (D), (b) number of taxa (K), (c) mon-
odominance probability (¢;), and (d) s for equivalent single is-
lands calculated from Eq. (14). The dashed lines in (b) and (c) are
the (D)-matched single island results for n=9.

sen individual lies on the last island, it is replaced with a
copy of another individual on the island with probability 1
—m, or with a migrant from neighboring island with prob-
ability m,. Migrants are copies of individuals chosen at ran-
dom on neighboring islands. The immigration and migration
probabilities are constrained by 0<m;+m,<<1 and O
<2m,<1.

A. Steady-state a-diversity

Representative steady-state results are shown in Figs. 2-5,
for island chains of varying lengths n. The first conclusion
(Fig. 2) is that diversity decreases, by whatever measure, as
one moves away from the island in contact with the meta-
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FIG. 3. (Color online) Abundance distributions for the odd-
numbered islands in an island chain of length n=9: (a) the prob-
ability (p(w)) that a randomly selected individual belongs to a taxon
of relative abundance w and (b) the cumulative distribution function
of the same. The results (solid lines) are compared to the theoretical
expectations for (D)-matched single islands calculated from Eq. (9)
(dashed lines).

community. Hence the island chain model is a viable candi-
date to explain the diversity variations noted for the human
microbiome. The second conclusion is that away from the
last island (i.e., away from the island farthest from the meta-
community) there is a degree of convergence of the behavior.

I next use Eq. (11) to define an effective or (D)-matched
single island parameter

Kefi = D)D)y = (D)), (14)

where (D)),=6/(6+1). This is shown in Fig. 2(d). This
quantity can be used to calculate (D)-matched single island
values of (K)==]_,(¢) and (¢,) from Egs. (8) and (12),
respectively, assuming the effective island size is J=J. For
n=9 these are shown as the dashed lines in Figs. 2(b) and

N island 9

Ju =10° 6 =10
Jmi=Jms=1 J=10°

I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10

octave, r

FIG. 4. (Color online) Preston plots of {¢), binned by octave,
for odd-numbered islands in an island chain of length n=9. The
results (solid lines) are compared to the theoretical expectations for
(D)-matched single islands calculated from Eq. (8) (dashed lines).
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FIG. 5. (Color online) Diversity variation along a chain of n
=9 islands as measured by u.g normalized by Jm,: (a) varying m,
only at fixed J (the inset shows the same data without the normal-
ization), (b) varying m;=m, at fixed J, and (c) varying m;=m,
=1/J. The dashed line in (c) is per=e03"

2(c). It is clear that, systematically, (K) is reduced and {¢,) is
increased when an island in the island chain is compared
with its (D)-matched single island counterpart. Thus on the
island chain there is a tendency toward fewer and larger taxa.

I will show below that the effective immigration rate, in
so far as it can be defined, is not equal to w.g/J. In the light
of this it is perhaps questionable to rely on J 4=J. I therefore
computed (p(w)) for island chains of length n=9 (this re-
quires typically 10° samples) and compared to (D)-matched
single islands calculated using Eq. (9). This does not require
Joi- The comparison is shown in Fig. 3. It is clear that there
is a subtle and nontrivial redistribution of the taxon abundan-
cies: {p(w)) is reduced for ®=<0.2 and w=0.8, but increased
for 0.2=< w=0.8. This means that the number of taxa with
intermediate abundancies is increased at the expense of the
very rare taxa and the high abundance taxa. But, in addition,
the cumulative distribution function jumps up at w=1, as
shown clearly in Fig. 3(b). This corresponds to the increased
monodominance probability. At first sight this is at odds with
the redistribution toward midrange abundancies, nevertheless
it is a real effect and indeed is the reason why monodomina-
tion was separately studied. For completeness and to make
contact with more conventional ecological studies, Preston
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plots corresponding to this data are shown in Fig. 4. The
reduction in the number of rare taxa is very clear in this
representation but the subtleties for the more common taxa
are lost by the logarithmic binning procedure.

The loss of the very rare taxa can perhaps be attributed to
the filtering properties of the island chain. These taxa are
already rare in the metacommunity and it could simply be
that a representative from a rare taxon is less likely to arrive
via migration along an island chain than via direct immigra-
tion from the metacommunity (at matched (D)). Note that
Eq. (3) implies the mean value [ édww(p(w)} is fixed under
(D) matching. This means that the redistribution of abundan-
cies cannot be asymmetric and explains why there has to be
a concomitant reduction in the high abundance taxa. The
increased monodominance probability is more mysterious
and I do not at present have a clear mechanistic explanation.
Possibly what is happening is that the monodominated state
(w=1) has become “stickier” in dynamical terms, without
actually becoming an adsorbing state. This is partially con-
firmed by the B-diversity analysis below.

Returning now to the (D)-matched single islands, Fig. 5
shows how u.¢ varies with immigration and migration rates
m; and m, and the island size J. Figure 5(a) shows that
increasing the interisland migration rate m, has the effect of
increasing the diversity along the island chain apart from the
first island (inset). The effect of additionally increasing the
metacommunity immigration rate (so that m;=my=m) is
shown in Fig. 5(b). This leads to increased diversity along
the whole chain and, at least away from the last couple of
islands, one has quite accurately .o Jm. Figure 5(c) shows
the effect of varying m;=m,=m and J simultaneously, keep-
ing Jm fixed. The highly accurate data collapse strongly sup-
ports the notion that the island diversity is governed by the
combinations Jm; and Jm, rather than the individual values
of J, my, and m,. This is in close analogy to the theory for the
single island and confirms that finite-size corrections are
negligible. I also investigated varying € and found a simi-
larly highly accurate data collapse to that shown in Fig. 5(c)
so that it appears the effect of the Hubbell parameter is re-
moved when (D) is converted to w.g. Finally, I found essen-
tially no influence of Jj; on the results within the measured
accuracy.

The semilogarithmic plots in Fig. 5 show that w.s for the
intermediate islands is quite accurately represented by a geo-
metric progression. To summarize, at least for m;=m,=m
and intermediate islands, all the data can be quite accurately
represented by

Optesr ,
D= G Dy Her=ImxAs (09
where A=0.75%0.01 and r=1,...,n labels the islands.

For (D)=<0.5 the abundance distribution for a
(D)-matched metacommunity is almost exactly the same as
that for a (D)-matched single island. By this I mean that
(p(w))y=01-w)®! with =(D)/(1-(D)) is a very good
approximation to {p(w)) from Eq. (9). However a complete
comparison with an equivalent metacommunity is frustrated
by the residual dependence of (K);, and {(¢,),, on the meta-
community size Jy,.
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FIG. 6. (Color online) Heat maps of two measures of diversity
correlations between pairs of islands in a chain of length n=9: (a)
the normalized codominance index (D")/(D),, and (b) the comon-
odominance correlation function defined in Eq. (16) (note the loga-
rithmic color scale). Other parameters are as for Fig. 3. In (b) a cell
is colored white if there are 10 or fewer instances that are comon-
odominated out of 10° samples.

B. Steady-state B-diversity

Figure 6(a) shows a heat map of the codominance index
described in Eq. (4) for pairs of islands in an island chain of
length n=9 for the parameter set used for Fig. 3. Note that
the diagonal values in such a representation reduce to the
Simpson indices of individual islands. A corresponding heat
map for the analogous set of individual islands would there-
fore have the same colors along the diagonal as a conse-
quence of the (D) matching, but the off-diagonal cells would
be completely white. This is because, as already described,
the codominance index between pairs of islands which are
isolated from each other is (D);,. (I have checked this in
simulations.)

Figure 6(b) shows a heat map for a comonodominance
correlation function defined by

(@) = (NP (16)

In the absence of correlations the off-diagonal components of
the heat map would be completely white (again I have
checked this in simulations). The diagonal elements reduce
to (¢)(1—(¢,)) (note that this is nonmonotonic in {¢,)). The
comonodominance correlations lend support to the notion
mentioned above that monodominance is dynamically
“stickier” for island chains: if an island in a chain is in the
monodominated state, the neighboring islands are more
likely to be in a monodominated state than would be ex-
pected from pure chance.

C. Dynamics

Finally, I embarked on a preliminary study of the dynam-
ics of the island chain, again using the parameter set for Fig.
3, although in this case I also examined the effect of varying
the chain length n. The dynamics is unexpectedly feature
rich. My starting point is to determine the autocorrelation
functions defined in Eq. (5) for the individual islands in the
chain. In reporting the results, the time 7 is defined to be the
number of replacement steps divided by the total island chain
population size nJ. This is appropriate to the interpretation of
neutral model dynamics as a continuous-time Markov pro-
cess.

First T observe that at long times one always has (D(z))
— (D), (while there is a proof of this for single islands, I do
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FIG. 7. (Color online) Autocorrelation functions on island
chains: (a) for the odd-numbered islands in a chain of length n=9
and (b) for the last island in chains of varying length n. A factor 1/n
is included in the time scale for convenience. The dotted line in (b)
is Eq. (13) for a single island. The inset in (b) shows mgflf/z as a
function of n, where m. is determined by fitting the data in the
main plot to an exponential decay; see also Table I. Other param-

eters are as for Fig. 3.

not know of a more general proof). Figure 7 shows (D),
—(D(t))=Z£1(Awi(O)Awi(t)>, plotted semilogarithmically as
a function of time. Generally, I find the behavior shown in
Fig. 7(a) is repeated for all chain lengths, namely: the first
island shows quite a strong nonexponential behavior; the last
island is quite accurately monoexponential from early times;
the intermediate islands show intermediate behavior; and all
the islands ultimately decay with a common “terminal” re-
laxation time which I shall define to be 1/myg. This relax-
ation time can most easily be found by fitting an exponential
to the autocorrelation function for the last island. This is
shown in Fig. 7(b) and the results are collected in Table I.

Island hopping can be viewed as a diffusion-like process
and one might expect m.g~n"2. In fact, as is common for
diffusion problems, the inset to Fig. 7(b) shows that m.g can
be accurately represented by an offset diffusion law, mgg
=A(n+ng)~> where A=(2.5+0.1) X 10~ and ny=0.6+0.1.

Table T extends the (D)-matching procedure to obtain an
estimate of the effective island size J for the last island in
chains of varying length n. This is done by first calculating
Mo from the Simpson index (D), and then using m deter-
mined from the decay of the autocorrelation function to com-
pute Jogr= e/ Meopr- One sees that the effective island size is a
weakly increasing function of n (in particular it is clearly not
proportional to the total population of the islands nJ). Hence
most of the reduction in the diversity can be attributed to a
reduced effective immigration rate.

Figure 8 shows the behavior of the first island in chains of
variable length in some more detail. Observe that the auto-
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TABLE 1. Properties of the last island in an island chain of
length n: the Simpson index (D), the effective single island
calculated from Eq. (14), the relaxation rate mgg determined from
Fig. 7(b), and the effective island size J.g= phogs/ Mege. The first row
are the exact results for a single island (n=1). Other parameters are
as for Fig. 3. A figure in brackets is an estimate of the error in the
final digit.

n (D) Heft Megp X 10° JegX 1073
1 =5/11 =1 =1 =]

3 0.191(2) 0.265(4) 0.200(5) 1.33(7)
5 0.104(2) 0.130(2) 0.076(2) 1.7(1)

7 0.065(2) 0.077(2) 0.043(1) 1.8(1)
9 0.0445(5) 0.0515(5) 0.0275(5) 1.90(5)

correlation functions initially follow a universal decay curve,
only to fall off this as they encounter the n-dependent termi-
nal relaxation time 1/m. For =1 the universal behavior
appears to follow a power law with an exponent —0.7 = 0.1
[note that this cannot be continued to r=0 since (D),
—(D(#)) must remain bounded].

I also examined briefly the approach to the steady state for
islands in an island chain. This is illustrated in Fig. 9. I find
the time scale is more or less set by the terminal relaxation
time 1/m although one can see that aspects of the behavior
are distinctly nonexponential, for example, the early-time re-
covery from the monodominated state for n=9. I expect that
this corresponds to a spectrum of relaxation modes, which
are excited differently according to the initialization protocol
and which are subsequently mixed up by the nonlinear dy-
namics. A more detailed exploration of this is left for future
work.

According to the offset diffusion law noted above, for n
=4.4 the assumed time scale separation between 1/m.g and
the notional metacommunity relaxation time 1/v=Jy/60
~10* no longer holds. Nevertheless the assumption of a fro-
zen metacommunity abundance distribution is still valid
since in reality the actual speciation rate is much smaller
than the notional speciation rate.

V. DISCUSSION

From the point of view of statistical physics, the present
study leaves open a large number of questions. For example,

first island

(D)m = (D(t))

FIG. 8. (Color online) Autocorrelation functions for the first
island in island chains of varying length n. The dotted line is Eq.
(13) for a single island. Other parameters are as for Fig. 3.
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FIG. 9. (Color online) Approach to steady state for the central
island of a chain of length n islands starting from either a com-
pletely monodominated state (lower curves) or a flat abundance
distribution (upper curves; flat means the N; are equalized subject to
EfilN,:J). The n=1 case is for a single island. Time is scaled by
the terminal relaxation time 1/mg (see Table I). Other parameters
are as for Fig. 3.

the rich dynamics (e.g., power law behavior) begs for deeper
theoretical understanding. There is clearly plenty of scope
for further work, but here let me address the question which
motivated the present study, namely, the possibility of dis-
criminating between stochastic community assembly mecha-
nisms such as those illustrated in Fig. 1. First, it is clear that
as far as the steady-state abundance distributions on indi-
vidual islands are concerned, an island chain can be quite
well represented by a collection of (D)-matched single is-
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lands (Fig. 3). Hence it appears that it will be difficult to
distinguish between assembly mechanisms on the basis of
static measurements of a-diversity.

On the other hand, as Figs. 7-9 show, the dynamics is
very rich. There is a nontrivial spectrum of relaxation modes.
Sufficiently refined measurements ought to be able to distin-
guish between this, and the dynamics of collections of iso-
lated islands. But note that broadly speaking the overall time
scale seems to be set by an effective immigration rate (Table
I). Hence it seems difficult to use time-dependent a-diversity
measurements to distinguish between assembly mechanisms.

The most promising avenue seems to lie in the
B-diversity. My simulations indicate that significant correla-
tions emerge in the diversity of systems of islands which are
able to exchange individuals, compared to sets of single is-
lands for which there are essentially no correlations. More-
over as Fig. 6(a) shows, islands with closer ties have stronger
correlations. In terms of measurement protocols, assessment
of B-diversity seems to be almost as straightforward as as-
sessment of a-diversity (and almost certainly much easier
than assessing the time dependence). Thus, for example, one
might use the interindividual B-diversity to determine the
properties of the metacommunity, and the intraindividual
B-diversity to discriminate between assembly mechanisms
[33].
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