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We introduce slow bottleneck sites into a recent extension of the totally asymmetric exclusion process where
hopping rates are allowed to vary dynamically with the availability of resources. In the context of messenger
RNA �mRNA� translation in biology, this refers to the availability of amino acid-transfer-RNA �aa-tRNA�
complexes which act as the source of amino acids for protein production. We study a simple designer mRNA
with a single defect codon in the center. As well as the familiar queuing behavior we also observe a regime
within the queuing phase where the queue becomes less severe as the aa-tRNAs become depleted.
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I. INTRODUCTION

In this paper we study a driven diffusion model of mes-
senger RNA �mRNA� translation in which the particle cur-
rent depends both on the availability of resources and the
propensity of particles to queue behind slow bottleneck sites.
Translation is part of the cellular process of protein produc-
tion �1�. Similar in structure to DNA, mRNA molecules are
sequences of codons which encode the amino acid sequences
which make up proteins. Each codon consists of three nucle-
otides of which there are four types. Proteins are assembled
by molecular machines called ribosomes, which move along
the mRNA in a stepwise manner, reading the codons and
adding relevant amino acids to a growing peptide chain. Un-
derstanding the translation process is a key factor in answer-
ing questions about how a cell selects which proteins it will
produce and how this production is affected by changes in
the environment.

A popular model which can be applied to translation, as
well as many other systems �e.g., traffic flow �2� or intracel-
lular transport via molecular motors �3��, is the totally asym-
metric exclusion process �TASEP� �4�. As one of the arche-
typal models of nonequilibrium statistical mechanics, the
TASEP consists of a one-dimensional �1D� lattice of discrete
sites and particles which hop between these sites. Only a
single particle can occupy a site, and particles hop in one
direction only, entering the lattice at the left and leaving it at
the right. Clearly a nonequilibrium process, the TASEP ex-
hibits rich dynamics showing multiple phases. The system is
characterized by the particle current J and mean particle den-
sity �̄ which are functions of the rates at which particles hop
onto, along, and off of the lattice. In some parameter regimes
it is possible to calculate the stationary state current and den-
sities exactly, while more generally a mean-field model
�where spatial correlations are neglected� accurately de-
scribes the system �5–7�. For modeling translation, the sites
of the lattice represent the codons of the mRNA, and the
particles represent the ribosomes.

In addition to the mRNA and ribosomes, a third important
part of translation is the delivery of amino acids to the ribo-
some by transfer RNA �tRNA� molecules, which are differ-
ent for different types of codons. It is thought that the rate at
which a ribosome translates a given codon depends on the
abundance of the relevant tRNA molecule �8,9�, i.e., codons

which code for a low abundance tRNA will be translated at a
much slower rate. We call these “slow codons.” With a code
of four different nucleotides there are 64 possible codons;
there are, however, only 20 common amino acids which are
carried by 41 species of tRNA. This means that the code can
be redundant: there is more than one possible codon se-
quence for a particular protein. Much work has focused on
the fact that for reasons not fully understood, some mRNA
sequences contain slow codons when there exist alternate
tRNAs which carry the same amino acid and are much more
abundant. There have been many suggestions as to the pos-
sible advantages of such sequences. It could be that slow
codons provide pauses in translation, giving time for proteins
to fold in a specific way �10�. It could give further �to tran-
scriptional� control over protein production rates and allow
fast response to changes in environmental conditions �11�. Or
perhaps different classes of mRNAs have different patterns
of slow codon usage in order to give them specific transla-
tional properties �12�. The TASEP has been used to assay the
effect of slow codons on the protein production mechanism
and to help answering some of these questions. For example
Chou and Lakatos �13� looked at the effect of clusters of
several slow codons, Dong et al. �14� studied the effect of
changing the separation and proximity to the initiation end of
the mRNA of a pair of slow codons, and Romano et al. �12�
identified a correlation between the functional properties of
mRNAs and the position of the slowest codon.

A recent study �15� includes in the TASEP model the fact
that the number of amino acid tRNA �aa-tRNA� complexes
in the cell is dynamic. When an amino acid is added to the
peptide chain a bare tRNA molecule is left; while tRNAs are
not used up in the process it takes a finite time for them to be
“recharged” with a new amino acid. The model considers
finite tRNA resources, in contrast to other recent work
�16–18� which examines the effect of finite resources of a
different type, namely, the availability of ribosomes. In this
paper we extend the model with finite tRNA recharging to
include slowly translated codons which act as bottlenecks
and can lead to queuing of ribosomes. In the next section we
briefly discuss previous results for a TASEP with a slow site,
and then review our model for finite aa-tRNA recharging.
Section III describes a mean-field model of a TASEP with
both finite aa-tRNA recharging and a slow codon and com-
pares this with Monte Carlo simulations �MCSs�.
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II. REVIEW OF PREVIOUS RESULTS

A. TASEP

The TASEP �4–7,19,20� consists of a 1D lattice of length
L sites. We define the occupation ni of the ith site as being 0
if the site is vacant and 1 if it contains a particle. Particles
hop onto the lattice at the left with rate �, leave the lattice at
the right with rate �, and hop along the lattice with site-
dependent rate ki. We term the ensemble average occupancy
of the sites the particle density �i and assume that the system
is ergodic, so that at steady state �i= �ni�t, where �¯ �t de-
notes time average. The system is characterized by the mean
density �̄=L−1�i�i, and the particle current J which also cor-
responds to the protein production rate.

For simplicity we first look at a very simple “designer
mRNA,” in which all codons are the same, i.e., ki=k ∀ i. By
assuming that there are no spatial correlations between the
occupation probabilities of different sites, one can write
mean-field equations describing the dynamics of the density
at each site as

d�1

dt
= ��1 − �1� − k�1�1 − �2� ,

d�L

dt
= k�L−1�1 − �L� − ��L,

d�i

dt
= k�i−1�1 − �i� − k�i�1 − �i+1�, i = 2, . . . ,L − 1. �1�

In steady state, where we identify the current

J = k�i�1 − �i+1� , �2�

independent of i, we find that the system can exist in several
phases depending on the relative magnitudes of the param-
eters �, �, and k �5–7�. There are low-density �LD� and
high-density �HD� phases �entry and exit limited phases� and
a maximal current �MC� phase where the current J reaches
its maximum value limited by the steric interactions between
the particles. The phase diagram is shown in Fig. 1�a�, and
the phases can be summarized as follows:
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where � gives the density of sites in the bulk. Although �i
deviates from � near sites 0 and L due to edge effects �spatial
correlations in the density�, if L is sufficiently large we can
approximate �
 �̄. A mixed LD-HD or shock phase is found
for �=��k /2, and this has been studied extensively else-
where �19,21�. In many previous works, authors took k=1
and treated � as a hopping probability. Since in Sec. II C we
will allow the hopping rate to vary as a function of the num-
ber of available charged tRNAs, it is necessary to keep k
explicitly in these equations. One can consider the probabil-
ity ��t of an initiation event occurring in time �t, but here
we use continuous time.

B. TASEP with a slow site

In order to understand the effect of slow codons on trans-
lation, several authors �13,22–27� have studied slightly more
complicated designer mRNAs with one or more slow
codons. For example a very simple case is where all codons
are the same except the one in the very center of the lattice;
i.e., ki=k for i�L /2, and kL/2=q. We can define the relative
speed of the central codon as

s =
q

k
.

This system is studied in �27� by Kolomeisky, who assumed
that the lattice can be modeled as two separate sublattices
connected across the slow site. The leftmost lattice has entry
and exit rates � and �eff, and the rightmost �eff and �, re-
spectively, where

�eff = q�1 − �L/2+1�, �eff = �L/2q . �4�

Noting that J=q�L/2�1−�L/2+1�, the current can also be ex-
pressed as

J =
�eff�eff

q
. �5�

Assuming that the different sublattices can exist in the
same phases as the uniform TASEP, there are four possible
phases for the combined system: LD/LD, HD/HD, MC/MC,
and HD/LD �28�. The HD/LD phase can be described as a
queue of particles behind the slow codon, and we hereon
denote it the queuing phase �QP�.

As one would expect, when the two sublattices are
in the same phase the behavior is the same as in the
uniform TASEP. Following Eqs. �3�, for LD/LD we have

α

β

k
2

k
2

(a)

MC

HD

LD

α

β

k
2

k
2

(b ) k < q

MC

HD

LD

α

β

k q
k + q

k q
k + q

(c ) k > q

QP

HD

LD

FIG. 1. �Color online� �a� Phase plane for the original TASEP
with a uniform lattice, showing the LD, HD, and MC phases. Plots
�b� and �c� show phase places for the TASEP with a single defect
site in the center of the lattice. In �b�, where k�q, the defect site
has no effect on the phase plane and LD, HD, and MC phases exist.
In �c�, where k�q, at large � ,� the MC phase is replaced with a
queuing phase. We note that as q is increased the QP region reduces
in size until q=k, where we recover the plot in �b�.
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J=��1−� /k� for the leftmost sublattice, but also
J=�eff�1−�eff /k� to the right of the slow codon. Equating
these currents, since in steady state the current must be con-
stant throughout the lattice, and taking into consideration the
definition of �eff �Eq. �4�� leads to �eff=�. Using Eq. �5� then
leads to �eff=q�1−� /k�. Considering the inequalities for LD
given in Eqs. �3� for both sublattices gives ���eff, �eff��,
and � ,�eff�k /2; eliminating �eff and �eff gives

LD: �J = ��1 −
�

k
	

� =
�

k
� for

� � �

� �
k

2

� �
qk

k + q
,

�6�

i.e., as well as conditions on � and � we now have a condi-
tion on q. Equivalent results for the HD/HD phase can be
found easily due to particle-hole symmetry. For the MC/MC
phase we have from Eq. �3� the current J=k /4 and the in-
equalities � ,� ,�eff ,�eff�k /2. Although �eff and �eff are not
defined independently in this phase, from the inequalities we
can infer that �eff�eff�k2 /4, and using Eq. �5� gives

MC: �J =
k

4

� =
1

2
� for

�,� �
k

2

q � k .

�7�

This means that we can only reach the MC phase if the
defect codon is “faster” than the other codons. If in contrast,
the defect codon is slower than the others, we reach the QP
�HD/LD phase�. The leftmost sublattice obeys the HD equa-
tions in Eqs. �3� and the rightmost half obeys the LD equa-
tions. That is, J=�eff�1−�eff /k� and J=�eff�1−�eff /k�; equat-
ing again gives two solutions for �eff and �eff, with the only
physical one being �eff=�eff.

Together with the inequalities �eff��, �eff��, and
�eff ,�eff�k /2, this gives the full solution for the QP,

QP: �
J =

k2q

�k + q�2

�l =
k

k + q

�r =
q

k + q

� for

q � k

� �
kq

k + q

� �
kq

k + q
,

�8�

where �l ��r� is the bulk density to the left �right� of the slow
site. The queuing phase can be identified by a nonzero value
of ��=�l−�r, which is found to be

�� =
1 − s

1 + s
.

Figure 1�b� shows the phase plane for the TASEP with a
defect site which is faster than the other codons, and Fig.
1�c� shows the same for a defect which is slower than the
other codons.

Kolomeisky �27� used this simple mean-field approach to
predict the presence of the QP. This approach yields qualita-

tively good results; however, since the slow site introduces
significant spatial correlations in the occupation probabili-
ties, the mean-field approximation does not exactly predict
the densities or current. This becomes apparent for small L,
when Monte Carlo simulations begin to significantly deviate
from the mean-field results �not shown�. Chou and Lakatos
�13� proposed a more accurate treatment, where the densities
and effective hopping rates of a region of n sites around the
slow site j are considered; they find that n3 is sufficient to
accurately predict the currents. Since this method relies on
the numerical calculation of a 2n	2n transition matrix, it is
not straightforward to incorporate finite tRNA charging via
an analytical treatment. We therefore follow the method of
Kolomeisky throughout this paper.

C. TASEP with finite aa-tRNA recharging rate

We recently detailed an extension to the TASEP for a
uniform �ki=k ∀ i� mRNA where the hopping rate k is al-
lowed to vary with the availability of resources �15�. There is
a pool of charged aa-tRNAs and a pool of uncharged tRNAs;
every time a particle hops along the lattice we reduce the
aa-tRNA pool by 1 and increase the tRNA pool correspond-
ingly. We model a system of N mRNAs connected to the
same tRNA pool. Since the recharging is an enzymatic pro-
cess, we model it using a Michaelis-Menten equation �29�;
we assume that the amino acids and other required factors
are in plentiful supply and treat the recharging as a single
substrate enzymatic process. We take the standard mean-field
equations for the TASEP �Eqs. �1�� and introduce an equation
to describe the use and recharging of the aa-tRNA pool:

dT

dt
=

V�T̄ − T�

Km + T̄ − T
− �

i=1

L�

k�i�1 − �i+1� , �9�

where T is the number of aa-tRNAs and T̄ is the total number
of tRNAs. L�=N�L−1� gives the total number of sites where
tRNAs are used in N mRNAs of length L �L−1 since tRNAs
are not used at termination sites�. The first term in Eq. �9�
corresponds to recharging and the second corresponds to the
reduction in T every time a particle hops. The parameters V
and Km associated with the recharging are the maximum re-
charge rate and the number of uncharged tRNAs for which
we have half the maximum rate, respectively. As described in
�15�, we assume that the hopping rate k depends linearly on
the number of charged tRNAs,

k = rT , �10�

where r is some intrinsic translation rate. We expect that k
will saturate at some maximum; the linear approximation is
justified since we expect that the cell is unlikely to waste
resources by overproducing tRNAs.

In considering the steady state of Eq. �9� we identify the
term under the sum as the current �Eq. �2��; using Eq. �10� to
eliminate T we find that

k = rT̄ −
rL�KmJ

V − L�J
, �11�
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i.e., k is itself a function of J. We proceed by employing the
“maximum current principle” �30�, which states that the
maximal current in a TASEP with open boundaries is related
to the equivalent system with periodic boundaries,

J = max�JPB���� if �− � � � �+, �12�

where JPB is the current in the periodic system. The density
�− ��+� is an effective density associated with a reservoir of

particles to the left �right� of site i=1 �i=L� in the open
system and is related to the rate ����. Solutions of the peri-
odic system are straightforward: with these boundary condi-
tions the mean density is not a function of position, and Eq.
�2� becomes JPB=k��1−��. Using Eq. �11� to eliminate k
yields a quadratic in JPB; one of the solutions to this can be
disregarded as it gives the unphysical result JPB ��=0�0.
From the remaining solution we have

JPB =
1

2� V

L�
+ rT̄�1 +

Km

T̄
	��1 − �� −�� V

L�
+ rT̄�1 +

Km

T̄
	��1 − ���2

− 4
V

L�
rT̄��1 − ��� . �13�

In Fig. 2 we show several plots which indicate how JPB���
depends on the various parameters. From the above equation
we identify three important quantities: the maximum internal

hopping rate rT̄, the ratio of the Michaelis constant and the

total number of tRNAs Km / T̄, and the ratio of the maximum
recharging rate and the total number of codons where aa-
tRNAs can be used V /L�, which gives an upper bound for
the current J �31�. In the subplots of Fig. 2 we show how
each one of these quantities affects JPB��� while the others
are fixed at a value of unity. We note that the shape of the
curve ranges from that of the original TASEP �J=k��1−���
to having a flattened top; in particular small values of V /L�

and large values of rT̄ and Km / T̄ give a function with an
apparent plateau. We note however that the curve always
remains unimodal with a maximum at �=1 /2.

Throughout this paper, we use parameters which are real-
istic for the widely studied yeast S. cerevisiae. A typical cell
contains a total of 3.5	106 codons �arranged in mRNAs of
typical length L=500 codons� and around 3	106 tRNAs,
and together the number of codons and the number of tRNAs
represent the system size. Such large numbers of codons
pose a considerable challenge for treatment by simulation, so
we rescale the system such that there are L=500 codons in

each of 100 mRNAs �i.e., L�=4.99	104�, and T̄=4.3	104

tRNAs. This rescaling does not affect intensive quantities

such as the current and density, although we note their de-

pendence on L� and T̄ separately. The scale of the
hopping rate is fixed by the constant r which we take as
r=2.3	10−4 s−1 so as to give the maximum hopping rate

k̄=rT̄=10 s−1, which is well established in the literature �1�.
The numbers of codons and tRNAs and the mean hopping
rate are all well known in the literature, so we use the above
rescaled values for the rest of this paper. The parameters for
the recharging component of the model are less well known.
The maximum recharging rate is given by

V = Ekcat,

where E is the number of enzymes present in the cell and kcat
is the rate at which one enzyme molecule can recharge one
tRNA. Each amino acid species has a different associated
aminoacylation enzyme, and measured values for kcat and Km
are known for some synthetases �32–36� but not others. For
this reason we use values from one typical enzyme—tyrosine
tRNA synthetase �37�. The number of enzyme molecules in a
typical cell has been measured by von der Haar �38�. Values
of Km are usually quoted as concentrations; since our model
has no spatial extent we must multiply this by the cell vol-
ume to get a number of tRNAs. We note that to find realistic
parameters, both Km and V �due to its dependence on the
number of enzymes� must be scaled with system size, i.e., it

is the ratios of E and Km to T̄ which we take from the litera-

ture. Hence, for the rescaled values of T̄ and L� given above,
V=1.95	103 s−1 and Km=497 tRNAs.

Since the recharging parameters can only be estimated
from the literature, we now examine the behavior of the
model as these are varied. In Fig. 3 we plot JPB��� and
JPB

max�JPB�1 /2� at different values of V /L� and Km. From the
plot of maximum current as a function of V /L� with realistic
Km �Fig. 3�a�� we can clearly identify two regimes:

case 1: JMC 

rT̄

4
for

V
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�

r�T̄ + Km�
4

,

0 1
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0.2

J
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FIG. 2. Plots showing how the values of V /L�, Km / T̄, and rT̄
affect the shape of the JPB��� curve. In each case one quantity is
varied, and the others are held at unity; the arrow indicates the
direction of increasing the varied quantity. In �a� V /L� is varied

between 0.2 and 1, in �b� Km / T̄ is varied between 2 and 10, and in

�c� rT̄ is varied between 2 and 10.
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case 2: JMC 

V

L�

T̄

T̄ + Km

for
V

L�
�

r�T̄ + Km�
4

.

Large V /L� �case 1� recovers the original TASEP—the re-
charging process is so fast that effectively all tRNAs are
always charged. The maximal current is limited by the steric
interactions between the particles. In case 2 �in which lie the
above discussed realistic recharging parameters� the maxi-
mum current is reduced and increases approximately linearly
with V for small values of V. The current density curve �Fig.
3�b�� is severely flattened for case 2 �however, we note that it
remains unimodal�. From Figs. 3�c� and 3�d� we see that the
value of Km determines the sharpness of the crossover be-
tween the two regimes, with the smaller �realistic� value giv-
ing the sharper crossover. The physical interpretation of case
2 result is that when there is a small number of particles on
the lattice, the recharging machinery can keep up with the
aa-tRNA demand and the current increases rapidly with the
density, but as the density gets larger the recharging begins to
become limiting. The current then increases only very slowly
with density, and the maximum current depends on V; we
term this regime limited resources �LR�. As with other ex-
clusion processes the symmetry about �=1 /2 can be ex-
plained by considering the equivalence between particles and
holes, which is maintained in this model.

Following the maximal current principle �30�, the maxi-
mum current in the open boundaries system is equal to that
of the periodic system. In the LD phase the current is
�=� /k, and an expression for the current is given by making
the replacement �→� /k in the equation for JPB. The hop-
ping rate is now of course itself a function of the current, and

we eliminate k using Eq. �11�. The resulting equation has two
solutions, again one of which is unphysical �J�0 for �=0�.
The critical initiation rate where we cross from LD→MC is
found when �=� /k=1 /2, i.e., ��=k /2; we again use Eq.
�11� to eliminate k and then the expression for JPB

max to elimi-
nate J. The results can be summarized as follows:

JLD =
1

2
���1 −

�

r�T̄ + Km�
� +

T̄

T̄ + Km

V

L�
−�� T̄

T̄ + Km

V

L�
+ ��1 −

�

r�T̄ + Km�
��2

−
4��rT̄ − ��
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FIG. 3. Plots showing how the recharging parameters affect
the current in the periodic system. �a� Plot of the maximal
current JMC �solid line� as a function of V /L� with Km=497, the
realistic value as discussed in the text. The dotted line shows

J= �T̄ / �T̄+Km���V /L��, and dashed lines are at rT̄ /4 �horizontal�
and r�T̄+Km� /4 �vertical�. �b� Plots showing JPB��� for
V /L�=105 s−1 �case 1—dashed line� and for V /L�=1.95	103 s−1

�case 2—solid line�. In both cases Km=497 tRNAs. �c� Plots show-
ing JMC as a function of V /L� at different values of Km. From top
to bottom these are Km=497, 4970, and 24 850 tRNAs. �d� Plots
showing JPB��� for the realistic value for V /L� �see text� at different
Km’s, from top to bottom as in �c�.
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We do not give equations for the HD phase since, due to
hole-particle symmetry, these can be easily obtained from
those for LD �e.g., JHD is given by the same equation as
JLD, but replacing � with ��. For the rest of this paper we do
not consider the HD phase and set ��k; since it is thought
that translation is not limited by the termination step this is a
reasonable assumption for a real cell �39�. For clarity, in this
section we use the calligraphic J to refer to Eqs. �14� and
�15� and the standard J with subscripts to denote the approxi-
mations in the various regimes. Since JMC�JPB

max cases 1 and
2 as discussed above still apply.

In Figs. 4�a�–4�c� we plot J, �, and k as functions of the
initiation rate � for case 1 �V /L�=5 s−1�, and in Figs.
4�d�–4�f� we plot the same for case 2 �V /L�=0.039 s−1—the
realistic parameters estimated from the literature�. In both
cases we use the realistic value for Km from the literature
�37�. In case 1 the behavior is as in the original uniform
TASEP: J and � increase with � until �=��, where there is
a second-order phase transition to the MC phase. In case 2

for small �, J and � follow the same profile as in case 1;
however, at ��LR there is a drastic change in the behavior:
there appears to be a plateau in J. In actual fact J continues
to increase very slowly with � until �=��, where there is
again a phase transition to the MC phase. The reason for the
difference in the behavior between cases 1 and 2 is clarified
in the plots for k �Figs. 4�c� and 4�f��: in case 1, k remains
constant as the rate at which tRNAs are recharged is always
larger than the rate at which they are used; in case 2 for
���LR the usage of tRNAs is limited by the recharging rate,
so the steady-state charged tRNA abundance T �and therefore
k� is reduced. The current cannot increase above J
V /L�.
Thus, for case 2 we have a limited resources regime within
the low-density phase �LR-LD�, and the maximal current is
reduced �LR-MC�.

In summary, for case 1 �V /L��r�T̄+Km� /4� we regain the
results from the original TASEP:

JLD 
 ��1 −
�

rT̄
	, �LD 


�

rT̄
, for � � �,� � ��,

JMC 

rT̄

4
, �MC 


1

2
, for �,� 
 ��,

�� 

rT̄

2
, �16�

by expanding Eqs. �14� about �=0 to second order and tak-
ing the limit V→� in Eq. �15�. As � is increased we observe
the transition LD→MC.

For case 2 �V /L��r�T̄+Km� /4�, which is the biologically
relevant parameter regime, it is possible to estimate the cur-
rent and density in LD by expanding Eqs. �14� about V=0 to
first order. The current in the LR-MC regime can be approxi-
mated by expanding Eq. �15� about V=0 to first order. If Km
is small �as in the realistic parameters� we can approximate
that the current in the LR-LD regime is equal to that in
LR-MC. More precisely, small Km gives a sharp crossover
between cases 1 and 2 �Fig. 3�c�� and a sharp well-defined
crossover between LD and LR-LD at �LR �Fig. 3�d��. We
find

JLD 
 ��1 −
�

rT̄
	, �LD 


�

rT̄
, for � � �,� � �LR,

JLR-LD 

T̄

T̄ + Km

V

L�
, for �LR � ��,

JLR-MC 

T̄

T̄ + Km

V

L�
, �LR-MC 


1

2
, for �,� 
 ��,

�LR 

T̄

T̄ + Km

V

L�
, �� 
 2

T̄

T̄ + Km

V

L�
. �17�

The estimate for �LR is found by equating JLD and JLR-MC,
solving for �, and again only keeping terms up to first order
in V. As � is increased we observe the transitions
LD�LR-LD→LR-MC. The curly arrow indicates that there
is no phase transition between LD and LR-LD: the crossover
between LD and LR-LD is always smooth �there are no dis-
continuities in higher derivatives with respect to ��, and �LR

is only well defined for small Km.
Crucially, the realistic parameters discussed

above fall well within case 2 �V /L�
0.039 s−1 and

r�T̄+Km� /4
2.5 s−1�. Although the recharging parameters
are not known for all tRNA species, those which are avail-
able fall so far within case 2 that we expect no qualitative
difference in the results with respect to small changes; we
therefore use these values throughout the rest of the paper.

III. TASEP WITH FINITE RECHARGING
AND A SLOW SITE

In this section we extend our model with finite recharging
of aa-tRNA to include slow codons. As we have seen, even
with only a single tRNA species, finite recharging has a ma-
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FIG. 4. �Color online� Plots showing mean-field results for the
TASEP with finite aa-tRNA recharging but no slow sites. �a�–�c�
show J, �, and k as functions of � for case 1 �V /L�=5; other pa-
rameters are given in Sec. III�, and �d�–�f� show the same for case 2

�parameters are given in Sec. III�. Dotted lines show �LD and ��.
We note that in �e� for ���LR the nonzero value of � is too small
to be seen at this scale.
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jor impact on the dynamics of a system where the parameters
fall into case 2 �the biologically realistic regime, as shown
above�. If there are multiple types of codons one would ex-
pect competition effects to be even more important. Since it
is analytically tractable, we consider the simple designer
mRNA with a single central defect codon.

We study a TASEP where codons have a hopping rate
ki=k for i�L /2 and kL/2=q and allow k and q to vary with
the number of aa-tRNAs,

k = rTk, q = rTq, �18�

where Tk and Tq are the numbers of charged aa-tRNAs of
each species and r is an intrinsic hopping rate as before.
Similarly to Sec. II B, we define the ratio

s =
T̄q

T̄k

, �19�

as a measure of the intrinsic speed of the slow site relative to

the other sites, where T̄q and T̄k are the total numbers of
tRNAs of each type. We examine the behavior of the system
as a function of both s and the initiation rate �. Again the
recharging is modeled using a Michaelis-Menten equation,
and the rates at which tRNAs are recharged are

Vk
T̄k − Tk

Kk + T̄k − Tk

, Vq
T̄q − Tq

Kq + T̄q − Tq

,

for types k and q, respectively. As detailed in the previous
section, in general different tRNAs are recharged by different
enzymes, but for simplicity we assume Kk=Kq=Km. As in
Sec. II C we again preserve the ratio of the number of en-
zymes to the number of the relevant tRNA molecules found
experimentally, and now we assume that this is the same for
all tRNA types and that the different enzymes have the same
kcat values �32–36�. We therefore fix Vk based on the value of

T̄k and set Vq=sVk. These choices are reasonable since many
of the known parameters for synthetases have similar values.
We keep the same parameter values for the k-type tRNAs as

in Sec. II C, defining T̄k=4.3	104 and Vk=1.95	103 s−1.
The total number of k-type codons is L�=N�L−2� since there
is one q-type codon and one termination codon per mRNA.

We now derive a mean-field model by combining the ap-
proaches described in Secs. II B and II C �15,27�. The use
and recharging of the tRNAs are now described by

dTk

dt
=

Vk�T̄k − Tk�

Km + T̄k − Tk

− �
i�L/2,L

k�i�1 − �i+1� , �20�

dTq

dt
=

sVk�T̄q − Tq�

Km + T̄q − Tq

− Nq�L/2�1 − �L/2+1� , �21�

where the sum in Eq. �20� is over k-type codons on all mR-
NAs. By following the same procedure as in Sec. II C we
find that in the steady state we have the following hopping
rates:

k�J� = rT̄k −
rL�KmJ

Vk − L�J
, �22�

q�J� = rsT̄k −
rNKmJ

sVk − NJ
, �23�

i.e., k and q are both functions of J. We identify the current
�which must be constant throughout the lattice� as

J = k�i�1 − �i+1� = q�L/2�1 − �L/2+1� . �24�

Assuming that we can treat the system as two sublattices
connected across the slow site, we define �eff and �eff as in
Eq. �4�, leading to the current

J =
�eff�eff

q�J�
,

which differs from the original TASEP with a slow site in
that q is itself a function of J.

We show a full treatment of the mean-field model in the
Appendix and present only the results here. As in the work of
Kolomeisky �27� there exist LD and HD phases, an MC

phase, and a QP phase; we assume ��� , k̄ and concentrate
on the phase diagram in the �-s plane �Fig. 5�. From the
mean-field model we find transitions to MC at �� and s�, and
the QP-LD phase boundary at �QP= f�s�. In contrast to the
original TASEP with a slow site, the latter boundary is a
function of s.

As with the uniform lattice, for case 2 parameters we see
a LR regime within the LD phase and a dramatic reduction in
the maximal current �Eqs. �17��. The major result of this
paper is that we also now see an LR regime within the QP
phase.

In Figs. 6�a�–6�d� we show color plots of J, �,
��=�l−�r, and k as functions of both � and s for case 2

parameters �since they are biologically realistic�. We show
both mean-field and Monte Carlo simulation results, the dis-
cussion of the latter we postpone until Sec. III B. We can
clearly identify several regimes:
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FIG. 5. �Color online� Plot showing the phase plane in � and s.
The dashed line shows the first-order transition QP→LD at �QP,
and the solid lines show the continuous phase transition to the MC
phase at �� �vertical� and s� �horizontal�, all found from the mean-
field analysis �see the Appendix�. The LR regimes within the QP
and LD phases are not shown. Parameters are given in the text.
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LD: As in the original TASEP model, there is a low den-
sity and J�. The hopping rate is approximately constant

k
rT̄k.
LR-LD: As in the uniform TASEP with finite recharging,

J is approximately constant and k is reduced.
LR-MC: Again as in the uniform TASEP with finite re-

charging, k is reduced and J constant with respect to both �
and s, but has a value much smaller than the maximal current
seen for case 1 parameters.

QP: Similar to the original TASEP with a slow site,
J is independent of �, but is proportional to s;
��
�1−s� / �1+s� indicates a queue, and the hopping rate is

approximately constant k
rT̄k.

LR-QP: This is another LR regime within the QP which is
not present in other models. There is still queuing, as indi-
cated by nonzero ��; however, ��� �1−s� / �1+s�, and this

is accompanied by a reduced hopping rate k�rT̄k, indicating
limited resource availability. We denote the value of s at
which we move to the LR-QP regime sLR and discuss this in
Sec. III A.

In Figs. 6�e�–6�p� we show three cross sections at con-
stant s �indicated in Fig. 6�a��. Here, we see more clearly the
different phases and regimes and compare with the MCS
results �discussion of which we postpone until Sec. III B�.
For comparison, in Figs. 6�q�–6�t� we show mean-field re-
sults for case 1 parameters, which are the same as for the
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FIG. 6. �Color online� �a�–�d� Color plots showing mean-field results for J, �, ��, and k for the biologically realistic �case 2� parameters
given in the text. Plots �e�–�h�, �i�–�l�, and �m�–�p� show the same results for J, �, ��, and k as functions of � at constant s, with s�s�,
sLR�s�s�, and s�sLR, respectively. For comparison, plots �q�–�t� show the sLR�s�s� results but for case 1 parameters �Vk=106 s−1 and
other parameters unchanged�, where the behavior of the original TASEP is recovered. Lines show the mean-field model and points show the
MCS results. The red dashed lines in �a� indicate the values of s in �e�–�t�.
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original TASEP with a slow site: as � increases the current
continues to increase until �=�QP, and ��= �1−s� / �1+s�
throughout the QP. For s�s� �Figs. 6�e�–6�h�� the transition
LD�LR-LD occurs at �LR, and there is a continuous phase
transition LR-LD→LR-MC at ��, just as in the system with-
out a defect site. For case 2 with sLR�s�s� �Figs. 6�i�–6�l��
as � is increased, again the transition LD�LR-LD occurs at
�LR, but as � increases further there is a first-order phase
transition LR-LD→LR-QP. For s�sLR the system does not
enter a limited resources phase, and as � is increased there is
a first-order phase transition LD→QP as would be seen in
the original TASEP with a slow site.

We now consider in more detail the LR-QP regime. In
Figs. 7�a� and 7�b� we show how �l and �r vary with s for
two different values of �. In the LR-QP regime due to lim-
ited resources the severity of the queuing has decreased; the
difference between this mixed queuing with limited re-
sources behavior and that of the pure QP is shown in density
plots in Figs. 7�c� and 7�d�. In the pure QP, particles enter the
rightmost half of the lattice only very rarely ��eff is small�,
and then move quickly through the lattice before leaving,
resulting in a very low density. In the LR-QP regime the
hopping rate k is reduced, so particles which enter the right-
most sublattice move more slowly, taking a longer time to
reach the end of the lattice; the result is that the density is
larger than in the pure QP. We can treat the leftmost sublat-
tice as having a low density of holes which enter at the right
and hop leftward with rate k; in the LR-QP regime, holes
spend more time on the lattice, so the hole density is larger,
i.e., �l is lower, than in the pure QP. We emphasize that the
LR-QP regime does not exist in the original TASEP, to which
our present model reduces for biologically unrealistic case 1

parameters.

A. Estimation of �LR and sLR

The initiation rate �LR and extrinsic speed sLR represent
the values of � and s where the rate at which k-type aa-
tRNAs are being used approaches the rate at which they can
be recharged. These quantities are not well defined since, as
discussed above, there is not a true phase transition. The
sharpness of the crossover between LD�LR-LD and
QP�LR-QP depends on the value of Km, so �LR and sLR

cannot be found exactly from the mean-field model. How-
ever, for the realistic parameters we use here, Km is small so
the crossover is sharp, and it is possible to estimate �LR as
was done for the uniform TASEP �Eqs. �17��. In this section
we show that this approximation is consistent with heuristic
physical reasoning, and then use this same reasoning to find
an expression for sLR.

As in Sec. II C, an estimate of �LR can be found by ex-
panding the equation for JLD about Vk=0 and equating this
with the expansion of JMC about Vk=0. Keeping terms to

first order gives �LR
�Vk /L��T̄k / �T̄k+Km�. The same ex-
pression can be found by considering the rate of use � and
recharging � of tRNAs in the LD phase. The rate at which
k-type aa-tRNAs are used in LD is given by JLDL� since the
current is defined as the rate at which particles hop out of
each site. Since we know the approximation for JLD from
Eqs. �17� �which is also valid for the model with a slow site�
the rate of k-type aa-tRNA use is approximately,

�k = ��1 −
�

rT̄k
	L�. �25�

The maximum rate at which k-type tRNAs are recharged is
realized when Tk=0 and is given by

�k =
VkT̄k

T̄k + Km

. �26�

Equating �l and �k gives the critical value of �; we are left
with a quadratic in �LR, again with one solution which can
be disregarded as unphysical since it gives �LR�0 for
Vk=0. The remaining solution gives

�LR =
rT̄k

2
�1 −�1 − 4

Vk

L�

T̄k

T̄k + Km

1

rT̄k

	 , �27�

which, when only keeping terms to first order in Vk, gives

�LR
�Vk /L��T̄k / �T̄k+Km�—the same result as the estimate
from the mean-field theory.

An expression for sLR can be found via similar arguments.
We now consider starting in the QP phase; again the rate of
aa-tRNA use is JL�. In the rightmost half of the lattice there
is a low density of particles, and we can approximate the

current JLD
�eff�1−�eff /rT̄k�. From Eq. �4� we have by
definition �eff=�L/2q, where �L/2 is the density at the slow
site. Since for the parameter range studied here we never
reach a regime were q-type aa-tRNAs become depleted, we

can approximate q
rsT̄k, so the rate of k-type aa-tRNA use
in QP is
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FIG. 7. �Color online� Top: plots showing �l and �r as functions
of s �black and gray lines, respectively� for �a� �=0.0528 s−1

��LR������ and �b� �=0.099 s−1 ������. Points show MCS
results. The location of the phase transition to the QP can be found
by considering the inverse of the function for �QP, i.e.,
sQP= f−1��QP� �see text�. Middle and bottom: plots showing density
as a function of codon position for �c� �=0.099 s−1, s=7	10−4

�pure QP� and �d� �=0.099 s−1, s=0.01 �mixed LR-QP�. Other
parameters are in the text.
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�k = L��L/2rsT̄k�1 − �L/2s� . �28�

Although in the bulk of the leftmost sublattice we can ap-
proximate that the density is given by �l, due to spatial cor-
relations in the density around the slow site our mean-field
model cannot predict the value of �L/2. Instead, since far to
the left of this site �bulk
1 and far to the right �bulk
0, we
assume that �L/2
1 /2. If we consider increasing s then we
would expect to move to the LR regime when the quantities
in Eqs. �26� and �28� are equal, i.e., at

sLR = 1 −�1 − 4
Vk

L�

1

r�T̄k + Km�
, �29�

which is independent of �. Keeping only terms to first order
in Vk gives

sLR 

Vk

L�

2

r�T̄k + Km�
.

Although we do not have an analytical expression for the
current in the QP �see the Appendix�, we are still able to
estimate the value of sLR. This approximation agrees well
with the MCS discussed below.

B. Monte Carlo simulation results

We test our mean-field prediction by comparing with
Monte Carlo simulations. These proceed via a similar
scheme to those in previous studies; we use continuous time
Monte Carlo �40� as this is very efficient. Particles which are
to the left of a vacant site are picked stochastically such that
they move with a rate ki. Initiation is allowed for by a zeroth
site associated with each lattice that always contains a par-
ticle, which enters the lattice with rate � provided there is a
vacancy. In the present model we choose not only from the

N�L+1� sites, but also from any of the T̄k+ T̄q tRNAs which
are uncharged, such that recharging occurs with a rate

Vk / �Km+ T̄k−Tk� or sVk / �Km+ T̄q−Tq� depending on the
tRNA type. Every time a particle hops or a tRNA is re-
charged, we update Tk and Tq accordingly. To remove any
transient effects associated with the initial conditions we dis-
regard the first 6	103 s of each simulation and run for a
further 6	103 s.

Despite the fact that the mean-field treatment ignores the
significant spatial correlations induced near the slow site, the

solutions for J, �, and k fit well to the simulation results. Our
mean-field model fares less well in predicting the bulk den-
sities to the left and right of the slow site ��l, �r, and there-
fore ��� in the LR-QP regime �Figs. 6�k� and 7�. This is due
to the significant spatial correlations in the density induced
near the slow site. It is not surprising that correlations in-
crease in the LR regime, as here the different lattices are
coupled via the tRNA population. Nevertheless, we have
been able to accurately predict the existence of the LR re-
gime within the QP. Figure 8 shows color plots for J and ��
from the simulation results, together with the phase bound-
aries at �� and s�, and the boundaries for the LR-LD and
LR-QP regimes at �LR and sLR from the mean-field treat-
ment.

IV. DISCUSSION AND CONCLUSIONS

We have examined the effect of slow codons in a TASEP
model of mRNA translation which includes finite recharging
of aa-tRNA molecules. As discussed in �15�, including finite
aa-tRNA recharging in a uniform mRNA leads to substan-
tially different behavior compared to the original TASEP. For
biologically realistic parameters �case 2�, there is a regime
where limited resource availability prevents the current from
increasing above a maximum value which is much lower
than the maximal current in the original TASEP. This regime
is characterized by a severe reduction in the charging rate of
aa-tRNAs. We have LR for ���LR, because the rate at
which aa-tRNAs are used cannot increase above the rate at
which they are recharged. For the biologically relevant case

of Km� T̄, �LR is approximately independent of the total

abundance of aa-tRNAs, T̄, and other parameters such as the
intrinsic translation rate r. Although this robustness to

changes in r and T̄ is a result of our choice that the hopping

rate k depends linearly on T̄, this is a justified approximation

as we expect the value of T̄ to be below any saturation
point—the cell is unlikely to overproduce tRNAs on ener-
getic grounds. The sharp reduction in aa-tRNA charging lev-
els in the LR phase is a hallmark of this effect �compare
Figs. 4�c� and 4�f��. This has not been present in previous
models, and since it is such a large effect, it will be easily
observable experimentally.

We have shown that a queuing phase exists in a model
with finite recharging for an mRNA with a single slow codon
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FIG. 8. �Color online� �a� Phase plane plot from mean-field treatment showing the different regimes and phases for biologically realistic
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dotted lines show �LR and sLR, bounding the region where the current becomes limited by the finite recharging of the aa-tRNAs. Plots �b�
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in the center. We follow the method of Kolomeisky �27�, and
although this simple mean-field approach does not take into
account any correlations induced by the slow site, we are
nevertheless able to predict the existence of a limited re-
sources regime. The main result of this model is the exis-
tence of a limited resources regime within the queuing phase.
We are able to predict with reasonable accuracy the current
in the different regimes, as well as the locations of the phase
transitions. Qualitative arguments have also allowed us to
find analytical expressions for the critical initiation rate �LR

and critical speed of the slow codon sLR beyond which the
system enters the LR regime. In the LR regime within the
QP, we see a reduction in the severity of queuing; although
due to spatial correlations in the density our mean-field
model fails to accurately predict the difference in density
either side of the slow site, the behavior is qualitatively the
same as in the Monte Carlo simulations. The coupling be-
tween the lattices �and between particles on the same lattice�
via the tRNA pool leads to increased correlations: we note
that, for example, Eqs. �20� and �21� become highly suscep-
tible to fluctuations at small k �i.e., in LR�, and large fluc-
tuations in k will affect all particles simultaneously.

Other authors have made attempts at including the effect
of spatial correlations �13,26�. Since we focus on the steady
state of the system, where k�J� and q�J� are constant in time,
it may be possible to incorporate finite recharging into nu-
merical models such as the finite segment mean-field model
of Chou and Lakatos �13�. Their method involves the nu-
merical computation of the eigenvectors of a transition ma-
trix for several sites around the slow site. One could attempt
an iterative approach using an estimate of J to give initial
values of k�J� and q�J�; these would be used to find an im-
proved estimate of J leading to new k�J� and q�J�, and so on.
The aim of the present work was to gain understanding of the
different phase transitions rather than calculate precise val-
ues for this anyway rather contrived mRNA, so the mean-
field approach was more appropriate.

Other improvements to the model include considering the
fact that ribosomes actually cover several codons around the
one that is being translated. Several authors have included
extended particles in TASEP models �23,24,26,41,42�; incor-
poration of this in the present model via the approach of
Lakatos and Chou �41� is straightforward, although we ex-
pect the induced spatial correlations in the density not ac-
counted for by the mean-field approach to become more sig-
nificant. Also, recently Ciandrini et al. �43� included in a
TASEP model the fact that a ribosome actually has multiple

internal states; a similar approach could be incorporated here
by treating the binding of the aa-tRNA to the ribosome and
the translocation of the ribosome to the next codon site sepa-
rately.

The next step in the development of this model will be to
examine realistic mRNA sequences with all 41 tRNA and
codon types represented. Although some authors �26� have
attempted to study real mRNAs using an iterative approach,
it is likely that an analytical treatment of such complicated
sequences will not be possible, and Monte Carlo simulations
will be the only viable option. In the present work we have
encountered a regime where the availability of the majority
tRNA becomes limited; in a system with 41 tRNA types, it is
also likely that minority tRNA type will become limited, and
that the related codons become slow and cause queuing. The
balance between the supply and the demand is likely to be
even more crucial in this case.

In summary, in a TASEP with a slow site, a finite rate of
aa-tRNA recharging leads to a limited resources regime
within both the low-density and queuing phases. Within the
latter, limited resources lead to a reduction in the severity of
the queuing.
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APPENDIX

Here, we derive the mean-field results as presented in
Figs. 4 and 5. We follow the reasoning of Kolomeisky �27�
and assume that each half of the lattice can exist indepen-
dently in each of the three phases of the original TASEP; as
explained in Sec. II A there are four possibilities: LD/LD,
HD/HD, MC/MC, and HD/LD, which we also denote QP.
Which phase each sublattice is in depends on the effective
entry and exit rates as defined in Eq. �4�, and the current is
given by

J =
�eff�eff

q�J�
. �A1�

We assume that when each sublattice is in the same phase the
behavior is the same as for the uniform lattice, so the expres-
sions for current and density follow as in Sec. II C,

JLD =
1

2
���1 −

�

r�T̄k + Km�
� +

T̄k

T̄k + Km

Vk

L�
−�� T̄k

T̄k + Km

Vk

L�
+ ��1 −

�

r�T̄k + Km�
��2

−
4��rT̄k − ��

r�T̄k + Km�

Vk

L�
	 ,

�LD =
1

2�
���1 +

�

r�T̄k + Km�
� −

T̄k

T̄k + Km

Vk

L�
+�� T̄k

T̄k + Km

Vk

L�
+ ��1 −

�

r�T̄k + Km�
��2

−
4��rT̄k − ��

r�T̄k + Km�

Vk

L�
	 , �A2�
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JMC =
1

2
��, �MC =

1

2
, �A3�

where

�� =
r

4
�T̄k + Km� +

Vk

L�
−�� r

4
�T̄k + Km� +

Vk

L�
	2

− rT̄k
Vk

L�
.

�A4�

As with the uniform lattice, for our realistic �case 2� param-
eters we see an LR regime within the LD phase and a dra-
matic reduction in the maximal current. The approximations
in Eqs. �16� and �17� still hold.

Since we now have two sublattices, in order to find con-
ditions on � and � which determine whether the system is in
the LD or MC phase, we must also consider �eff and �eff.
Analogously to Sec. II B, for both sublattices to be in LD we
require

LD:� � �eff, �eff � �, � � ��, �eff � ��.

By equating the LD current in the leftmost sublattice �Eqs.
�A2�� with the LD current for the rightmost sublattice �the
same equation but with the replacement �→�eff�, we find
�eff=�; using Eq. �A1� gives �eff=qJLD /�, leading to the
inequalities

LD:� � �, � � ��, �2 � qJLD. �A5�

We remind the reader that JLD is itself a function of �, and
note that it is not possible to algebraically isolate � in the
latter of inequalities �A5� in order to define the phase bound-
ary �QP= f�s�. Instead we eliminate q using Eq. �23� and
isolate s to find

sQP = g��� =
1

2�JLD
2 rT̄k +

Vk

N
�2

JLDrT̄k
Vk

N

−��JLD
2 rT̄k +

Vk

N
�2

JLDrT̄k
Vk

N
�

2

+ 4
JLDKm

Vk/N � ,

where we note again that JLD is itself a function of �. The
value of �QP is then given by the inverse of this function,
f�s�=g−1�s�. Hence, the third inequality of Eq. �A5� is
equivalent to �� f�s�.

If the system is in the MC phase, we require

MC:�,� � ��, �eff,�eff � ��,

with the latter implying �eff�eff���2; using Eq. �A1� gives

MC:� � ��, � � ��, JMCq � ��2. �A6�

The third inequality is independent of � and gives s�, so that
we are in MC if s�s�. Using Eqs. �A5� and �A6� allows us
to plot the phase plane �Fig. 5� in terms of � and s.

In the QP we find, by equating the current in each sublat-
tice and disregarding the unphysical solution, that �eff=�eff.
To find the current we consider that the rightmost sublattice
is in the LD phase, so we can use JLD from Eq. �A2�, but
with the replacement �→�eff. Eliminating �eff and q using
Eqs. �A1� and �23� yields a sixth-order polynomial in JQP,

0 = A1JQP + A2JQP
2 + A3JQP

3 + A4JQP
4 + A5JQP

5 + A6JQP
6 ,

�A7�

where the coefficients A1–6 are functions of the fixed param-
eters and s. This cannot be solved analytically, so for the
plots we find JQP numerically �44,45�. We estimate the den-
sity in the QP as in Sec. II B by approximating that this is
constant in each half of the lattice. Since the rightmost half
of the lattice is in LD, �r is given by the equation for �LD in
Eqs. �A2� with the replacement �→�eff=�JQPq�JQP�, and
�l=1−�r. We then find numerical solutions for �l and �r
using our solution for JQP.
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